1
0
mirror of https://github.com/CTCaer/hekate.git synced 2025-01-03 23:37:58 +00:00
hekate/bdk/utils/util.c

308 lines
6.9 KiB
C
Raw Normal View History

2018-03-26 23:04:16 +00:00
/*
* Copyright (c) 2018 naehrwert
* Copyright (c) 2018-2022 CTCaer
2018-03-26 23:04:16 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <mem/heap.h>
#include <power/max77620.h>
#include <rtc/max77620-rtc.h>
#include <soc/bpmp.h>
#include <soc/hw_init.h>
#include <soc/i2c.h>
#include <soc/pmc.h>
2022-06-27 07:20:25 +00:00
#include <soc/timer.h>
#include <soc/t210.h>
2022-01-15 21:58:27 +00:00
#include <storage/sd.h>
#include <utils/util.h>
2018-03-07 01:11:46 +00:00
#define USE_RTC_TIMER
u8 bit_count(u32 val)
{
u8 cnt = 0;
for (u32 i = 0; i < 32; i++)
{
if ((val >> i) & 1)
cnt++;
}
return cnt;
}
u32 bit_count_mask(u8 bits)
{
u32 val = 0;
for (u32 i = 0; i < bits; i++)
val |= 1 << i;
return val;
}
char *strcpy_ns(char *dst, char *src)
{
if (!src || !dst)
return NULL;
// Remove starting space.
u32 len = strlen(src);
if (len && src[0] == ' ')
{
len--;
src++;
}
strcpy(dst, src);
// Remove trailing space.
if (len && dst[len - 1] == ' ')
dst[len - 1] = 0;
return dst;
}
// Approximate square root finder for a 64-bit number.
u64 sqrt64(u64 num)
{
u64 base = 0;
u64 limit = num;
u64 square_root = 0;
while (base <= limit)
{
u64 tmp_sqrt = (base + limit) / 2;
if (tmp_sqrt * tmp_sqrt == num) {
square_root = tmp_sqrt;
break;
}
if (tmp_sqrt * tmp_sqrt < num)
{
square_root = base;
base = tmp_sqrt + 1;
}
else
limit = tmp_sqrt - 1;
}
return square_root;
}
#define TLONG_MAX ((long)(((unsigned long)(~0L)) >> 1))
#define TLONG_MIN ((long)(~TLONG_MAX))
#define ISSPACE(ch) ((ch >= '\t' && ch <= '\r') || (ch == ' '))
#define ISDIGIT(ch) ( ch >= '0' && ch <= '9' )
#define ISALPHA(ch) ((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'))
#define ISUPPER(ch) ( ch >= 'A' && ch <= 'Z' )
/*
* Avoid using reentrant newlib version of strol. It's only used for errno.
*
* strol/atoi:
* Copyright (c) 1990 The Regents of the University of California.
*/
long strtol(const char *nptr, char **endptr, register int base)
{
register const char *s = nptr;
register unsigned long acc;
register int c;
register unsigned long cutoff;
register int neg = 0, any, cutlim;
/*
* Skip white space and pick up leading +/- sign if any.
* If base is 0, allow 0x for hex and 0 for octal, else
* assume decimal; if base is already 16, allow 0x.
*/
do {
c = *s++;
} while (ISSPACE(c));
if (c == '-') {
neg = 1;
c = *s++;
} else if (c == '+')
c = *s++;
if ((base == 0 || base == 16) &&
c == '0' && (*s == 'x' || *s == 'X')) {
c = s[1];
s += 2;
base = 16;
}
if (base == 0)
base = c == '0' ? 8 : 10;
/*
* Compute the cutoff value between legal numbers and illegal
* numbers. That is the largest legal value, divided by the
* base. An input number that is greater than this value, if
* followed by a legal input character, is too big. One that
* is equal to this value may be valid or not; the limit
* between valid and invalid numbers is then based on the last
* digit. For instance, if the range for longs is
* [-2147483648..2147483647] and the input base is 10,
* cutoff will be set to 214748364 and cutlim to either
* 7 (neg==0) or 8 (neg==1), meaning that if we have accumulated
* a value > 214748364, or equal but the next digit is > 7 (or 8),
* the number is too big, and we will return a range error.
*
* Set any if any `digits' consumed; make it negative to indicate
* overflow.
*/
cutoff = neg ? -(unsigned long)TLONG_MIN : TLONG_MAX;
cutlim = cutoff % (unsigned long)base;
cutoff /= (unsigned long)base;
for (acc = 0, any = 0;; c = *s++) {
if (ISDIGIT(c))
c -= '0';
else if (ISALPHA(c))
c -= ISUPPER(c) ? 'A' - 10 : 'a' - 10;
else
break;
if (c >= base)
break;
if (any < 0 || acc > cutoff || (acc == cutoff && c > cutlim))
any = -1;
else {
any = 1;
acc *= base;
acc += c;
}
}
if (any < 0) {
acc = neg ? TLONG_MIN : TLONG_MAX;
} else if (neg)
acc = -acc;
if (endptr != 0)
*endptr = (char *) (any ? s - 1 : nptr);
return (acc);
}
int atoi(const char *nptr)
{
return (int)strtol(nptr, (char **)NULL, 10);
}
2018-03-07 01:11:46 +00:00
void exec_cfg(u32 *base, const cfg_op_t *ops, u32 num_ops)
{
for (u32 i = 0; i < num_ops; i++)
2018-03-07 01:11:46 +00:00
base[ops[i].off] = ops[i].val;
}
2020-04-30 00:30:51 +00:00
u32 crc32_calc(u32 crc, const u8 *buf, u32 len)
{
const u8 *p, *q;
static u32 *table = NULL;
// Calculate CRC table.
if (!table)
{
table = calloc(256, sizeof(u32));
for (u32 i = 0; i < 256; i++)
{
u32 rem = i;
for (u32 j = 0; j < 8; j++)
{
if (rem & 1)
{
rem >>= 1;
rem ^= 0xedb88320;
}
else
rem >>= 1;
}
table[i] = rem;
}
}
crc = ~crc;
q = buf + len;
for (p = buf; p < q; p++)
{
u8 oct = *p;
crc = (crc >> 8) ^ table[(crc & 0xff) ^ oct];
}
return ~crc;
}
void panic(u32 val)
{
// Set panic code.
PMC(APBDEV_PMC_SCRATCH200) = val;
2022-06-27 07:20:25 +00:00
// Disable SE.
//PMC(APBDEV_PMC_CRYPTO_OP) = PMC_CRYPTO_OP_SE_DISABLE;
2022-06-27 07:20:25 +00:00
// Immediately cause a full system reset.
watchdog_start(0, TIMER_PMCRESET_EN);
while (true);
}
void power_set_state(power_state_t state)
{
u8 reg;
// Unmount and power down sd card.
sd_end();
// De-initialize and power down various hardware.
hw_reinit_workaround(false, 0);
// Set power state.
switch (state)
{
case REBOOT_RCM:
PMC(APBDEV_PMC_SCRATCH0) = PMC_SCRATCH0_MODE_RCM; // Enable RCM path.
PMC(APBDEV_PMC_CNTRL) |= PMC_CNTRL_MAIN_RST; // PMC reset.
break;
case REBOOT_BYPASS_FUSES:
panic(0x21); // Bypass fuse programming in package1.
break;
case POWER_OFF:
2022-06-27 07:20:25 +00:00
// Initiate power down sequence and do not generate a reset (regulators retain state after POR).
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_PWR_OFF);
break;
case POWER_OFF_RESET:
case POWER_OFF_REBOOT:
default:
// Enable/Disable soft reset wake event.
reg = i2c_recv_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2);
if (state == POWER_OFF_RESET) // Do not wake up after power off.
reg &= ~(MAX77620_ONOFFCNFG2_SFT_RST_WK | MAX77620_ONOFFCNFG2_WK_ALARM1 | MAX77620_ONOFFCNFG2_WK_ALARM2);
else // POWER_OFF_REBOOT. Wake up after power off.
reg |= MAX77620_ONOFFCNFG2_SFT_RST_WK;
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG2, reg);
2022-06-27 07:20:25 +00:00
// Initiate power down sequence and generate a reset (regulators' state resets after POR).
i2c_send_byte(I2C_5, MAX77620_I2C_ADDR, MAX77620_REG_ONOFFCNFG1, MAX77620_ONOFFCNFG1_SFT_RST);
break;
}
while (true)
bpmp_halt();
}
void power_set_state_ex(void *param)
{
power_state_t *state = (power_state_t *)param;
power_set_state(*state);
}