lwip/contrib/ports/unix/port/sys_arch.c
Joan Lledó 2f5305c259 Unix port: improve support for the Hurd
Signed-off-by: Simon Goldschmidt <goldsimon@gmx.de>
2019-08-01 21:10:36 +02:00

765 lines
19 KiB
C

/*
* Copyright (c) 2001-2003 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
/*
* Wed Apr 17 16:05:29 EDT 2002 (James Roth)
*
* - Fixed an unlikely sys_thread_new() race condition.
*
* - Made current_thread() work with threads which where
* not created with sys_thread_new(). This includes
* the main thread and threads made with pthread_create().
*
* - Catch overflows where more than SYS_MBOX_SIZE messages
* are waiting to be read. The sys_mbox_post() routine
* will block until there is more room instead of just
* leaking messages.
*/
#define _GNU_SOURCE /* pull in pthread_setname_np() on Linux */
#include "lwip/debug.h"
#include <string.h>
#include <sys/time.h>
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <errno.h>
#include "lwip/def.h"
#ifdef LWIP_UNIX_MACH
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
#include "lwip/sys.h"
#include "lwip/opt.h"
#include "lwip/stats.h"
#include "lwip/tcpip.h"
/* Return code for an interrupted timed wait */
#define SYS_ARCH_INTR 0xfffffffeUL
u32_t
lwip_port_rand(void)
{
return (u32_t)rand();
}
static void
get_monotonic_time(struct timespec *ts)
{
#ifdef LWIP_UNIX_MACH
/* darwin impl (no CLOCK_MONOTONIC) */
u64_t t = mach_absolute_time();
mach_timebase_info_data_t timebase_info = {0, 0};
mach_timebase_info(&timebase_info);
u64_t nano = (t * timebase_info.numer) / (timebase_info.denom);
u64_t sec = nano/1000000000L;
nano -= sec * 1000000000L;
ts->tv_sec = sec;
ts->tv_nsec = nano;
#else
clock_gettime(CLOCK_MONOTONIC, ts);
#endif
}
#if SYS_LIGHTWEIGHT_PROT
static pthread_mutex_t lwprot_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_t lwprot_thread = (pthread_t)0xDEAD;
static int lwprot_count = 0;
#endif /* SYS_LIGHTWEIGHT_PROT */
#if !NO_SYS
static struct sys_thread *threads = NULL;
static pthread_mutex_t threads_mutex = PTHREAD_MUTEX_INITIALIZER;
struct sys_mbox_msg {
struct sys_mbox_msg *next;
void *msg;
};
#define SYS_MBOX_SIZE 128
struct sys_mbox {
int first, last;
void *msgs[SYS_MBOX_SIZE];
struct sys_sem *not_empty;
struct sys_sem *not_full;
struct sys_sem *mutex;
int wait_send;
};
struct sys_sem {
unsigned int c;
pthread_condattr_t condattr;
pthread_cond_t cond;
pthread_mutex_t mutex;
};
struct sys_mutex {
pthread_mutex_t mutex;
};
struct sys_thread {
struct sys_thread *next;
pthread_t pthread;
};
static struct sys_sem *sys_sem_new_internal(u8_t count);
static void sys_sem_free_internal(struct sys_sem *sem);
static u32_t cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex,
u32_t timeout);
/*-----------------------------------------------------------------------------------*/
/* Threads */
static struct sys_thread *
introduce_thread(pthread_t id)
{
struct sys_thread *thread;
thread = (struct sys_thread *)malloc(sizeof(struct sys_thread));
if (thread != NULL) {
pthread_mutex_lock(&threads_mutex);
thread->next = threads;
thread->pthread = id;
threads = thread;
pthread_mutex_unlock(&threads_mutex);
}
return thread;
}
struct thread_wrapper_data
{
lwip_thread_fn function;
void *arg;
};
static void *
thread_wrapper(void *arg)
{
struct thread_wrapper_data *thread_data = (struct thread_wrapper_data *)arg;
thread_data->function(thread_data->arg);
/* we should never get here */
free(arg);
return NULL;
}
sys_thread_t
sys_thread_new(const char *name, lwip_thread_fn function, void *arg, int stacksize, int prio)
{
int code;
pthread_t tmp;
struct sys_thread *st = NULL;
struct thread_wrapper_data *thread_data;
LWIP_UNUSED_ARG(name);
LWIP_UNUSED_ARG(stacksize);
LWIP_UNUSED_ARG(prio);
thread_data = (struct thread_wrapper_data *)malloc(sizeof(struct thread_wrapper_data));
thread_data->arg = arg;
thread_data->function = function;
code = pthread_create(&tmp,
NULL,
thread_wrapper,
thread_data);
#ifdef LWIP_UNIX_LINUX
pthread_setname_np(tmp, name);
#endif
if (0 == code) {
st = introduce_thread(tmp);
}
if (NULL == st) {
LWIP_DEBUGF(SYS_DEBUG, ("sys_thread_new: pthread_create %d, st = 0x%lx",
code, (unsigned long)st));
abort();
}
return st;
}
#if LWIP_TCPIP_CORE_LOCKING
static pthread_t lwip_core_lock_holder_thread_id;
void sys_lock_tcpip_core(void)
{
sys_mutex_lock(&lock_tcpip_core);
lwip_core_lock_holder_thread_id = pthread_self();
}
void sys_unlock_tcpip_core(void)
{
lwip_core_lock_holder_thread_id = 0;
sys_mutex_unlock(&lock_tcpip_core);
}
#endif /* LWIP_TCPIP_CORE_LOCKING */
static pthread_t lwip_tcpip_thread_id;
void sys_mark_tcpip_thread(void)
{
lwip_tcpip_thread_id = pthread_self();
}
void sys_check_core_locking(void)
{
/* Embedded systems should check we are NOT in an interrupt context here */
if (lwip_tcpip_thread_id != 0) {
pthread_t current_thread_id = pthread_self();
#if LWIP_TCPIP_CORE_LOCKING
LWIP_ASSERT("Function called without core lock", current_thread_id == lwip_core_lock_holder_thread_id);
#else /* LWIP_TCPIP_CORE_LOCKING */
LWIP_ASSERT("Function called from wrong thread", current_thread_id == lwip_tcpip_thread_id);
#endif /* LWIP_TCPIP_CORE_LOCKING */
}
}
/*-----------------------------------------------------------------------------------*/
/* Mailbox */
err_t
sys_mbox_new(struct sys_mbox **mb, int size)
{
struct sys_mbox *mbox;
LWIP_UNUSED_ARG(size);
mbox = (struct sys_mbox *)malloc(sizeof(struct sys_mbox));
if (mbox == NULL) {
return ERR_MEM;
}
mbox->first = mbox->last = 0;
mbox->not_empty = sys_sem_new_internal(0);
mbox->not_full = sys_sem_new_internal(0);
mbox->mutex = sys_sem_new_internal(1);
mbox->wait_send = 0;
SYS_STATS_INC_USED(mbox);
*mb = mbox;
return ERR_OK;
}
void
sys_mbox_free(struct sys_mbox **mb)
{
if ((mb != NULL) && (*mb != SYS_MBOX_NULL)) {
struct sys_mbox *mbox = *mb;
SYS_STATS_DEC(mbox.used);
sys_arch_sem_wait(&mbox->mutex, 0);
sys_sem_free_internal(mbox->not_empty);
sys_sem_free_internal(mbox->not_full);
sys_sem_free_internal(mbox->mutex);
mbox->not_empty = mbox->not_full = mbox->mutex = NULL;
/* LWIP_DEBUGF("sys_mbox_free: mbox 0x%lx\n", mbox); */
free(mbox);
}
}
err_t
sys_mbox_trypost(struct sys_mbox **mb, void *msg)
{
u8_t first;
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_trypost: mbox %p msg %p\n",
(void *)mbox, (void *)msg));
if ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE)) {
sys_sem_signal(&mbox->mutex);
return ERR_MEM;
}
mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg;
if (mbox->last == mbox->first) {
first = 1;
} else {
first = 0;
}
mbox->last++;
if (first) {
sys_sem_signal(&mbox->not_empty);
}
sys_sem_signal(&mbox->mutex);
return ERR_OK;
}
err_t
sys_mbox_trypost_fromisr(sys_mbox_t *q, void *msg)
{
return sys_mbox_trypost(q, msg);
}
void
sys_mbox_post(struct sys_mbox **mb, void *msg)
{
u8_t first;
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_post: mbox %p msg %p\n", (void *)mbox, (void *)msg));
while ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE)) {
mbox->wait_send++;
sys_sem_signal(&mbox->mutex);
sys_arch_sem_wait(&mbox->not_full, 0);
sys_arch_sem_wait(&mbox->mutex, 0);
mbox->wait_send--;
}
mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg;
if (mbox->last == mbox->first) {
first = 1;
} else {
first = 0;
}
mbox->last++;
if (first) {
sys_sem_signal(&mbox->not_empty);
}
sys_sem_signal(&mbox->mutex);
}
u32_t
sys_arch_mbox_tryfetch(struct sys_mbox **mb, void **msg)
{
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
sys_arch_sem_wait(&mbox->mutex, 0);
if (mbox->first == mbox->last) {
sys_sem_signal(&mbox->mutex);
return SYS_MBOX_EMPTY;
}
if (msg != NULL) {
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p msg %p\n", (void *)mbox, *msg));
*msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE];
}
else{
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p, null msg\n", (void *)mbox));
}
mbox->first++;
if (mbox->wait_send) {
sys_sem_signal(&mbox->not_full);
}
sys_sem_signal(&mbox->mutex);
return 0;
}
u32_t
sys_arch_mbox_fetch(struct sys_mbox **mb, void **msg, u32_t timeout)
{
u32_t time_needed = 0;
struct sys_mbox *mbox;
LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL));
mbox = *mb;
/* The mutex lock is quick so we don't bother with the timeout
stuff here. */
sys_arch_sem_wait(&mbox->mutex, 0);
while (mbox->first == mbox->last) {
sys_sem_signal(&mbox->mutex);
/* We block while waiting for a mail to arrive in the mailbox. We
must be prepared to timeout. */
if (timeout != 0) {
time_needed = sys_arch_sem_wait(&mbox->not_empty, timeout);
if (time_needed == SYS_ARCH_TIMEOUT) {
return SYS_ARCH_TIMEOUT;
}
} else {
sys_arch_sem_wait(&mbox->not_empty, 0);
}
sys_arch_sem_wait(&mbox->mutex, 0);
}
if (msg != NULL) {
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p msg %p\n", (void *)mbox, *msg));
*msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE];
}
else{
LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p, null msg\n", (void *)mbox));
}
mbox->first++;
if (mbox->wait_send) {
sys_sem_signal(&mbox->not_full);
}
sys_sem_signal(&mbox->mutex);
return time_needed;
}
/*-----------------------------------------------------------------------------------*/
/* Semaphore */
static struct sys_sem *
sys_sem_new_internal(u8_t count)
{
struct sys_sem *sem;
sem = (struct sys_sem *)malloc(sizeof(struct sys_sem));
if (sem != NULL) {
sem->c = count;
pthread_condattr_init(&(sem->condattr));
#if !(defined(LWIP_UNIX_MACH) || (defined(LWIP_UNIX_ANDROID) && __ANDROID_API__ < 21))
pthread_condattr_setclock(&(sem->condattr), CLOCK_MONOTONIC);
#endif
pthread_cond_init(&(sem->cond), &(sem->condattr));
pthread_mutex_init(&(sem->mutex), NULL);
}
return sem;
}
err_t
sys_sem_new(struct sys_sem **sem, u8_t count)
{
SYS_STATS_INC_USED(sem);
*sem = sys_sem_new_internal(count);
if (*sem == NULL) {
return ERR_MEM;
}
return ERR_OK;
}
static u32_t
cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex, u32_t timeout)
{
struct timespec rtime1, rtime2, ts;
int ret;
#ifdef LWIP_UNIX_HURD
#define pthread_cond_wait pthread_hurd_cond_wait_np
#define pthread_cond_timedwait pthread_hurd_cond_timedwait_np
#endif
if (timeout == 0) {
ret = pthread_cond_wait(cond, mutex);
return
#ifdef LWIP_UNIX_HURD
/* On the Hurd, ret == 1 means the RPC has been cancelled.
* The thread is awakened (not terminated) and execution must continue */
ret == 1 ? SYS_ARCH_INTR :
#endif
(u32_t)ret;
}
/* Get a timestamp and add the timeout value. */
get_monotonic_time(&rtime1);
#if defined(LWIP_UNIX_MACH) || (defined(LWIP_UNIX_ANDROID) && __ANDROID_API__ < 21)
ts.tv_sec = timeout / 1000L;
ts.tv_nsec = (timeout % 1000L) * 1000000L;
ret = pthread_cond_timedwait_relative_np(cond, mutex, &ts);
#else
ts.tv_sec = rtime1.tv_sec + timeout / 1000L;
ts.tv_nsec = rtime1.tv_nsec + (timeout % 1000L) * 1000000L;
if (ts.tv_nsec >= 1000000000L) {
ts.tv_sec++;
ts.tv_nsec -= 1000000000L;
}
ret = pthread_cond_timedwait(cond, mutex, &ts);
#endif
if (ret == ETIMEDOUT) {
return SYS_ARCH_TIMEOUT;
#ifdef LWIP_UNIX_HURD
/* On the Hurd, ret == 1 means the RPC has been cancelled.
* The thread is awakened (not terminated) and execution must continue */
} else if (ret == EINTR) {
return SYS_ARCH_INTR;
#endif
}
/* Calculate for how long we waited for the cond. */
get_monotonic_time(&rtime2);
ts.tv_sec = rtime2.tv_sec - rtime1.tv_sec;
ts.tv_nsec = rtime2.tv_nsec - rtime1.tv_nsec;
if (ts.tv_nsec < 0) {
ts.tv_sec--;
ts.tv_nsec += 1000000000L;
}
return (u32_t)(ts.tv_sec * 1000L + ts.tv_nsec / 1000000L);
}
u32_t
sys_arch_sem_wait(struct sys_sem **s, u32_t timeout)
{
u32_t time_needed = 0;
struct sys_sem *sem;
LWIP_ASSERT("invalid sem", (s != NULL) && (*s != NULL));
sem = *s;
pthread_mutex_lock(&(sem->mutex));
while (sem->c <= 0) {
if (timeout > 0) {
time_needed = cond_wait(&(sem->cond), &(sem->mutex), timeout);
if (time_needed == SYS_ARCH_TIMEOUT) {
pthread_mutex_unlock(&(sem->mutex));
return SYS_ARCH_TIMEOUT;
#ifdef LWIP_UNIX_HURD
} else if(time_needed == SYS_ARCH_INTR) {
pthread_mutex_unlock(&(sem->mutex));
return 0;
#endif
}
/* pthread_mutex_unlock(&(sem->mutex));
return time_needed; */
} else if(cond_wait(&(sem->cond), &(sem->mutex), 0)) {
/* Some error happened or the thread has been awakened but not by lwip */
pthread_mutex_unlock(&(sem->mutex));
return 0;
}
}
sem->c--;
pthread_mutex_unlock(&(sem->mutex));
return (u32_t)time_needed;
}
void
sys_sem_signal(struct sys_sem **s)
{
struct sys_sem *sem;
LWIP_ASSERT("invalid sem", (s != NULL) && (*s != NULL));
sem = *s;
pthread_mutex_lock(&(sem->mutex));
sem->c++;
if (sem->c > 1) {
sem->c = 1;
}
pthread_cond_broadcast(&(sem->cond));
pthread_mutex_unlock(&(sem->mutex));
}
static void
sys_sem_free_internal(struct sys_sem *sem)
{
pthread_cond_destroy(&(sem->cond));
pthread_condattr_destroy(&(sem->condattr));
pthread_mutex_destroy(&(sem->mutex));
free(sem);
}
void
sys_sem_free(struct sys_sem **sem)
{
if ((sem != NULL) && (*sem != SYS_SEM_NULL)) {
SYS_STATS_DEC(sem.used);
sys_sem_free_internal(*sem);
}
}
/*-----------------------------------------------------------------------------------*/
/* Mutex */
/** Create a new mutex
* @param mutex pointer to the mutex to create
* @return a new mutex */
err_t
sys_mutex_new(struct sys_mutex **mutex)
{
struct sys_mutex *mtx;
mtx = (struct sys_mutex *)malloc(sizeof(struct sys_mutex));
if (mtx != NULL) {
pthread_mutex_init(&(mtx->mutex), NULL);
*mutex = mtx;
return ERR_OK;
}
else {
return ERR_MEM;
}
}
/** Lock a mutex
* @param mutex the mutex to lock */
void
sys_mutex_lock(struct sys_mutex **mutex)
{
pthread_mutex_lock(&((*mutex)->mutex));
}
/** Unlock a mutex
* @param mutex the mutex to unlock */
void
sys_mutex_unlock(struct sys_mutex **mutex)
{
pthread_mutex_unlock(&((*mutex)->mutex));
}
/** Delete a mutex
* @param mutex the mutex to delete */
void
sys_mutex_free(struct sys_mutex **mutex)
{
pthread_mutex_destroy(&((*mutex)->mutex));
free(*mutex);
}
#endif /* !NO_SYS */
/*-----------------------------------------------------------------------------------*/
/* Time */
u32_t
sys_now(void)
{
struct timespec ts;
get_monotonic_time(&ts);
return (u32_t)(ts.tv_sec * 1000L + ts.tv_nsec / 1000000L);
}
u32_t
sys_jiffies(void)
{
struct timespec ts;
get_monotonic_time(&ts);
return (u32_t)(ts.tv_sec * 1000000000L + ts.tv_nsec);
}
/*-----------------------------------------------------------------------------------*/
/* Init */
void
sys_init(void)
{
}
/*-----------------------------------------------------------------------------------*/
/* Critical section */
#if SYS_LIGHTWEIGHT_PROT
/** sys_prot_t sys_arch_protect(void)
This optional function does a "fast" critical region protection and returns
the previous protection level. This function is only called during very short
critical regions. An embedded system which supports ISR-based drivers might
want to implement this function by disabling interrupts. Task-based systems
might want to implement this by using a mutex or disabling tasking. This
function should support recursive calls from the same task or interrupt. In
other words, sys_arch_protect() could be called while already protected. In
that case the return value indicates that it is already protected.
sys_arch_protect() is only required if your port is supporting an operating
system.
*/
sys_prot_t
sys_arch_protect(void)
{
/* Note that for the UNIX port, we are using a lightweight mutex, and our
* own counter (which is locked by the mutex). The return code is not actually
* used. */
if (lwprot_thread != pthread_self())
{
/* We are locking the mutex where it has not been locked before *
* or is being locked by another thread */
pthread_mutex_lock(&lwprot_mutex);
lwprot_thread = pthread_self();
lwprot_count = 1;
}
else
/* It is already locked by THIS thread */
lwprot_count++;
return 0;
}
/** void sys_arch_unprotect(sys_prot_t pval)
This optional function does a "fast" set of critical region protection to the
value specified by pval. See the documentation for sys_arch_protect() for
more information. This function is only required if your port is supporting
an operating system.
*/
void
sys_arch_unprotect(sys_prot_t pval)
{
LWIP_UNUSED_ARG(pval);
if (lwprot_thread == pthread_self())
{
lwprot_count--;
if (lwprot_count == 0)
{
lwprot_thread = (pthread_t) 0xDEAD;
pthread_mutex_unlock(&lwprot_mutex);
}
}
}
#endif /* SYS_LIGHTWEIGHT_PROT */
/* get keyboard state to terminate the debug app by using select */
int
lwip_unix_keypressed(void)
{
struct timeval tv = { 0L, 0L };
fd_set fds;
FD_ZERO(&fds);
FD_SET(0, &fds);
return select(1, &fds, NULL, NULL, &tv);
}