1
0
mirror of https://github.com/CTCaer/hekate.git synced 2025-01-12 15:37:11 +00:00
hekate/bdk/utils/util.c

263 lines
5.5 KiB
C

/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2022 CTCaer
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <mem/heap.h>
#include <power/max77620.h>
#include <rtc/max77620-rtc.h>
#include <soc/bpmp.h>
#include <soc/hw_init.h>
#include <soc/i2c.h>
#include <soc/pmc.h>
#include <soc/t210.h>
#include <storage/sd.h>
#include <utils/util.h>
#define USE_RTC_TIMER
extern volatile nyx_storage_t *nyx_str;
u8 bit_count(u32 val)
{
u8 cnt = 0;
for (u32 i = 0; i < 32; i++)
{
if ((val >> i) & 1)
cnt++;
}
return cnt;
}
u32 bit_count_mask(u8 bits)
{
u32 val = 0;
for (u32 i = 0; i < bits; i++)
val |= 1 << i;
return val;
}
char *strcpy_ns(char *dst, char *src)
{
if (!src || !dst)
return NULL;
// Remove starting space.
u32 len = strlen(src);
if (len && src[0] == ' ')
{
len--;
src++;
}
strcpy(dst, src);
// Remove trailing space.
if (len && dst[len - 1] == ' ')
dst[len - 1] = 0;
return dst;
}
// Approximate square root finder for a 64-bit number.
u64 sqrt64(u64 num)
{
u64 base = 0;
u64 limit = num;
u64 square_root = 0;
while (base <= limit)
{
u64 tmp_sqrt = (base + limit) / 2;
if (tmp_sqrt * tmp_sqrt == num) {
square_root = tmp_sqrt;
break;
}
if (tmp_sqrt * tmp_sqrt < num)
{
square_root = base;
base = tmp_sqrt + 1;
}
else
limit = tmp_sqrt - 1;
}
return square_root;
}
u32 get_tmr_s()
{
return RTC(APBDEV_RTC_SECONDS);
}
u32 get_tmr_ms()
{
// The registers must be read with the following order:
// RTC_MILLI_SECONDS (0x10) -> RTC_SHADOW_SECONDS (0xC)
return (RTC(APBDEV_RTC_MILLI_SECONDS) + (RTC(APBDEV_RTC_SHADOW_SECONDS) * 1000));
}
u32 get_tmr_us()
{
return TMR(TIMERUS_CNTR_1US);
}
void msleep(u32 ms)
{
#ifdef USE_RTC_TIMER
u32 start = RTC(APBDEV_RTC_MILLI_SECONDS) + (RTC(APBDEV_RTC_SHADOW_SECONDS) * 1000);
// Casting to u32 is important!
while (((u32)(RTC(APBDEV_RTC_MILLI_SECONDS) + (RTC(APBDEV_RTC_SHADOW_SECONDS) * 1000)) - start) <= ms)
;
#else
bpmp_msleep(ms);
#endif
}
void usleep(u32 us)
{
#ifdef USE_RTC_TIMER
u32 start = TMR(TIMERUS_CNTR_1US);
// Check if timer is at upper limits and use BPMP sleep so it doesn't wake up immediately.
if ((start + us) < start)
bpmp_usleep(us);
else
while ((u32)(TMR(TIMERUS_CNTR_1US) - start) <= us) // Casting to u32 is important!
;
#else
bpmp_usleep(us);
#endif
}
void exec_cfg(u32 *base, const cfg_op_t *ops, u32 num_ops)
{
for(u32 i = 0; i < num_ops; i++)
base[ops[i].off] = ops[i].val;
}
u32 crc32_calc(u32 crc, const u8 *buf, u32 len)
{
const u8 *p, *q;
static u32 *table = NULL;
// Calculate CRC table.
if (!table)
{
table = calloc(256, sizeof(u32));
for (u32 i = 0; i < 256; i++)
{
u32 rem = i;
for (u32 j = 0; j < 8; j++)
{
if (rem & 1)
{
rem >>= 1;
rem ^= 0xedb88320;
}
else
rem >>= 1;
}
table[i] = rem;
}
}
crc = ~crc;
q = buf + len;
for (p = buf; p < q; p++)
{
u8 oct = *p;
crc = (crc >> 8) ^ table[(crc & 0xff) ^ oct];
}
return ~crc;
}
void panic(u32 val)
{
// Set panic code.
PMC(APBDEV_PMC_SCRATCH200) = val;
//PMC(APBDEV_PMC_CRYPTO_OP) = PMC_CRYPTO_OP_SE_DISABLE;
TMR(TIMER_WDT4_UNLOCK_PATTERN) = TIMER_MAGIC_PTRN;
TMR(TIMER_TMR9_TMR_PTV) = TIMER_EN | TIMER_PER_EN;
TMR(TIMER_WDT4_CONFIG) = TIMER_SRC(9) | TIMER_PER(1) | TIMER_PMCRESET_EN;
TMR(TIMER_WDT4_COMMAND) = TIMER_START_CNT;
while (true)
usleep(1);
}
void power_set_state(power_state_t state)
{
u8 reg;
// Unmount and power down sd card.
sd_end();
// De-initialize and power down various hardware.
hw_reinit_workaround(false, 0);
// Stop the alarm, in case we injected and powered off too fast.
max77620_rtc_stop_alarm();
// Set power state.
switch (state)
{
case REBOOT_RCM:
PMC(APBDEV_PMC_SCRATCH0) = PMC_SCRATCH0_MODE_RCM; // Enable RCM path.
PMC(APBDEV_PMC_CNTRL) |= PMC_CNTRL_MAIN_RST; // PMC reset.
break;
case REBOOT_BYPASS_FUSES:
panic(0x21); // Bypass fuse programming in package1.
break;
case POWER_OFF:
// Initiate power down sequence and do not generate a reset (regulators retain state).
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF);
break;
case POWER_OFF_RESET:
case POWER_OFF_REBOOT:
default:
// Enable/Disable soft reset wake event.
reg = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2);
if (state == POWER_OFF_RESET) // Do not wake up after power off.
reg &= ~(MAX77620_ONOFFCNFG2_SFT_RST_WK | MAX77620_ONOFFCNFG2_WK_ALARM1 | MAX77620_ONOFFCNFG2_WK_ALARM2);
else // POWER_OFF_REBOOT. Wake up after power off.
reg |= MAX77620_ONOFFCNFG2_SFT_RST_WK;
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, reg);
// Initiate power down sequence and generate a reset (regulators' state resets).
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_SFT_RST);
break;
}
while (true)
bpmp_halt();
}
void power_set_state_ex(void *param)
{
power_state_t *state = (power_state_t *)param;
power_set_state(*state);
}