lwip/src/core/ipv4/ip.c

700 lines
21 KiB
C
Raw Normal View History

2002-10-19 12:59:30 +00:00
/*
* Copyright (c) 2001, 2002 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
/*-----------------------------------------------------------------------------------*/
/* ip.c
*
* This is the code for the IP layer.
*
*/
/*-----------------------------------------------------------------------------------*/
#include "lwip/debug.h"
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/ip.h"
#include "lwip/inet.h"
#include "lwip/netif.h"
#include "lwip/icmp.h"
#include "lwip/udp.h"
#include "lwip/tcp.h"
#include "lwip/stats.h"
#include "arch/perf.h"
#if LWIP_DHCP
#include "lwip/dhcp.h"
#endif /* LWIP_DHCP */
/*-----------------------------------------------------------------------------------*/
/* ip_init:
*
* Initializes the IP layer.
*/
/*-----------------------------------------------------------------------------------*/
void
ip_init(void)
{
}
/*-----------------------------------------------------------------------------------*/
/* ip_lookup:
*
* An experimental feature that will be changed in future versions. Do
* not depend on it yet...
*/
/*-----------------------------------------------------------------------------------*/
#ifdef LWIP_DEBUG
u8_t
ip_lookup(void *header, struct netif *inp)
{
struct ip_hdr *iphdr;
iphdr = header;
/* Refuse anything that isn't IPv4. */
if(IPH_V(iphdr) != 4) {
return 0;
}
/* Immediately accept/decline packets that are fragments or has
options. */
#if IP_REASSEMBLY == 0
/* if((IPH_OFFSET(iphdr) & htons(IP_OFFMASK | IP_MF)) != 0) {
return 0;
}*/
#endif /* IP_REASSEMBLY == 0 */
#if IP_OPTIONS == 0
if(IPH_HL(iphdr) != 5) {
return 0;
}
#endif /* IP_OPTIONS == 0 */
switch(IPH_PROTO(iphdr)) {
#if LWIP_UDP > 0
case IP_PROTO_UDP:
return udp_lookup(iphdr, inp);
break;
#endif /* LWIP_UDP */
#if LWIP_TCP > 0
case IP_PROTO_TCP:
return 1;
#endif /* LWIP_TCP */
case IP_PROTO_ICMP:
return 1;
break;
default:
return 0;
}
}
#endif /* LWIP_DEBUG */
/*-----------------------------------------------------------------------------------*/
/* ip_route:
*
* Finds the appropriate network interface for a given IP address. It
* searches the list of network interfaces linearly. A match is found
* if the masked IP address of the network interface equals the masked
* IP address given to the function.
*/
/*-----------------------------------------------------------------------------------*/
struct netif *
ip_route(struct ip_addr *dest)
{
struct netif *netif;
for(netif = netif_list; netif != NULL; netif = netif->next) {
if(ip_addr_maskcmp(dest, &(netif->ip_addr), &(netif->netmask))) {
return netif;
}
}
return netif_default;
}
#if IP_FORWARD
/*-----------------------------------------------------------------------------------*/
/* ip_forward:
*
* Forwards an IP packet. It finds an appropriate route for the
* packet, decrements the TTL value of the packet, adjusts the
* checksum and outputs the packet on the appropriate interface.
*/
/*-----------------------------------------------------------------------------------*/
static void
ip_forward(struct pbuf *p, struct ip_hdr *iphdr, struct netif *inp)
{
static struct netif *netif;
PERF_START;
if((netif = ip_route((struct ip_addr *)&(iphdr->dest))) == NULL) {
DEBUGF(IP_DEBUG, ("ip_forward: no forwarding route for 0x%lx found\n",
iphdr->dest.addr));
return;
}
/* Don't forward packets onto the same network interface on which
they arrived. */
if(netif == inp) {
DEBUGF(IP_DEBUG, ("ip_forward: not forward packets back on incoming interface.\n"));
return;
}
/* Decrement TTL and send ICMP if ttl == 0. */
IPH_TTL_SET(iphdr, IPH_TTL(iphdr) - 1);
if(IPH_TTL(iphdr) == 0) {
/* Don't send ICMP messages in response to ICMP messages */
if(IPH_PROTO(iphdr) != IP_PROTO_ICMP) {
icmp_time_exceeded(p, ICMP_TE_TTL);
}
return;
}
/* Incremental update of the IP checksum. */
if(IPH_CHKSUM(iphdr) >= htons(0xffff - 0x100)) {
IPH_CHKSUM_SET(iphdr, IPH_CHKSUM(iphdr) + htons(0x100) + 1);
} else {
IPH_CHKSUM_SET(iphdr, IPH_CHKSUM(iphdr) + htons(0x100));
}
DEBUGF(IP_DEBUG, ("ip_forward: forwarding packet to 0x%lx\n",
iphdr->dest.addr));
#ifdef IP_STATS
++stats.ip.fw;
++stats.ip.xmit;
#endif /* IP_STATS */
PERF_STOP("ip_forward");
netif->output(netif, p, (struct ip_addr *)&(iphdr->dest));
}
#endif /* IP_FORWARD */
/*-----------------------------------------------------------------------------------*/
/* ip_reass:
*
* Tries to reassemble a fragmented IP packet.
*/
/*-----------------------------------------------------------------------------------*/
#define IP_REASSEMBLY 1
#define IP_REASS_BUFSIZE 5760
#define IP_REASS_MAXAGE 10
#if IP_REASSEMBLY
static u8_t ip_reassbuf[IP_HLEN + IP_REASS_BUFSIZE];
static u8_t ip_reassbitmap[IP_REASS_BUFSIZE / (8 * 8)];
static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f,
0x0f, 0x07, 0x03, 0x01};
static u16_t ip_reasslen;
static u8_t ip_reassflags;
#define IP_REASS_FLAG_LASTFRAG 0x01
static u8_t ip_reasstmr;
static struct pbuf *
ip_reass(struct pbuf *p)
{
struct pbuf *q;
struct ip_hdr *fraghdr, *iphdr;
u16_t offset, len;
u16_t i;
iphdr = (struct ip_hdr *)ip_reassbuf;
fraghdr = (struct ip_hdr *)p->payload;
/* If ip_reasstmr is zero, no packet is present in the buffer, so we
write the IP header of the fragment into the reassembly
buffer. The timer is updated with the maximum age. */
if(ip_reasstmr == 0) {
DEBUGF(IP_REASS_DEBUG, ("ip_reass: new packet\n"));
bcopy(fraghdr, iphdr, IP_HLEN);
ip_reasstmr = IP_REASS_MAXAGE;
ip_reassflags = 0;
/* Clear the bitmap. */
bzero(ip_reassbitmap, sizeof(ip_reassbitmap));
}
/* Check if the incoming fragment matches the one currently present
in the reasembly buffer. If so, we proceed with copying the
fragment into the buffer. */
if(ip_addr_cmp(&iphdr->src, &fraghdr->src) &&
ip_addr_cmp(&iphdr->dest, &fraghdr->dest) &&
IPH_ID(iphdr) == IPH_ID(fraghdr)) {
DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching old packet\n"));
/* Find out the offset in the reassembly buffer where we should
copy the fragment. */
len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
/* If the offset or the offset + fragment length overflows the
reassembly buffer, we discard the entire packet. */
if(offset > IP_REASS_BUFSIZE ||
offset + len > IP_REASS_BUFSIZE) {
DEBUGF(IP_REASS_DEBUG, ("ip_reass: fragment outside of buffer (%d:%d/%d).\n",
offset, offset + len, IP_REASS_BUFSIZE));
ip_reasstmr = 0;
goto nullreturn;
}
/* Copy the fragment into the reassembly buffer, at the right
offset. */
DEBUGF(IP_REASS_DEBUG, ("ip_reass: copying with offset %d into %d:%d\n",
offset, IP_HLEN + offset, IP_HLEN + offset + len));
bcopy((u8_t *)fraghdr + IPH_HL(fraghdr) * 4,
&ip_reassbuf[IP_HLEN + offset], len);
/* Update the bitmap. */
if(offset / (8 * 8) == (offset + len) / (8 * 8)) {
DEBUGF(IP_REASS_DEBUG, ("ip_reass: updating single byte in bitmap.\n"));
/* If the two endpoints are in the same byte, we only update
that byte. */
ip_reassbitmap[offset / (8 * 8)] |=
bitmap_bits[(offset / 8 ) & 7] &
~bitmap_bits[((offset + len) / 8 ) & 7];
} else {
/* If the two endpoints are in different bytes, we update the
bytes in the endpoints and fill the stuff inbetween with
0xff. */
ip_reassbitmap[offset / (8 * 8)] |= bitmap_bits[(offset / 8 ) & 7];
DEBUGF(IP_REASS_DEBUG, ("ip_reass: updating many bytes in bitmap (%d:%d).\n",
1 + offset / (8 * 8), (offset + len) / (8 * 8)));
for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
ip_reassbitmap[i] = 0xff;
}
ip_reassbitmap[(offset + len) / (8 * 8)] |= ~bitmap_bits[((offset + len) / 8 ) & 7];
}
/* If this fragment has the More Fragments flag set to zero, we
know that this is the last fragment, so we can calculate the
size of the entire packet. We also set the
IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
the final fragment. */
if((ntohs(IPH_OFFSET(fraghdr)) & IP_MF) == 0) {
ip_reassflags |= IP_REASS_FLAG_LASTFRAG;
ip_reasslen = offset + len;
DEBUGF(IP_REASS_DEBUG, ("ip_reass: last fragment seen, total len %d\n", ip_reasslen));
}
/* Finally, we check if we have a full packet in the buffer. We do
this by checking if we have the last fragment and if all bits
in the bitmap are set. */
if(ip_reassflags & IP_REASS_FLAG_LASTFRAG) {
/* Check all bytes up to and including all but the last byte in
the bitmap. */
for(i = 0; i < ip_reasslen / (8 * 8) - 1; ++i) {
if(ip_reassbitmap[i] != 0xff) {
DEBUGF(IP_REASS_DEBUG, ("ip_reass: last fragment seen, bitmap %d/%d failed (%x)\n", i, ip_reasslen / (8 * 8) - 1, ip_reassbitmap[i]));
goto nullreturn;
}
}
/* Check the last byte in the bitmap. It should contain just the
right amount of bits. */
if(ip_reassbitmap[ip_reasslen / (8 * 8)] !=
(u8_t)~bitmap_bits[ip_reasslen / 8 & 7]) {
DEBUGF(IP_REASS_DEBUG, ("ip_reass: last fragment seen, bitmap %d didn't contain %x (%x)\n",
ip_reasslen / (8 * 8), ~bitmap_bits[ip_reasslen / 8 & 7],
ip_reassbitmap[ip_reasslen / (8 * 8)]));
goto nullreturn;
}
/* Pretend to be a "normal" (i.e., not fragmented) IP packet
from now on. */
IPH_OFFSET_SET(iphdr, 0);
IPH_CHKSUM_SET(iphdr, 0);
IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
/* If we have come this far, we have a full packet in the
buffer, so we allocate a pbuf and copy the packet into it. We
also reset the timer. */
ip_reasstmr = 0;
pbuf_free(p);
p = pbuf_alloc(PBUF_LINK, ip_reasslen, PBUF_POOL);
if(p != NULL) {
i = 0;
for(q = p; q != NULL; q = q->next) {
/* Copy enough bytes to fill this pbuf in the chain. The
avaliable data in the pbuf is given by the q->len
variable. */
DEBUGF(IP_REASS_DEBUG, ("ip_reass: bcopy from %p (%d) to %p, %d bytes\n",
&ip_reassbuf[i], i, q->payload, q->len > ip_reasslen - i? ip_reasslen - i: q->len));
bcopy(&ip_reassbuf[i], q->payload,
q->len > ip_reasslen - i? ip_reasslen - i: q->len);
i += q->len;
}
}
DEBUGF(IP_REASS_DEBUG, ("ip_reass: p %p\n", p));
return p;
}
}
nullreturn:
pbuf_free(p);
return NULL;
}
#endif /* IP_REASSEMBLY */
/*-----------------------------------------------------------------------------------*/
/* ip_input:
*
* This function is called by the network interface device driver when
* an IP packet is received. The function does the basic checks of the
* IP header such as packet size being at least larger than the header
* size etc. If the packet was not destined for us, the packet is
* forwarded (using ip_forward). The IP checksum is always checked.
*
* Finally, the packet is sent to the upper layer protocol input function.
*/
/*-----------------------------------------------------------------------------------*/
err_t
ip_input(struct pbuf *p, struct netif *inp) {
static struct ip_hdr *iphdr;
static struct netif *netif;
static u8_t hl;
#ifdef IP_STATS
++stats.ip.recv;
#endif /* IP_STATS */
/* identify the IP header */
iphdr = p->payload;
if(IPH_V(iphdr) != 4) {
DEBUGF(IP_DEBUG, ("IP packet dropped due to bad version number %d\n", IPH_V(iphdr)));
#if IP_DEBUG
ip_debug_print(p);
#endif /* IP_DEBUG */
pbuf_free(p);
#ifdef IP_STATS
++stats.ip.err;
++stats.ip.drop;
#endif /* IP_STATS */
return ERR_OK;
}
hl = IPH_HL(iphdr);
if(hl * 4 > p->len) {
DEBUGF(IP_DEBUG, ("IP packet dropped due to too short packet %d\n", p->len));
pbuf_free(p);
#ifdef IP_STATS
++stats.ip.lenerr;
++stats.ip.drop;
#endif /* IP_STATS */
return ERR_OK;
}
/* verify checksum */
if(inet_chksum(iphdr, hl * 4) != 0) {
DEBUGF(IP_DEBUG, ("IP packet dropped due to failing checksum 0x%x\n", inet_chksum(iphdr, hl * 4)));
#if IP_DEBUG
ip_debug_print(p);
#endif /* IP_DEBUG */
pbuf_free(p);
#ifdef IP_STATS
++stats.ip.chkerr;
++stats.ip.drop;
#endif /* IP_STATS */
return ERR_OK;
}
/* Trim pbuf. This should have been done at the netif layer,
but we'll do it anyway just to be sure that its done. */
pbuf_realloc(p, ntohs(IPH_LEN(iphdr)));
/* is this packet for us? */
for(netif = netif_list; netif != NULL; netif = netif->next) {
DEBUGF(IP_DEBUG, ("ip_input: iphdr->dest 0x%lx netif->ip_addr 0x%lx (0x%lx, 0x%lx, 0x%lx)\n",
iphdr->dest.addr, netif->ip_addr.addr,
iphdr->dest.addr & netif->netmask.addr,
netif->ip_addr.addr & netif->netmask.addr,
iphdr->dest.addr & ~(netif->netmask.addr)));
if(ip_addr_isany(&(netif->ip_addr)) ||
ip_addr_cmp(&(iphdr->dest), &(netif->ip_addr)) ||
(ip_addr_isbroadcast(&(iphdr->dest), &(netif->netmask)) &&
ip_addr_maskcmp(&(iphdr->dest), &(netif->ip_addr), &(netif->netmask))) ||
ip_addr_cmp(&(iphdr->dest), IP_ADDR_BROADCAST)) {
break;
}
}
#if LWIP_DHCP
/* If a DHCP packet has arrived on the interface, we pass it up the
stack regardless of destination IP address. The reason is that
DHCP replies are sent to the IP adress that will be given to this
node (as recommended by RFC 1542 section 3.1.1, referred by RFC
2131). */
if(IPH_PROTO(iphdr) == IP_PROTO_UDP &&
((struct udp_hdr *)((u8_t *)iphdr + IPH_HL(iphdr) * 4/sizeof(u8_t)))->src ==
DHCP_SERVER_PORT) {
netif = inp;
}
#endif /* LWIP_DHCP */
if(netif == NULL) {
/* packet not for us, route or discard */
DEBUGF(IP_DEBUG, ("ip_input: packet not for us.\n"));
#if IP_FORWARD
if(!ip_addr_isbroadcast(&(iphdr->dest), &(inp->netmask))) {
ip_forward(p, iphdr, inp);
}
#endif /* IP_FORWARD */
pbuf_free(p);
return ERR_OK;
}
#if IP_REASSEMBLY
if((IPH_OFFSET(iphdr) & htons(IP_OFFMASK | IP_MF)) != 0) {
p = ip_reass(p);
if(p == NULL) {
return ERR_OK;
}
iphdr = p->payload;
}
#else /* IP_REASSEMBLY */
if((IPH_OFFSET(iphdr) & htons(IP_OFFMASK | IP_MF)) != 0) {
pbuf_free(p);
DEBUGF(IP_DEBUG, ("IP packet dropped since it was fragmented (0x%x).\n",
ntohs(IPH_OFFSET(iphdr))));
#ifdef IP_STATS
++stats.ip.opterr;
++stats.ip.drop;
#endif /* IP_STATS */
return ERR_OK;
}
#endif /* IP_REASSEMBLY */
#if IP_OPTIONS == 0
if(hl * 4 > IP_HLEN) {
DEBUGF(IP_DEBUG, ("IP packet dropped since there were IP options.\n"));
pbuf_free(p);
#ifdef IP_STATS
++stats.ip.opterr;
++stats.ip.drop;
#endif /* IP_STATS */
return ERR_OK;
}
#endif /* IP_OPTIONS == 0 */
/* send to upper layers */
#if IP_DEBUG
DEBUGF(IP_DEBUG, ("ip_input: \n"));
ip_debug_print(p);
DEBUGF(IP_DEBUG, ("ip_input: p->len %d p->tot_len %d\n", p->len, p->tot_len));
#endif /* IP_DEBUG */
switch(IPH_PROTO(iphdr)) {
#if LWIP_UDP > 0
case IP_PROTO_UDP:
udp_input(p, inp);
break;
#endif /* LWIP_UDP */
#if LWIP_TCP > 0
case IP_PROTO_TCP:
tcp_input(p, inp);
break;
#endif /* LWIP_TCP */
case IP_PROTO_ICMP:
icmp_input(p, inp);
break;
default:
/* send ICMP destination protocol unreachable unless is was a broadcast */
if(!ip_addr_isbroadcast(&(iphdr->dest), &(inp->netmask)) &&
!ip_addr_ismulticast(&(iphdr->dest))) {
p->payload = iphdr;
icmp_dest_unreach(p, ICMP_DUR_PROTO);
}
pbuf_free(p);
DEBUGF(IP_DEBUG, ("Unsupported transportation protocol %d\n", IPH_PROTO(iphdr)));
#ifdef IP_STATS
++stats.ip.proterr;
++stats.ip.drop;
#endif /* IP_STATS */
}
return ERR_OK;
}
/*-----------------------------------------------------------------------------------*/
/* ip_output_if:
*
* Sends an IP packet on a network interface. This function constructs
* the IP header and calculates the IP header checksum. If the source
* IP address is NULL, the IP address of the outgoing network
* interface is filled in as source address.
*/
/*-----------------------------------------------------------------------------------*/
err_t
ip_output_if(struct pbuf *p, struct ip_addr *src, struct ip_addr *dest,
u8_t ttl,
u8_t proto, struct netif *netif)
{
static struct ip_hdr *iphdr;
static u16_t ip_id = 0;
if(dest != IP_HDRINCL) {
if(pbuf_header(p, IP_HLEN)) {
DEBUGF(IP_DEBUG, ("ip_output: not enough room for IP header in pbuf\n"));
#ifdef IP_STATS
++stats.ip.err;
#endif /* IP_STATS */
return ERR_BUF;
}
iphdr = p->payload;
IPH_TTL_SET(iphdr, ttl);
IPH_PROTO_SET(iphdr, proto);
ip_addr_set(&(iphdr->dest), dest);
IPH_VHLTOS_SET(iphdr, 4, IP_HLEN / 4, 0);
IPH_LEN_SET(iphdr, htons(p->tot_len));
IPH_OFFSET_SET(iphdr, htons(IP_DF));
IPH_ID_SET(iphdr, htons(ip_id));
++ip_id;
if(ip_addr_isany(src)) {
ip_addr_set(&(iphdr->src), &(netif->ip_addr));
} else {
ip_addr_set(&(iphdr->src), src);
}
IPH_CHKSUM_SET(iphdr, 0);
IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
} else {
iphdr = p->payload;
dest = &(iphdr->dest);
}
#ifdef IP_STATS
stats.ip.xmit++;
#endif /* IP_STATS */
DEBUGF(IP_DEBUG, ("ip_output_if: %c%c ", netif->name[0], netif->name[1]));
#if IP_DEBUG
ip_debug_print(p);
#endif /* IP_DEBUG */
return netif->output(netif, p, dest);
}
/*-----------------------------------------------------------------------------------*/
/* ip_output:
*
* Simple interface to ip_output_if. It finds the outgoing network
* interface and calls upon ip_output_if to do the actual work.
*/
/*-----------------------------------------------------------------------------------*/
err_t
ip_output(struct pbuf *p, struct ip_addr *src, struct ip_addr *dest,
u8_t ttl, u8_t proto)
{
static struct netif *netif;
if((netif = ip_route(dest)) == NULL) {
DEBUGF(IP_DEBUG, ("ip_output: No route to 0x%lx\n", dest->addr));
#ifdef IP_STATS
++stats.ip.rterr;
#endif /* IP_STATS */
return ERR_RTE;
}
return ip_output_if(p, src, dest, ttl, proto, netif);
}
/*-----------------------------------------------------------------------------------*/
#if IP_DEBUG
void
ip_debug_print(struct pbuf *p)
{
struct ip_hdr *iphdr = p->payload;
u8_t *payload;
payload = (u8_t *)iphdr + IP_HLEN/sizeof(u8_t);
DEBUGF(IP_DEBUG, ("IP header:\n"));
DEBUGF(IP_DEBUG, ("+-------------------------------+\n"));
DEBUGF(IP_DEBUG, ("|%2d |%2d | %2d | %4d | (v, hl, tos, len)\n",
IPH_V(iphdr),
IPH_HL(iphdr),
IPH_TOS(iphdr),
ntohs(IPH_LEN(iphdr))));
DEBUGF(IP_DEBUG, ("+-------------------------------+\n"));
DEBUGF(IP_DEBUG, ("| %5d |%d%d%d| %4d | (id, flags, offset)\n",
ntohs(IPH_ID(iphdr)),
ntohs(IPH_OFFSET(iphdr)) >> 15 & 1,
ntohs(IPH_OFFSET(iphdr)) >> 14 & 1,
ntohs(IPH_OFFSET(iphdr)) >> 13 & 1,
ntohs(IPH_OFFSET(iphdr)) & IP_OFFMASK));
DEBUGF(IP_DEBUG, ("+-------------------------------+\n"));
DEBUGF(IP_DEBUG, ("| %2d | %2d | 0x%04x | (ttl, proto, chksum)\n",
IPH_TTL(iphdr),
IPH_PROTO(iphdr),
ntohs(IPH_CHKSUM(iphdr))));
DEBUGF(IP_DEBUG, ("+-------------------------------+\n"));
DEBUGF(IP_DEBUG, ("| %3ld | %3ld | %3ld | %3ld | (src)\n",
ntohl(iphdr->src.addr) >> 24 & 0xff,
ntohl(iphdr->src.addr) >> 16 & 0xff,
ntohl(iphdr->src.addr) >> 8 & 0xff,
ntohl(iphdr->src.addr) & 0xff));
DEBUGF(IP_DEBUG, ("+-------------------------------+\n"));
DEBUGF(IP_DEBUG, ("| %3ld | %3ld | %3ld | %3ld | (dest)\n",
ntohl(iphdr->dest.addr) >> 24 & 0xff,
ntohl(iphdr->dest.addr) >> 16 & 0xff,
ntohl(iphdr->dest.addr) >> 8 & 0xff,
ntohl(iphdr->dest.addr) & 0xff));
DEBUGF(IP_DEBUG, ("+-------------------------------+\n"));
}
#endif /* IP_DEBUG */
/*-----------------------------------------------------------------------------------*/