/* * Copyright (c) 2018 naehrwert * Copyright (c) 2018-2024 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "se.h" #include #include #include #include #include #include #include typedef struct _se_ll_t { vu32 num; vu32 addr; vu32 size; } se_ll_t; se_ll_t ll_src, ll_dst; se_ll_t *ll_src_ptr, *ll_dst_ptr; // Must be u32 aligned. static void _gf256_mul_x(void *block) { u8 *pdata = (u8 *)block; u32 carry = 0; for (int i = 0xF; i >= 0; i--) { u8 b = pdata[i]; pdata[i] = (b << 1) | carry; carry = b >> 7; } if (carry) pdata[0xF] ^= 0x87; } static void _gf256_mul_x_le(void *block) { u32 *pdata = (u32 *)block; u32 carry = 0; for (u32 i = 0; i < 4; i++) { u32 b = pdata[i]; pdata[i] = (b << 1) | carry; carry = b >> 31; } if (carry) pdata[0x0] ^= 0x87; } static void _se_ll_init(se_ll_t *ll, u32 addr, u32 size) { ll->num = 0; ll->addr = addr; ll->size = size; } static void _se_ll_set(se_ll_t *src, se_ll_t *dst) { SE(SE_IN_LL_ADDR_REG) = (u32)src; SE(SE_OUT_LL_ADDR_REG) = (u32)dst; } static int _se_wait() { bool tegra_t210 = hw_get_chip_id() == GP_HIDREV_MAJOR_T210; // Wait for operation to be done. while (!(SE(SE_INT_STATUS_REG) & SE_INT_OP_DONE)) ; // Check for errors. if ((SE(SE_INT_STATUS_REG) & SE_INT_ERR_STAT) || (SE(SE_STATUS_REG) & SE_STATUS_STATE_MASK) != SE_STATUS_STATE_IDLE || (SE(SE_ERR_STATUS_REG) != 0) ) { return 0; } // T210B01: IRAM/TZRAM/DRAM AHB coherency WAR. if (!tegra_t210 && ll_dst_ptr) { u32 timeout = get_tmr_us() + 1000000; // Ensure data is out from SE. while (SE(SE_STATUS_REG) & SE_STATUS_MEM_IF_BUSY) { if (get_tmr_us() > timeout) return 0; usleep(1); } // Ensure data is out from AHB. if (ll_dst_ptr->addr >= DRAM_START) { timeout = get_tmr_us() + 200000; while (AHB_GIZMO(AHB_ARBITRATION_AHB_MEM_WRQUE_MST_ID) & MEM_WRQUE_SE_MST_ID) { if (get_tmr_us() > timeout) return 0; usleep(1); } } } return 1; } static int _se_execute_finalize() { int res = _se_wait(); // Invalidate data after OP is done. bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY, false); ll_src_ptr = NULL; ll_dst_ptr = NULL; return res; } static int _se_execute(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size, bool is_oneshot) { ll_src_ptr = NULL; ll_dst_ptr = NULL; if (src) { ll_src_ptr = &ll_src; _se_ll_init(ll_src_ptr, (u32)src, src_size); } if (dst) { ll_dst_ptr = &ll_dst; _se_ll_init(ll_dst_ptr, (u32)dst, dst_size); } _se_ll_set(ll_src_ptr, ll_dst_ptr); SE(SE_ERR_STATUS_REG) = SE(SE_ERR_STATUS_REG); SE(SE_INT_STATUS_REG) = SE(SE_INT_STATUS_REG); // Flush data before starting OP. bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLEAN_WAY, false); SE(SE_OPERATION_REG) = op; if (is_oneshot) return _se_execute_finalize(); return 1; } static int _se_execute_oneshot(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size) { return _se_execute(op, dst, dst_size, src, src_size, true); } static int _se_execute_one_block(u32 op, void *dst, u32 dst_size, const void *src, u32 src_size) { if (!src || !dst) return 0; u8 *block = (u8 *)zalloc(SE_AES_BLOCK_SIZE); SE(SE_CRYPTO_BLOCK_COUNT_REG) = 1 - 1; memcpy(block, src, src_size); int res = _se_execute_oneshot(op, block, SE_AES_BLOCK_SIZE, block, SE_AES_BLOCK_SIZE); memcpy(dst, block, dst_size); free(block); return res; } static void _se_aes_ctr_set(const void *ctr) { u32 data[SE_AES_IV_SIZE / 4]; memcpy(data, ctr, SE_AES_IV_SIZE); for (u32 i = 0; i < SE_CRYPTO_LINEAR_CTR_REG_COUNT; i++) SE(SE_CRYPTO_LINEAR_CTR_REG + (4 * i)) = data[i]; } void se_rsa_acc_ctrl(u32 rs, u32 flags) { if (flags & SE_RSA_KEY_TBL_DIS_KEY_ACCESS_FLAG) SE(SE_RSA_KEYTABLE_ACCESS_REG + 4 * rs) = (((flags >> 4) & SE_RSA_KEY_TBL_DIS_KEYUSE_FLAG) | (flags & SE_RSA_KEY_TBL_DIS_KEY_READ_UPDATE_FLAG)) ^ SE_RSA_KEY_TBL_DIS_KEY_READ_UPDATE_USE_FLAG; if (flags & SE_RSA_KEY_LOCK_FLAG) SE(SE_RSA_SECURITY_PERKEY_REG) &= ~BIT(rs); } void se_key_acc_ctrl(u32 ks, u32 flags) { if (flags & SE_KEY_TBL_DIS_KEY_ACCESS_FLAG) SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + 4 * ks) = ~flags; if (flags & SE_KEY_LOCK_FLAG) SE(SE_CRYPTO_SECURITY_PERKEY_REG) &= ~BIT(ks); } u32 se_key_acc_ctrl_get(u32 ks) { return SE(SE_CRYPTO_KEYTABLE_ACCESS_REG + 4 * ks); } void se_aes_key_set(u32 ks, const void *key, u32 size) { u32 data[SE_AES_MAX_KEY_SIZE / 4]; memcpy(data, key, size); for (u32 i = 0; i < (size / 4); i++) { SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_PKT(i); // QUAD is automatically set by PKT. SE(SE_CRYPTO_KEYTABLE_DATA_REG) = data[i]; } } void se_aes_iv_set(u32 ks, const void *iv) { u32 data[SE_AES_IV_SIZE / 4]; memcpy(data, iv, SE_AES_IV_SIZE); for (u32 i = 0; i < (SE_AES_IV_SIZE / 4); i++) { SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(ORIGINAL_IV) | SE_KEYTABLE_PKT(i); SE(SE_CRYPTO_KEYTABLE_DATA_REG) = data[i]; } } void se_aes_key_get(u32 ks, void *key, u32 size) { u32 data[SE_AES_MAX_KEY_SIZE / 4]; for (u32 i = 0; i < (size / 4); i++) { SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_PKT(i); // QUAD is automatically set by PKT. data[i] = SE(SE_CRYPTO_KEYTABLE_DATA_REG); } memcpy(key, data, size); } void se_aes_key_clear(u32 ks) { for (u32 i = 0; i < (SE_AES_MAX_KEY_SIZE / 4); i++) { SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_PKT(i); // QUAD is automatically set by PKT. SE(SE_CRYPTO_KEYTABLE_DATA_REG) = 0; } } void se_aes_iv_clear(u32 ks) { for (u32 i = 0; i < (SE_AES_IV_SIZE / 4); i++) { SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(ORIGINAL_IV) | SE_KEYTABLE_PKT(i); SE(SE_CRYPTO_KEYTABLE_DATA_REG) = 0; } } void se_aes_iv_updated_clear(u32 ks) { for (u32 i = 0; i < (SE_AES_IV_SIZE / 4); i++) { SE(SE_CRYPTO_KEYTABLE_ADDR_REG) = SE_KEYTABLE_SLOT(ks) | SE_KEYTABLE_QUAD(UPDATED_IV) | SE_KEYTABLE_PKT(i); SE(SE_CRYPTO_KEYTABLE_DATA_REG) = 0; } } int se_aes_unwrap_key(u32 ks_dst, u32 ks_src, const void *input) { SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_KEYTABLE); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks_src) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT); SE(SE_CRYPTO_BLOCK_COUNT_REG) = 1 - 1; SE(SE_CRYPTO_KEYTABLE_DST_REG) = SE_KEYTABLE_DST_KEY_INDEX(ks_dst) | SE_KEYTABLE_DST_WORD_QUAD(KEYS_0_3); return _se_execute_oneshot(SE_OP_START, NULL, 0, input, SE_KEY_128_SIZE); } int se_aes_crypt_hash(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size) { if (enc) { SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_TOP) | SE_CRYPTO_HASH(HASH_ENABLE); } else { SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_PREVMEM) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM) | SE_CRYPTO_HASH(HASH_ENABLE); } SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1; return _se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size); } int se_aes_crypt_ecb(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size) { if (enc) { SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT); } else { SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT); } SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1; return _se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size); } int se_aes_crypt_cbc(u32 ks, u32 enc, void *dst, u32 dst_size, const void *src, u32 src_size) { if (enc) { SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_TOP); } else { SE(SE_CONFIG_REG) = SE_CONFIG_DEC_ALG(ALG_AES_DEC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_PREVMEM) | SE_CRYPTO_CORE_SEL(CORE_DECRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM); } SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1; return _se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size); } int se_aes_crypt_block_ecb(u32 ks, u32 enc, void *dst, const void *src) { return se_aes_crypt_ecb(ks, enc, dst, SE_AES_BLOCK_SIZE, src, SE_AES_BLOCK_SIZE); } int se_aes_crypt_ctr(u32 ks, void *dst, u32 dst_size, const void *src, u32 src_size, void *ctr) { SE(SE_SPARE_REG) = SE_ECO(SE_ERRATA_FIX_ENABLE); SE(SE_CONFIG_REG) = SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_XOR_POS(XOR_BOTTOM) | SE_CRYPTO_INPUT_SEL(INPUT_LNR_CTR) | SE_CRYPTO_CTR_CNTN(1); _se_aes_ctr_set(ctr); u32 src_size_aligned = src_size & 0xFFFFFFF0; u32 src_size_delta = src_size & 0xF; if (src_size_aligned) { SE(SE_CRYPTO_BLOCK_COUNT_REG) = (src_size >> 4) - 1; if (!_se_execute_oneshot(SE_OP_START, dst, dst_size, src, src_size_aligned)) return 0; } if (src_size - src_size_aligned && src_size_aligned < dst_size) return _se_execute_one_block(SE_OP_START, dst + src_size_aligned, MIN(src_size_delta, dst_size - src_size_aligned), src + src_size_aligned, src_size_delta); return 1; } int se_aes_xts_crypt_sec(u32 tweak_ks, u32 crypt_ks, u32 enc, u64 sec, void *dst, void *src, u32 secsize) { int res = 0; u8 *tweak = (u8 *)malloc(SE_AES_BLOCK_SIZE); u8 *pdst = (u8 *)dst; u8 *psrc = (u8 *)src; // Generate tweak. for (int i = 0xF; i >= 0; i--) { tweak[i] = sec & 0xFF; sec >>= 8; } if (!se_aes_crypt_block_ecb(tweak_ks, ENCRYPT, tweak, tweak)) goto out; // We are assuming a 0x10-aligned sector size in this implementation. for (u32 i = 0; i < secsize / SE_AES_BLOCK_SIZE; i++) { for (u32 j = 0; j < SE_AES_BLOCK_SIZE; j++) pdst[j] = psrc[j] ^ tweak[j]; if (!se_aes_crypt_block_ecb(crypt_ks, enc, pdst, pdst)) goto out; for (u32 j = 0; j < SE_AES_BLOCK_SIZE; j++) pdst[j] = pdst[j] ^ tweak[j]; _gf256_mul_x(tweak); psrc += SE_AES_BLOCK_SIZE; pdst += SE_AES_BLOCK_SIZE; } res = 1; out:; free(tweak); return res; } int se_aes_xts_crypt_sec_nx(u32 tweak_ks, u32 crypt_ks, u32 enc, u64 sec, u8 *tweak, bool regen_tweak, u32 tweak_exp, void *dst, void *src, u32 sec_size) { u32 *pdst = (u32 *)dst; u32 *psrc = (u32 *)src; u32 *ptweak = (u32 *)tweak; if (regen_tweak) { for (int i = 0xF; i >= 0; i--) { tweak[i] = sec & 0xFF; sec >>= 8; } if (!se_aes_crypt_block_ecb(tweak_ks, ENCRYPT, tweak, tweak)) return 0; } // tweak_exp allows using a saved tweak to reduce _gf256_mul_x_le calls. for (u32 i = 0; i < (tweak_exp << 5); i++) _gf256_mul_x_le(tweak); u8 orig_tweak[SE_KEY_128_SIZE] __attribute__((aligned(4))); memcpy(orig_tweak, tweak, SE_KEY_128_SIZE); // We are assuming a 16 sector aligned size in this implementation. for (u32 i = 0; i < (sec_size >> 4); i++) { for (u32 j = 0; j < 4; j++) pdst[j] = psrc[j] ^ ptweak[j]; _gf256_mul_x_le(tweak); psrc += 4; pdst += 4; } if (!se_aes_crypt_ecb(crypt_ks, enc, dst, sec_size, dst, sec_size)) return 0; pdst = (u32 *)dst; ptweak = (u32 *)orig_tweak; for (u32 i = 0; i < (sec_size >> 4); i++) { for (u32 j = 0; j < 4; j++) pdst[j] = pdst[j] ^ ptweak[j]; _gf256_mul_x_le(orig_tweak); pdst += 4; } return 1; } int se_aes_xts_crypt(u32 tweak_ks, u32 crypt_ks, u32 enc, u64 sec, void *dst, void *src, u32 secsize, u32 num_secs) { u8 *pdst = (u8 *)dst; u8 *psrc = (u8 *)src; for (u32 i = 0; i < num_secs; i++) if (!se_aes_xts_crypt_sec(tweak_ks, crypt_ks, enc, sec + i, pdst + secsize * i, psrc + secsize * i, secsize)) return 0; return 1; } static void se_calc_sha256_get_hash(void *hash, u32 *msg_left) { u32 hash32[SE_SHA_256_SIZE / 4]; // Backup message left. if (msg_left) { msg_left[0] = SE(SE_SHA_MSG_LEFT_0_REG); msg_left[1] = SE(SE_SHA_MSG_LEFT_1_REG); } // Copy output hash. for (u32 i = 0; i < (SE_SHA_256_SIZE / 4); i++) hash32[i] = byte_swap_32(SE(SE_HASH_RESULT_REG + (i * 4))); memcpy(hash, hash32, SE_SHA_256_SIZE); } int se_calc_sha256(void *hash, u32 *msg_left, const void *src, u32 src_size, u64 total_size, u32 sha_cfg, bool is_oneshot) { int res; u32 hash32[SE_SHA_256_SIZE / 4]; //! TODO: src_size must be 512 bit aligned if continuing and not last block for SHA256. if (src_size > 0xFFFFFF || !hash) // Max 16MB - 1 chunks and aligned x4 hash buffer. return 0; // Src size of 0 is not supported, so return null string sha256. // if (!src_size) // { // const u8 null_hash[SE_SHA_256_SIZE] = { // 0xE3, 0xB0, 0xC4, 0x42, 0x98, 0xFC, 0x1C, 0x14, 0x9A, 0xFB, 0xF4, 0xC8, 0x99, 0x6F, 0xB9, 0x24, // 0x27, 0xAE, 0x41, 0xE4, 0x64, 0x9B, 0x93, 0x4C, 0xA4, 0x95, 0x99, 0x1B, 0x78, 0x52, 0xB8, 0x55 // }; // memcpy(hash, null_hash, SE_SHA_256_SIZE); // return 1; // } // Setup config for SHA256. SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_SHA256) | SE_CONFIG_ENC_ALG(ALG_SHA) | SE_CONFIG_DST(DST_HASHREG); SE(SE_SHA_CONFIG_REG) = sha_cfg; SE(SE_CRYPTO_BLOCK_COUNT_REG) = 1 - 1; // Set total size to current buffer size if empty. if (!total_size) total_size = src_size; // Set total size: BITS(src_size), up to 2 EB. SE(SE_SHA_MSG_LENGTH_0_REG) = (u32)(total_size << 3); SE(SE_SHA_MSG_LENGTH_1_REG) = (u32)(total_size >> 29); SE(SE_SHA_MSG_LENGTH_2_REG) = 0; SE(SE_SHA_MSG_LENGTH_3_REG) = 0; // Set size left to hash. SE(SE_SHA_MSG_LEFT_0_REG) = (u32)(total_size << 3); SE(SE_SHA_MSG_LEFT_1_REG) = (u32)(total_size >> 29); SE(SE_SHA_MSG_LEFT_2_REG) = 0; SE(SE_SHA_MSG_LEFT_3_REG) = 0; // If we hash in chunks, copy over the intermediate. if (sha_cfg == SHA_CONTINUE && msg_left) { // Restore message left to process. SE(SE_SHA_MSG_LEFT_0_REG) = msg_left[0]; SE(SE_SHA_MSG_LEFT_1_REG) = msg_left[1]; // Restore hash reg. memcpy(hash32, hash, SE_SHA_256_SIZE); for (u32 i = 0; i < (SE_SHA_256_SIZE / 4); i++) SE(SE_HASH_RESULT_REG + (i * 4)) = byte_swap_32(hash32[i]); } // Trigger the operation. res = _se_execute(SE_OP_START, NULL, 0, src, src_size, is_oneshot); if (is_oneshot) se_calc_sha256_get_hash(hash, msg_left); return res; } int se_calc_sha256_oneshot(void *hash, const void *src, u32 src_size) { return se_calc_sha256(hash, NULL, src, src_size, 0, SHA_INIT_HASH, true); } int se_calc_sha256_finalize(void *hash, u32 *msg_left) { int res = _se_execute_finalize(); se_calc_sha256_get_hash(hash, msg_left); return res; } int se_gen_prng128(void *dst) { // Setup config for X931 PRNG. SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_RNG) | SE_CONFIG_DST(DST_MEMORY); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_HASH(HASH_DISABLE) | SE_CRYPTO_XOR_POS(XOR_BYPASS) | SE_CRYPTO_INPUT_SEL(INPUT_RANDOM); SE(SE_RNG_CONFIG_REG) = SE_RNG_CONFIG_SRC(SRC_ENTROPY) | SE_RNG_CONFIG_MODE(MODE_NORMAL); //SE(SE_RNG_SRC_CONFIG_REG) = // SE_RNG_SRC_CONFIG_ENTR_SRC(RO_ENTR_ENABLE) | SE_RNG_SRC_CONFIG_ENTR_SRC_LOCK(RO_ENTR_LOCK_ENABLE); SE(SE_RNG_RESEED_INTERVAL_REG) = 1; SE(SE_CRYPTO_BLOCK_COUNT_REG) = (16 >> 4) - 1; // Trigger the operation. return _se_execute_oneshot(SE_OP_START, dst, 16, NULL, 0); } void se_get_aes_keys(u8 *buf, u8 *keys, u32 keysize) { u8 *aligned_buf = (u8 *)ALIGN((u32)buf, 0x40); // Set Secure Random Key. SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_RNG) | SE_CONFIG_DST(DST_SRK); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(0) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT) | SE_CRYPTO_INPUT_SEL(INPUT_RANDOM); SE(SE_RNG_CONFIG_REG) = SE_RNG_CONFIG_SRC(SRC_ENTROPY) | SE_RNG_CONFIG_MODE(MODE_FORCE_RESEED); SE(SE_CRYPTO_LAST_BLOCK) = 0; _se_execute_oneshot(SE_OP_START, NULL, 0, NULL, 0); // Save AES keys. SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_MEMORY); for (u32 i = 0; i < SE_AES_KEYSLOT_COUNT; i++) { SE(SE_CONTEXT_SAVE_CONFIG_REG) = SE_CONTEXT_SRC(AES_KEYTABLE) | SE_KEYTABLE_DST_KEY_INDEX(i) | SE_CONTEXT_AES_KEY_INDEX(0) | SE_CONTEXT_AES_WORD_QUAD(KEYS_0_3); SE(SE_CRYPTO_LAST_BLOCK) = 0; _se_execute_oneshot(SE_OP_CTX_SAVE, aligned_buf, SE_AES_BLOCK_SIZE, NULL, 0); memcpy(keys + i * keysize, aligned_buf, SE_AES_BLOCK_SIZE); if (keysize > SE_KEY_128_SIZE) { SE(SE_CONTEXT_SAVE_CONFIG_REG) = SE_CONTEXT_SRC(AES_KEYTABLE) | SE_KEYTABLE_DST_KEY_INDEX(i) | SE_CONTEXT_AES_KEY_INDEX(0) | SE_CONTEXT_AES_WORD_QUAD(KEYS_4_7); SE(SE_CRYPTO_LAST_BLOCK) = 0; _se_execute_oneshot(SE_OP_CTX_SAVE, aligned_buf, SE_AES_BLOCK_SIZE, NULL, 0); memcpy(keys + i * keysize + SE_AES_BLOCK_SIZE, aligned_buf, SE_AES_BLOCK_SIZE); } } // Save SRK to PMC secure scratches. SE(SE_CONTEXT_SAVE_CONFIG_REG) = SE_CONTEXT_SRC(SRK); SE(SE_CRYPTO_LAST_BLOCK) = 0; _se_execute_oneshot(SE_OP_CTX_SAVE, NULL, 0, NULL, 0); // End context save. SE(SE_CONFIG_REG) = 0; _se_execute_oneshot(SE_OP_CTX_SAVE, NULL, 0, NULL, 0); // Get SRK. u32 srk[4]; srk[0] = PMC(APBDEV_PMC_SECURE_SCRATCH4); srk[1] = PMC(APBDEV_PMC_SECURE_SCRATCH5); srk[2] = PMC(APBDEV_PMC_SECURE_SCRATCH6); srk[3] = PMC(APBDEV_PMC_SECURE_SCRATCH7); // Decrypt context. se_aes_key_clear(3); se_aes_key_set(3, srk, SE_KEY_128_SIZE); se_aes_crypt_cbc(3, DECRYPT, keys, SE_AES_KEYSLOT_COUNT * keysize, keys, SE_AES_KEYSLOT_COUNT * keysize); se_aes_key_clear(3); } int se_aes_cmac_128(u32 ks, void *dst, const void *src, u32 src_size) { int res = 0; u8 *key = (u8 *)zalloc(SE_KEY_128_SIZE); u8 *last_block = (u8 *)zalloc(SE_AES_BLOCK_SIZE); se_aes_iv_clear(ks); se_aes_iv_updated_clear(ks); // Generate sub key if (!se_aes_crypt_hash(ks, ENCRYPT, key, SE_KEY_128_SIZE, key, SE_KEY_128_SIZE)) goto out; _gf256_mul_x(key); if (src_size & 0xF) _gf256_mul_x(key); SE(SE_CONFIG_REG) = SE_CONFIG_ENC_MODE(MODE_KEY128) | SE_CONFIG_ENC_ALG(ALG_AES_ENC) | SE_CONFIG_DST(DST_HASHREG); SE(SE_CRYPTO_CONFIG_REG) = SE_CRYPTO_KEY_INDEX(ks) | SE_CRYPTO_INPUT_SEL(INPUT_MEMORY) | SE_CRYPTO_XOR_POS(XOR_TOP) | SE_CRYPTO_VCTRAM_SEL(VCTRAM_AESOUT) | SE_CRYPTO_HASH(HASH_ENABLE) | SE_CRYPTO_CORE_SEL(CORE_ENCRYPT); se_aes_iv_clear(ks); se_aes_iv_updated_clear(ks); u32 num_blocks = (src_size + 0xf) >> 4; if (num_blocks > 1) { SE(SE_CRYPTO_BLOCK_COUNT_REG) = num_blocks - 2; if (!_se_execute_oneshot(SE_OP_START, NULL, 0, src, src_size)) goto out; SE(SE_CRYPTO_CONFIG_REG) |= SE_CRYPTO_IV_SEL(IV_UPDATED); } if (src_size & 0xf) { memcpy(last_block, src + (src_size & ~0xf), src_size & 0xf); last_block[src_size & 0xf] = 0x80; } else if (src_size >= SE_AES_BLOCK_SIZE) { memcpy(last_block, src + src_size - SE_AES_BLOCK_SIZE, SE_AES_BLOCK_SIZE); } for (u32 i = 0; i < SE_KEY_128_SIZE; i++) last_block[i] ^= key[i]; SE(SE_CRYPTO_BLOCK_COUNT_REG) = 0; res = _se_execute_oneshot(SE_OP_START, NULL, 0, last_block, SE_AES_BLOCK_SIZE); u32 *dst32 = (u32 *)dst; for (u32 i = 0; i < (SE_KEY_128_SIZE / 4); i++) dst32[i] = SE(SE_HASH_RESULT_REG + (i * 4)); out:; free(key); free(last_block); return res; }