/* * BPMP-Lite Cache/MMU and Frequency driver for Tegra X1 * * Copyright (c) 2019-2024 CTCaer * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #define BPMP_MMU_CACHE_LINE_SIZE 0x20 #define BPMP_CACHE_CONFIG 0x0 #define CFG_ENABLE_CACHE BIT(0) #define CFG_ENABLE_SKEW_ASSOC BIT(1) #define CFG_DISABLE_RANDOM_ALLOC BIT(2) #define CFG_FORCE_WRITE_THROUGH BIT(3) #define CFG_NEVER_ALLOCATE BIT(6) #define CFG_ENABLE_INTERRUPT BIT(7) #define CFG_MMU_TAG_MODE(x) ((x) << 8) #define TAG_MODE_PARALLEL 0 #define TAG_MODE_TAG_FIRST 1 #define TAG_MODE_MMU_FIRST 2 #define CFG_DISABLE_WRITE_BUFFER BIT(10) #define CFG_DISABLE_READ_BUFFER BIT(11) #define CFG_ENABLE_HANG_DETECT BIT(12) #define CFG_FULL_LINE_DIRTY BIT(13) #define CFG_TAG_CHK_ABRT_ON_ERR BIT(14) #define CFG_TAG_CHK_CLR_ERR BIT(15) #define CFG_DISABLE_SAMELINE BIT(16) #define CFG_OBS_BUS_EN BIT(31) #define BPMP_CACHE_LOCK 0x4 #define LOCK_LINE(x) BIT((x)) #define BPMP_CACHE_SIZE 0xC #define BPMP_CACHE_LFSR 0x10 #define BPMP_CACHE_TAG_STATUS 0x14 #define TAG_STATUS_TAG_CHECK_ERROR BIT(0) #define TAG_STATUS_CONFLICT_ADDR_MASK 0xFFFFFFE0 #define BPMP_CACHE_CLKEN_OVERRIDE 0x18 #define CLKEN_OVERRIDE_WR_MCCIF_CLKEN BIT(0) #define CLKEN_OVERRIDE_RD_MCCIF_CLKEN BIT(1) #define BPMP_CACHE_MAINT_ADDR 0x20 #define BPMP_CACHE_MAINT_DATA 0x24 #define BPMP_CACHE_MAINT_REQ 0x28 #define MAINT_REQ_WAY_BITMAP(x) ((x) << 8) #define BPMP_CACHE_INT_MASK 0x40 #define BPMP_CACHE_INT_CLEAR 0x44 #define BPMP_CACHE_INT_RAW_EVENT 0x48 #define BPMP_CACHE_INT_STATUS 0x4C #define INT_MAINT_DONE BIT(0) #define INT_MAINT_ERROR BIT(1) #define BPMP_CACHE_RB_CFG 0x80 #define BPMP_CACHE_WB_CFG 0x84 #define BPMP_CACHE_MMU_FALLBACK_ENTRY 0xA0 #define BPMP_CACHE_MMU_SHADOW_COPY_MASK 0xA4 #define BPMP_CACHE_MMU_CFG 0xAC #define MMU_CFG_BLOCK_MAIN_ENTRY_WR BIT(0) #define MMU_CFG_SEQ_EN BIT(1) #define MMU_CFG_TLB_EN BIT(2) #define MMU_CFG_SEG_CHECK_ALL_ENTRIES BIT(3) #define MMU_CFG_ABORT_STORE_LAST BIT(4) #define MMU_CFG_CLR_ABORT BIT(5) #define BPMP_CACHE_MMU_CMD 0xB0 #define MMU_CMD_NOP 0 #define MMU_CMD_INIT 1 #define MMU_CMD_COPY_SHADOW 2 #define BPMP_CACHE_MMU_ABORT_STAT 0xB4 #define ABORT_STAT_UNIT_MASK 0x7 #define ABORT_STAT_UNIT_NONE 0 #define ABORT_STAT_UNIT_CACHE 1 #define ABORT_STAT_UNIT_SEQ 2 #define ABORT_STAT_UNIT_TLB 3 #define ABORT_STAT_UNIT_SEG 4 #define ABORT_STAT_UNIT_FALLBACK 5 #define ABORT_STAT_OVERLAP BIT(3) #define ABORT_STAT_ENTRY (0x1F << 4) #define ABORT_STAT_TYPE_MASK (3 << 16) #define ABORT_STAT_TYPE_EXE (0 << 16) #define ABORT_STAT_TYPE_RD (1 << 16) #define ABORT_STAT_TYPE_WR (2 << 16) #define ABORT_STAT_SIZE (3 << 18) #define ABORT_STAT_SEQ BIT(20) #define ABORT_STAT_PROT BIT(21) #define BPMP_CACHE_MMU_ABORT_ADDR 0xB8 #define BPMP_CACHE_MMU_ACTIVE_ENTRIES 0xBC #define BPMP_MMU_SHADOW_ENTRY_BASE (BPMP_CACHE_BASE + 0x400) #define BPMP_MMU_MAIN_ENTRY_BASE (BPMP_CACHE_BASE + 0x800) #define MMU_EN_CACHED BIT(0) #define MMU_EN_EXEC BIT(1) #define MMU_EN_READ BIT(2) #define MMU_EN_WRITE BIT(3) static const bpmp_mmu_entry_t mmu_entries[] = { { DRAM_START, 0xFFFFFFFF, MMU_EN_READ | MMU_EN_WRITE | MMU_EN_EXEC | MMU_EN_CACHED, true }, { IRAM_BASE, 0x4003FFFF, MMU_EN_READ | MMU_EN_WRITE | MMU_EN_EXEC | MMU_EN_CACHED, true } }; void bpmp_mmu_maintenance(u32 op, bool force) { if (!force && !(BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) & CFG_ENABLE_CACHE)) return; BPMP_CACHE_CTRL(BPMP_CACHE_INT_CLEAR) = INT_MAINT_DONE; // This is a blocking operation. BPMP_CACHE_CTRL(BPMP_CACHE_MAINT_REQ) = MAINT_REQ_WAY_BITMAP(0xF) | op; while (!(BPMP_CACHE_CTRL(BPMP_CACHE_INT_RAW_EVENT) & INT_MAINT_DONE)) ; BPMP_CACHE_CTRL(BPMP_CACHE_INT_CLEAR) = BPMP_CACHE_CTRL(BPMP_CACHE_INT_RAW_EVENT); } void bpmp_mmu_set_entry(int idx, const bpmp_mmu_entry_t *entry, bool apply) { if (idx > 31) return; volatile bpmp_mmu_entry_t *mmu_entry = (bpmp_mmu_entry_t *)(BPMP_MMU_SHADOW_ENTRY_BASE + sizeof(bpmp_mmu_entry_t) * idx); if (entry->enable) { mmu_entry->start_addr = ALIGN(entry->start_addr, BPMP_MMU_CACHE_LINE_SIZE); mmu_entry->end_addr = ALIGN_DOWN(entry->end_addr, BPMP_MMU_CACHE_LINE_SIZE); mmu_entry->attr = entry->attr; BPMP_CACHE_CTRL(BPMP_CACHE_MMU_SHADOW_COPY_MASK) |= BIT(idx); if (apply) BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CMD) = MMU_CMD_COPY_SHADOW; } } void bpmp_mmu_enable() { if (BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) & CFG_ENABLE_CACHE) return; // Init BPMP MMU. BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CMD) = MMU_CMD_INIT; BPMP_CACHE_CTRL(BPMP_CACHE_MMU_FALLBACK_ENTRY) = MMU_EN_READ | MMU_EN_WRITE | MMU_EN_EXEC; // RWX for non-defined regions. BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CFG) = MMU_CFG_SEQ_EN | MMU_CFG_TLB_EN | MMU_CFG_ABORT_STORE_LAST; // Init BPMP MMU entries. BPMP_CACHE_CTRL(BPMP_CACHE_MMU_SHADOW_COPY_MASK) = 0; for (u32 idx = 0; idx < ARRAY_SIZE(mmu_entries); idx++) bpmp_mmu_set_entry(idx, &mmu_entries[idx], false); BPMP_CACHE_CTRL(BPMP_CACHE_MMU_CMD) = MMU_CMD_COPY_SHADOW; // Invalidate cache. bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY, true); // Enable cache. BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) = CFG_ENABLE_CACHE | CFG_FORCE_WRITE_THROUGH | CFG_MMU_TAG_MODE(TAG_MODE_PARALLEL) | CFG_TAG_CHK_ABRT_ON_ERR; // HW bug. Invalidate cache again. bpmp_mmu_maintenance(BPMP_MMU_MAINT_INVALID_WAY, false); } void bpmp_mmu_disable() { if (!(BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) & CFG_ENABLE_CACHE)) return; // Clean and invalidate cache. bpmp_mmu_maintenance(BPMP_MMU_MAINT_CLN_INV_WAY, false); // Disable cache. BPMP_CACHE_CTRL(BPMP_CACHE_CONFIG) = 0; } /* * CLK_RST_CONTROLLER_SCLK_BURST_POLICY: * 0 = CLKM * 1 = PLLC_OUT1 * 2 = PLLC4_OUT3 * 3 = PLLP_OUT0 * 4 = PLLP_OUT2 * 5 = PLLC4_OUT1 * 6 = CLK_S * 7 = PLLC4_OUT2 */ bpmp_freq_t bpmp_fid_current = BPMP_CLK_NORMAL; void bpmp_clk_rate_relaxed(bool enable) { // This is a glitch-free way to reduce the SCLK timings. if (enable) { // Restore to PLLP source during PLLC configuration. CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = 0x20003330; // PLLP_OUT. usleep(100); // Wait a bit for clock source change. CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 2; // PCLK = HCLK / (2 + 1). HCLK == SCLK. } else if (bpmp_fid_current) { // Restore to PLLC_OUT1. CLOCK(CLK_RST_CONTROLLER_CLK_SYSTEM_RATE) = 3; // PCLK = HCLK / (3 + 1). HCLK == SCLK. CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = 0x20003310; // PLLC_OUT1 and CLKM for idle. usleep(100); // Wait a bit for clock source change. } } // APB clock affects RTC, PWM, MEMFETCH, APE, USB, SOR PWM, // I2C host, DC/DSI/DISP. UART gives extra stress. // 92: 100% success ratio. 93-94: 595-602MHz has 99% success ratio. 95: 608MHz less. // APB clock max is supposed to be 204 MHz though. static const u8 pll_divn[] = { 0, // BPMP_CLK_NORMAL: 408MHz 0% - 136MHz APB. 85, // BPMP_CLK_HIGH_BOOST: 544MHz 33% - 136MHz APB. 88, // BPMP_CLK_HIGH2_BOOST: 563MHz 38% - 141MHz APB. 90, // BPMP_CLK_SUPER_BOOST: 576MHz 41% - 144MHz APB. 92 // BPMP_CLK_HYPER_BOOST: 589MHz 44% - 147MHz APB. // Do not use for public releases! //95 // BPMP_CLK_DEV_BOOST: 608MHz 49% - 152MHz APB. }; void bpmp_clk_rate_get() { bool clk_src_is_pllp = ((CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) >> 4) & 7) == 3; if (clk_src_is_pllp) bpmp_fid_current = BPMP_CLK_NORMAL; else { bpmp_fid_current = BPMP_CLK_HIGH_BOOST; u8 pll_divn_curr = (CLOCK(CLK_RST_CONTROLLER_PLLC_BASE) >> 10) & 0xFF; for (u32 i = 1; i < sizeof(pll_divn); i++) { if (pll_divn[i] == pll_divn_curr) { bpmp_fid_current = i; break; } } } } void bpmp_clk_rate_set(bpmp_freq_t fid) { if (fid > (BPMP_CLK_MAX - 1)) fid = BPMP_CLK_MAX - 1; if (bpmp_fid_current == fid) return; bpmp_fid_current = fid; if (fid) { // Use default SCLK / HCLK / PCLK clocks. bpmp_clk_rate_relaxed(true); // Configure and enable PLLC. clock_enable_pllc(pll_divn[fid]); // Set new source and SCLK / HCLK / PCLK dividers. bpmp_clk_rate_relaxed(false); } else { // Use default SCLK / HCLK / PCLK clocks. bpmp_clk_rate_relaxed(true); // Disable PLLC to save power. clock_disable_pllc(); } } // State is reset to RUN on any clock or source set via SW. void bpmp_state_set(bpmp_state_t state) { u32 cfg = CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) & ~0xF0000000u; CLOCK(CLK_RST_CONTROLLER_SCLK_BURST_POLICY) = cfg | (state << 28u); } // The following functions halt BPMP to reduce power while sleeping. // They are not as accurate as RTC at big values but they guarantee time+ delay. void bpmp_usleep(u32 us) { u32 delay; // Each iteration takes 1us. while (us) { delay = (us > HALT_MAX_CNT) ? HALT_MAX_CNT : us; us -= delay; FLOW_CTLR(FLOW_CTLR_HALT_COP_EVENTS) = HALT_MODE_WAITEVENT | HALT_USEC | delay; } } void bpmp_msleep(u32 ms) { u32 delay; // Iteration time is variable. ~200 - 1000us. while (ms) { delay = (ms > HALT_MAX_CNT) ? HALT_MAX_CNT : ms; ms -= delay; FLOW_CTLR(FLOW_CTLR_HALT_COP_EVENTS) = HALT_MODE_WAITEVENT | HALT_MSEC | delay; } } void bpmp_halt() { FLOW_CTLR(FLOW_CTLR_HALT_COP_EVENTS) = HALT_MODE_WAITEVENT | HALT_JTAG; }