/* * Copyright (c) 2001-2003 Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Adam Dunkels * */ /* * Wed Apr 17 16:05:29 EDT 2002 (James Roth) * * - Fixed an unlikely sys_thread_new() race condition. * * - Made current_thread() work with threads which where * not created with sys_thread_new(). This includes * the main thread and threads made with pthread_create(). * * - Catch overflows where more than SYS_MBOX_SIZE messages * are waiting to be read. The sys_mbox_post() routine * will block until there is more room instead of just * leaking messages. */ #define _GNU_SOURCE /* pull in pthread_setname_np() on Linux */ #include "lwip/debug.h" #include #include #include #include #include #include #include #include "lwip/def.h" #ifdef LWIP_UNIX_MACH #include #include #endif #include "lwip/sys.h" #include "lwip/opt.h" #include "lwip/stats.h" #include "lwip/tcpip.h" #if LWIP_NETCONN_SEM_PER_THREAD /* pthread key to *our* thread local storage entry */ static pthread_key_t sys_thread_sem_key; #endif /* Return code for an interrupted timed wait */ #define SYS_ARCH_INTR 0xfffffffeUL u32_t lwip_port_rand(void) { return (u32_t)rand(); } static void get_monotonic_time(struct timespec *ts) { #ifdef LWIP_UNIX_MACH /* darwin impl (no CLOCK_MONOTONIC) */ u64_t t = mach_absolute_time(); mach_timebase_info_data_t timebase_info = {0, 0}; mach_timebase_info(&timebase_info); u64_t nano = (t * timebase_info.numer) / (timebase_info.denom); u64_t sec = nano/1000000000L; nano -= sec * 1000000000L; ts->tv_sec = sec; ts->tv_nsec = nano; #else clock_gettime(CLOCK_MONOTONIC, ts); #endif } #if SYS_LIGHTWEIGHT_PROT static pthread_mutex_t lwprot_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_t lwprot_thread = (pthread_t)0xDEAD; static int lwprot_count = 0; #endif /* SYS_LIGHTWEIGHT_PROT */ #if !NO_SYS static struct sys_thread *threads = NULL; static pthread_mutex_t threads_mutex = PTHREAD_MUTEX_INITIALIZER; struct sys_mbox_msg { struct sys_mbox_msg *next; void *msg; }; #define SYS_MBOX_SIZE 128 struct sys_mbox { int first, last; void *msgs[SYS_MBOX_SIZE]; struct sys_sem *not_empty; struct sys_sem *not_full; struct sys_sem *mutex; int wait_send; }; struct sys_sem { unsigned int c; pthread_condattr_t condattr; pthread_cond_t cond; pthread_mutex_t mutex; }; struct sys_mutex { pthread_mutex_t mutex; }; struct sys_thread { struct sys_thread *next; pthread_t pthread; }; static struct sys_sem *sys_sem_new_internal(u8_t count); static void sys_sem_free_internal(struct sys_sem *sem); static u32_t cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex, u32_t timeout); /*-----------------------------------------------------------------------------------*/ /* Threads */ static struct sys_thread * introduce_thread(pthread_t id) { struct sys_thread *thread; thread = (struct sys_thread *)malloc(sizeof(struct sys_thread)); if (thread != NULL) { pthread_mutex_lock(&threads_mutex); thread->next = threads; thread->pthread = id; threads = thread; pthread_mutex_unlock(&threads_mutex); } return thread; } struct thread_wrapper_data { lwip_thread_fn function; void *arg; }; static void * thread_wrapper(void *arg) { struct thread_wrapper_data *thread_data = (struct thread_wrapper_data *)arg; thread_data->function(thread_data->arg); /* we should never get here */ free(arg); return NULL; } sys_thread_t sys_thread_new(const char *name, lwip_thread_fn function, void *arg, int stacksize, int prio) { int code; pthread_t tmp; struct sys_thread *st = NULL; struct thread_wrapper_data *thread_data; LWIP_UNUSED_ARG(name); LWIP_UNUSED_ARG(stacksize); LWIP_UNUSED_ARG(prio); thread_data = (struct thread_wrapper_data *)malloc(sizeof(struct thread_wrapper_data)); thread_data->arg = arg; thread_data->function = function; code = pthread_create(&tmp, NULL, thread_wrapper, thread_data); #ifdef LWIP_UNIX_LINUX pthread_setname_np(tmp, name); #endif if (0 == code) { st = introduce_thread(tmp); } if (NULL == st) { LWIP_DEBUGF(SYS_DEBUG, ("sys_thread_new: pthread_create %d, st = 0x%lx", code, (unsigned long)st)); abort(); } return st; } #if LWIP_TCPIP_CORE_LOCKING static pthread_t lwip_core_lock_holder_thread_id; void sys_lock_tcpip_core(void) { sys_mutex_lock(&lock_tcpip_core); lwip_core_lock_holder_thread_id = pthread_self(); } void sys_unlock_tcpip_core(void) { lwip_core_lock_holder_thread_id = 0; sys_mutex_unlock(&lock_tcpip_core); } #endif /* LWIP_TCPIP_CORE_LOCKING */ static pthread_t lwip_tcpip_thread_id; void sys_mark_tcpip_thread(void) { lwip_tcpip_thread_id = pthread_self(); } void sys_check_core_locking(void) { /* Embedded systems should check we are NOT in an interrupt context here */ if (lwip_tcpip_thread_id != 0) { pthread_t current_thread_id = pthread_self(); #if LWIP_TCPIP_CORE_LOCKING LWIP_ASSERT("Function called without core lock", current_thread_id == lwip_core_lock_holder_thread_id); #else /* LWIP_TCPIP_CORE_LOCKING */ LWIP_ASSERT("Function called from wrong thread", current_thread_id == lwip_tcpip_thread_id); #endif /* LWIP_TCPIP_CORE_LOCKING */ } } /*-----------------------------------------------------------------------------------*/ /* Mailbox */ err_t sys_mbox_new(struct sys_mbox **mb, int size) { struct sys_mbox *mbox; LWIP_UNUSED_ARG(size); mbox = (struct sys_mbox *)malloc(sizeof(struct sys_mbox)); if (mbox == NULL) { return ERR_MEM; } mbox->first = mbox->last = 0; mbox->not_empty = sys_sem_new_internal(0); mbox->not_full = sys_sem_new_internal(0); mbox->mutex = sys_sem_new_internal(1); mbox->wait_send = 0; SYS_STATS_INC_USED(mbox); *mb = mbox; return ERR_OK; } void sys_mbox_free(struct sys_mbox **mb) { if ((mb != NULL) && (*mb != SYS_MBOX_NULL)) { struct sys_mbox *mbox = *mb; SYS_STATS_DEC(mbox.used); sys_arch_sem_wait(&mbox->mutex, 0); sys_sem_free_internal(mbox->not_empty); sys_sem_free_internal(mbox->not_full); sys_sem_free_internal(mbox->mutex); mbox->not_empty = mbox->not_full = mbox->mutex = NULL; /* LWIP_DEBUGF("sys_mbox_free: mbox 0x%lx\n", mbox); */ free(mbox); } } err_t sys_mbox_trypost(struct sys_mbox **mb, void *msg) { u8_t first; struct sys_mbox *mbox; LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL)); mbox = *mb; sys_arch_sem_wait(&mbox->mutex, 0); LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_trypost: mbox %p msg %p\n", (void *)mbox, (void *)msg)); if ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE)) { sys_sem_signal(&mbox->mutex); return ERR_MEM; } mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg; if (mbox->last == mbox->first) { first = 1; } else { first = 0; } mbox->last++; if (first) { sys_sem_signal(&mbox->not_empty); } sys_sem_signal(&mbox->mutex); return ERR_OK; } err_t sys_mbox_trypost_fromisr(sys_mbox_t *q, void *msg) { return sys_mbox_trypost(q, msg); } void sys_mbox_post(struct sys_mbox **mb, void *msg) { u8_t first; struct sys_mbox *mbox; LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL)); mbox = *mb; sys_arch_sem_wait(&mbox->mutex, 0); LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_post: mbox %p msg %p\n", (void *)mbox, (void *)msg)); while ((mbox->last + 1) >= (mbox->first + SYS_MBOX_SIZE)) { mbox->wait_send++; sys_sem_signal(&mbox->mutex); sys_arch_sem_wait(&mbox->not_full, 0); sys_arch_sem_wait(&mbox->mutex, 0); mbox->wait_send--; } mbox->msgs[mbox->last % SYS_MBOX_SIZE] = msg; if (mbox->last == mbox->first) { first = 1; } else { first = 0; } mbox->last++; if (first) { sys_sem_signal(&mbox->not_empty); } sys_sem_signal(&mbox->mutex); } u32_t sys_arch_mbox_tryfetch(struct sys_mbox **mb, void **msg) { struct sys_mbox *mbox; LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL)); mbox = *mb; sys_arch_sem_wait(&mbox->mutex, 0); if (mbox->first == mbox->last) { sys_sem_signal(&mbox->mutex); return SYS_MBOX_EMPTY; } if (msg != NULL) { LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p msg %p\n", (void *)mbox, *msg)); *msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE]; } else{ LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_tryfetch: mbox %p, null msg\n", (void *)mbox)); } mbox->first++; if (mbox->wait_send) { sys_sem_signal(&mbox->not_full); } sys_sem_signal(&mbox->mutex); return 0; } u32_t sys_arch_mbox_fetch(struct sys_mbox **mb, void **msg, u32_t timeout) { u32_t time_needed = 0; struct sys_mbox *mbox; LWIP_ASSERT("invalid mbox", (mb != NULL) && (*mb != NULL)); mbox = *mb; /* The mutex lock is quick so we don't bother with the timeout stuff here. */ sys_arch_sem_wait(&mbox->mutex, 0); while (mbox->first == mbox->last) { sys_sem_signal(&mbox->mutex); /* We block while waiting for a mail to arrive in the mailbox. We must be prepared to timeout. */ if (timeout != 0) { time_needed = sys_arch_sem_wait(&mbox->not_empty, timeout); if (time_needed == SYS_ARCH_TIMEOUT) { return SYS_ARCH_TIMEOUT; } } else { sys_arch_sem_wait(&mbox->not_empty, 0); } sys_arch_sem_wait(&mbox->mutex, 0); } if (msg != NULL) { LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p msg %p\n", (void *)mbox, *msg)); *msg = mbox->msgs[mbox->first % SYS_MBOX_SIZE]; } else{ LWIP_DEBUGF(SYS_DEBUG, ("sys_mbox_fetch: mbox %p, null msg\n", (void *)mbox)); } mbox->first++; if (mbox->wait_send) { sys_sem_signal(&mbox->not_full); } sys_sem_signal(&mbox->mutex); return time_needed; } /*-----------------------------------------------------------------------------------*/ /* Semaphore */ static struct sys_sem * sys_sem_new_internal(u8_t count) { struct sys_sem *sem; sem = (struct sys_sem *)malloc(sizeof(struct sys_sem)); if (sem != NULL) { sem->c = count; pthread_condattr_init(&(sem->condattr)); #if !(defined(LWIP_UNIX_MACH) || (defined(LWIP_UNIX_ANDROID) && __ANDROID_API__ < 21)) pthread_condattr_setclock(&(sem->condattr), CLOCK_MONOTONIC); #endif pthread_cond_init(&(sem->cond), &(sem->condattr)); pthread_mutex_init(&(sem->mutex), NULL); } return sem; } err_t sys_sem_new(struct sys_sem **sem, u8_t count) { SYS_STATS_INC_USED(sem); *sem = sys_sem_new_internal(count); if (*sem == NULL) { return ERR_MEM; } return ERR_OK; } static u32_t cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex, u32_t timeout) { struct timespec rtime1, rtime2, ts; int ret; #ifdef LWIP_UNIX_HURD #define pthread_cond_wait pthread_hurd_cond_wait_np #define pthread_cond_timedwait pthread_hurd_cond_timedwait_np #endif if (timeout == 0) { ret = pthread_cond_wait(cond, mutex); return #ifdef LWIP_UNIX_HURD /* On the Hurd, ret == 1 means the RPC has been cancelled. * The thread is awakened (not terminated) and execution must continue */ ret == 1 ? SYS_ARCH_INTR : #endif (u32_t)ret; } /* Get a timestamp and add the timeout value. */ get_monotonic_time(&rtime1); #if defined(LWIP_UNIX_MACH) || (defined(LWIP_UNIX_ANDROID) && __ANDROID_API__ < 21) ts.tv_sec = timeout / 1000L; ts.tv_nsec = (timeout % 1000L) * 1000000L; ret = pthread_cond_timedwait_relative_np(cond, mutex, &ts); #else ts.tv_sec = rtime1.tv_sec + timeout / 1000L; ts.tv_nsec = rtime1.tv_nsec + (timeout % 1000L) * 1000000L; if (ts.tv_nsec >= 1000000000L) { ts.tv_sec++; ts.tv_nsec -= 1000000000L; } ret = pthread_cond_timedwait(cond, mutex, &ts); #endif if (ret == ETIMEDOUT) { return SYS_ARCH_TIMEOUT; #ifdef LWIP_UNIX_HURD /* On the Hurd, ret == 1 means the RPC has been cancelled. * The thread is awakened (not terminated) and execution must continue */ } else if (ret == EINTR) { return SYS_ARCH_INTR; #endif } /* Calculate for how long we waited for the cond. */ get_monotonic_time(&rtime2); ts.tv_sec = rtime2.tv_sec - rtime1.tv_sec; ts.tv_nsec = rtime2.tv_nsec - rtime1.tv_nsec; if (ts.tv_nsec < 0) { ts.tv_sec--; ts.tv_nsec += 1000000000L; } return (u32_t)(ts.tv_sec * 1000L + ts.tv_nsec / 1000000L); } u32_t sys_arch_sem_wait(struct sys_sem **s, u32_t timeout) { u32_t time_needed = 0; struct sys_sem *sem; LWIP_ASSERT("invalid sem", (s != NULL) && (*s != NULL)); sem = *s; pthread_mutex_lock(&(sem->mutex)); while (sem->c <= 0) { if (timeout > 0) { time_needed = cond_wait(&(sem->cond), &(sem->mutex), timeout); if (time_needed == SYS_ARCH_TIMEOUT) { pthread_mutex_unlock(&(sem->mutex)); return SYS_ARCH_TIMEOUT; #ifdef LWIP_UNIX_HURD } else if(time_needed == SYS_ARCH_INTR) { pthread_mutex_unlock(&(sem->mutex)); return 0; #endif } /* pthread_mutex_unlock(&(sem->mutex)); return time_needed; */ } else if(cond_wait(&(sem->cond), &(sem->mutex), 0)) { /* Some error happened or the thread has been awakened but not by lwip */ pthread_mutex_unlock(&(sem->mutex)); return 0; } } sem->c--; pthread_mutex_unlock(&(sem->mutex)); return (u32_t)time_needed; } void sys_sem_signal(struct sys_sem **s) { struct sys_sem *sem; LWIP_ASSERT("invalid sem", (s != NULL) && (*s != NULL)); sem = *s; pthread_mutex_lock(&(sem->mutex)); sem->c++; if (sem->c > 1) { sem->c = 1; } pthread_cond_broadcast(&(sem->cond)); pthread_mutex_unlock(&(sem->mutex)); } static void sys_sem_free_internal(struct sys_sem *sem) { pthread_cond_destroy(&(sem->cond)); pthread_condattr_destroy(&(sem->condattr)); pthread_mutex_destroy(&(sem->mutex)); free(sem); } void sys_sem_free(struct sys_sem **sem) { if ((sem != NULL) && (*sem != SYS_SEM_NULL)) { SYS_STATS_DEC(sem.used); sys_sem_free_internal(*sem); } } /*-----------------------------------------------------------------------------------*/ /* Mutex */ /** Create a new mutex * @param mutex pointer to the mutex to create * @return a new mutex */ err_t sys_mutex_new(struct sys_mutex **mutex) { struct sys_mutex *mtx; mtx = (struct sys_mutex *)malloc(sizeof(struct sys_mutex)); if (mtx != NULL) { pthread_mutex_init(&(mtx->mutex), NULL); *mutex = mtx; return ERR_OK; } else { return ERR_MEM; } } /** Lock a mutex * @param mutex the mutex to lock */ void sys_mutex_lock(struct sys_mutex **mutex) { pthread_mutex_lock(&((*mutex)->mutex)); } /** Unlock a mutex * @param mutex the mutex to unlock */ void sys_mutex_unlock(struct sys_mutex **mutex) { pthread_mutex_unlock(&((*mutex)->mutex)); } /** Delete a mutex * @param mutex the mutex to delete */ void sys_mutex_free(struct sys_mutex **mutex) { pthread_mutex_destroy(&((*mutex)->mutex)); free(*mutex); } #endif /* !NO_SYS */ #if LWIP_NETCONN_SEM_PER_THREAD /*-----------------------------------------------------------------------------------*/ /* Semaphore per thread located TLS */ static void sys_thread_sem_free(void* data) { sys_sem_t *sem = (sys_sem_t*)(data); if (sem) { sys_sem_free(sem); free(sem); } } static sys_sem_t* sys_thread_sem_alloc(void) { sys_sem_t *sem; err_t err; int ret; sem = (sys_sem_t*)malloc(sizeof(sys_sem_t*)); LWIP_ASSERT("failed to allocate memory for TLS semaphore", sem != NULL); err = sys_sem_new(sem, 0); LWIP_ASSERT("failed to initialise TLS semaphore", err == ERR_OK); ret = pthread_setspecific(sys_thread_sem_key, sem); LWIP_ASSERT("failed to initialise TLS semaphore storage", ret == 0); return sem; } sys_sem_t* sys_arch_netconn_sem_get(void) { sys_sem_t* sem = (sys_sem_t*)pthread_getspecific(sys_thread_sem_key); if (!sem) { sem = sys_thread_sem_alloc(); } LWIP_DEBUGF(SYS_DEBUG, ("sys_thread_sem_get s=%p\n", (void*)sem)); return sem; } void sys_arch_netconn_sem_alloc(void) { sys_sem_t* sem = sys_thread_sem_alloc(); LWIP_DEBUGF(SYS_DEBUG, ("sys_thread_sem created s=%p\n", (void*)sem)); } void sys_arch_netconn_sem_free(void) { int ret; sys_sem_t *sem = (sys_sem_t *)pthread_getspecific(sys_thread_sem_key); sys_thread_sem_free(sem); ret = pthread_setspecific(sys_thread_sem_key, NULL); LWIP_ASSERT("failed to de-init TLS semaphore storage", ret == 0); } #endif /* LWIP_NETCONN_SEM_PER_THREAD */ /*-----------------------------------------------------------------------------------*/ /* Time */ u32_t sys_now(void) { struct timespec ts; u32_t now; get_monotonic_time(&ts); now = (u32_t)(ts.tv_sec * 1000L + ts.tv_nsec / 1000000L); #ifdef LWIP_FUZZ_SYS_NOW now += sys_now_offset; #endif return now; } u32_t sys_jiffies(void) { struct timespec ts; get_monotonic_time(&ts); return (u32_t)(ts.tv_sec * 1000000000L + ts.tv_nsec); } /*-----------------------------------------------------------------------------------*/ /* Init */ void sys_init(void) { #if LWIP_NETCONN_SEM_PER_THREAD pthread_key_create(&sys_thread_sem_key, sys_thread_sem_free); #endif } /*-----------------------------------------------------------------------------------*/ /* Critical section */ #if SYS_LIGHTWEIGHT_PROT /** sys_prot_t sys_arch_protect(void) This optional function does a "fast" critical region protection and returns the previous protection level. This function is only called during very short critical regions. An embedded system which supports ISR-based drivers might want to implement this function by disabling interrupts. Task-based systems might want to implement this by using a mutex or disabling tasking. This function should support recursive calls from the same task or interrupt. In other words, sys_arch_protect() could be called while already protected. In that case the return value indicates that it is already protected. sys_arch_protect() is only required if your port is supporting an operating system. */ sys_prot_t sys_arch_protect(void) { /* Note that for the UNIX port, we are using a lightweight mutex, and our * own counter (which is locked by the mutex). The return code is not actually * used. */ if (lwprot_thread != pthread_self()) { /* We are locking the mutex where it has not been locked before * * or is being locked by another thread */ pthread_mutex_lock(&lwprot_mutex); lwprot_thread = pthread_self(); lwprot_count = 1; } else /* It is already locked by THIS thread */ lwprot_count++; return 0; } /** void sys_arch_unprotect(sys_prot_t pval) This optional function does a "fast" set of critical region protection to the value specified by pval. See the documentation for sys_arch_protect() for more information. This function is only required if your port is supporting an operating system. */ void sys_arch_unprotect(sys_prot_t pval) { LWIP_UNUSED_ARG(pval); if (lwprot_thread == pthread_self()) { lwprot_count--; if (lwprot_count == 0) { lwprot_thread = (pthread_t) 0xDEAD; pthread_mutex_unlock(&lwprot_mutex); } } } #endif /* SYS_LIGHTWEIGHT_PROT */ #if !NO_SYS /* get keyboard state to terminate the debug app by using select */ int lwip_unix_keypressed(void) { struct timeval tv = { 0L, 0L }; fd_set fds; FD_ZERO(&fds); FD_SET(0, &fds); return select(1, &fds, NULL, NULL, &tv); } #endif /* !NO_SYS */