mirror of
https://github.com/fmtlib/fmt.git
synced 2025-01-26 12:35:32 +00:00
1553 lines
42 KiB
C++
1553 lines
42 KiB
C++
/*
|
|
String formatting library for C++
|
|
|
|
Copyright (c) 2012, Victor Zverovich
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice, this
|
|
list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
|
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef FORMAT_H_
|
|
#define FORMAT_H_
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstddef>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <stdexcept>
|
|
#include <string>
|
|
#include <sstream>
|
|
|
|
namespace fmt {
|
|
|
|
namespace internal {
|
|
|
|
// A simple array for POD types with the first SIZE elements stored in
|
|
// the object itself. It supports a subset of std::vector's operations.
|
|
template <typename T, std::size_t SIZE>
|
|
class Array {
|
|
private:
|
|
std::size_t size_;
|
|
std::size_t capacity_;
|
|
T *ptr_;
|
|
T data_[SIZE];
|
|
|
|
void Grow(std::size_t size);
|
|
|
|
// Do not implement!
|
|
Array(const Array &);
|
|
void operator=(const Array &);
|
|
|
|
public:
|
|
Array() : size_(0), capacity_(SIZE), ptr_(data_) {}
|
|
~Array() {
|
|
if (ptr_ != data_) delete [] ptr_;
|
|
}
|
|
|
|
// Returns the size of this array.
|
|
std::size_t size() const { return size_; }
|
|
|
|
// Returns the capacity of this array.
|
|
std::size_t capacity() const { return capacity_; }
|
|
|
|
// Resizes the array. If T is a POD type new elements are not initialized.
|
|
void resize(std::size_t new_size) {
|
|
if (new_size > capacity_)
|
|
Grow(new_size);
|
|
size_ = new_size;
|
|
}
|
|
|
|
void reserve(std::size_t capacity) {
|
|
if (capacity > capacity_)
|
|
Grow(capacity);
|
|
}
|
|
|
|
void clear() { size_ = 0; }
|
|
|
|
void push_back(const T &value) {
|
|
if (size_ == capacity_)
|
|
Grow(size_ + 1);
|
|
ptr_[size_++] = value;
|
|
}
|
|
|
|
// Appends data to the end of the array.
|
|
void append(const T *begin, const T *end);
|
|
|
|
T &operator[](std::size_t index) { return ptr_[index]; }
|
|
const T &operator[](std::size_t index) const { return ptr_[index]; }
|
|
};
|
|
|
|
template <typename T, std::size_t SIZE>
|
|
void Array<T, SIZE>::Grow(std::size_t size) {
|
|
capacity_ = std::max(size, capacity_ + capacity_ / 2);
|
|
T *p = new T[capacity_];
|
|
std::copy(ptr_, ptr_ + size_, p);
|
|
if (ptr_ != data_)
|
|
delete [] ptr_;
|
|
ptr_ = p;
|
|
}
|
|
|
|
template <typename T, std::size_t SIZE>
|
|
void Array<T, SIZE>::append(const T *begin, const T *end) {
|
|
std::ptrdiff_t num_elements = end - begin;
|
|
if (size_ + num_elements > capacity_)
|
|
Grow(num_elements);
|
|
std::copy(begin, end, ptr_ + size_);
|
|
size_ += num_elements;
|
|
}
|
|
|
|
// Information about an integer type.
|
|
// IntTraits is not specialized for integer types smaller than int,
|
|
// since these are promoted to int.
|
|
template <typename T>
|
|
struct IntTraits {
|
|
typedef T UnsignedType;
|
|
static bool IsNegative(T) { return false; }
|
|
};
|
|
|
|
template <typename T, typename UnsignedT>
|
|
struct SignedIntTraits {
|
|
typedef UnsignedT UnsignedType;
|
|
static bool IsNegative(T value) { return value < 0; }
|
|
};
|
|
|
|
template <>
|
|
struct IntTraits<int> : SignedIntTraits<int, unsigned> {};
|
|
|
|
template <>
|
|
struct IntTraits<long> : SignedIntTraits<long, unsigned long> {};
|
|
|
|
template <typename T>
|
|
struct IsLongDouble { enum {VALUE = 0}; };
|
|
|
|
template <>
|
|
struct IsLongDouble<long double> { enum {VALUE = 1}; };
|
|
|
|
extern const char DIGITS[];
|
|
|
|
void ReportUnknownType(char code, const char *type);
|
|
|
|
// Returns the number of decimal digits in n. Trailing zeros are not counted
|
|
// except for n == 0 in which case CountDigits returns 1.
|
|
inline unsigned CountDigits(uint64_t n) {
|
|
unsigned count = 1;
|
|
for (;;) {
|
|
// Integer division is slow so do it for a group of four digits instead
|
|
// of for every digit. The idea comes from the talk by Alexandrescu
|
|
// "Three Optimization Tips for C++". See speed-test for a comparison.
|
|
if (n < 10) return count;
|
|
if (n < 100) return count + 1;
|
|
if (n < 1000) return count + 2;
|
|
if (n < 10000) return count + 3;
|
|
n /= 10000u;
|
|
count += 4;
|
|
}
|
|
}
|
|
|
|
#ifndef _MSC_VER
|
|
|
|
inline int SignBit(double value) {
|
|
// When compiled in C++11 mode signbit is no longer a macro but a function
|
|
// defined in namespace std and the macro is undefined.
|
|
using namespace std;
|
|
return signbit(value);
|
|
}
|
|
|
|
inline int IsInf(double x) {
|
|
#ifdef isinf
|
|
return isinf(x);
|
|
#else
|
|
return std::isinf(x);
|
|
#endif
|
|
}
|
|
|
|
#define FMT_SNPRINTF snprintf
|
|
|
|
#else
|
|
|
|
inline int SignBit(double value) {
|
|
if (value < 0) return 1;
|
|
if (value == value) return 0;
|
|
int dec = 0, sign = 0;
|
|
_ecvt(value, 0, &dec, &sign);
|
|
return sign;
|
|
}
|
|
|
|
inline int IsInf(double x) { return !_finite(x); }
|
|
|
|
#define FMT_SNPRINTF sprintf_s
|
|
|
|
#endif
|
|
|
|
template <typename Char>
|
|
class ArgInserter;
|
|
|
|
template <typename Char>
|
|
class FormatterProxy;
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
A string reference. It can be constructed from a C string, ``std::string``
|
|
or as a result of a formatting operation. It is most useful as a parameter
|
|
type to allow passing different types of strings in a function, for example::
|
|
|
|
TempFormatter<> Format(StringRef format);
|
|
|
|
Format("{}") << 42;
|
|
Format(std::string("{}")) << 42;
|
|
Format(Format("{{}}")) << 42;
|
|
\endrst
|
|
*/
|
|
class StringRef {
|
|
private:
|
|
const char *data_;
|
|
mutable std::size_t size_;
|
|
|
|
public:
|
|
/**
|
|
Constructs a string reference object from a C string and a size.
|
|
If `size` is zero, which is the default, the size is computed with
|
|
`strlen`.
|
|
*/
|
|
StringRef(const char *s, std::size_t size = 0) : data_(s), size_(size) {}
|
|
|
|
/**
|
|
Constructs a string reference from an `std::string` object.
|
|
*/
|
|
StringRef(const std::string &s) : data_(s.c_str()), size_(s.size()) {}
|
|
|
|
/**
|
|
Converts a string reference to an `std::string` object.
|
|
*/
|
|
operator std::string() const { return std::string(data_, size()); }
|
|
|
|
/**
|
|
Returns the pointer to a C string.
|
|
*/
|
|
const char *c_str() const { return data_; }
|
|
|
|
/**
|
|
Returns the string size.
|
|
*/
|
|
std::size_t size() const {
|
|
if (size_ == 0) size_ = std::strlen(data_);
|
|
return size_;
|
|
}
|
|
};
|
|
|
|
class FormatError : public std::runtime_error {
|
|
public:
|
|
explicit FormatError(const std::string &message)
|
|
: std::runtime_error(message) {}
|
|
};
|
|
|
|
enum Alignment {
|
|
ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC
|
|
};
|
|
|
|
// Flags.
|
|
enum { SIGN_FLAG = 1, PLUS_FLAG = 2, HASH_FLAG = 4 };
|
|
|
|
struct Spec {};
|
|
|
|
template <char TYPE>
|
|
struct TypeSpec : Spec {
|
|
Alignment align() const { return ALIGN_DEFAULT; }
|
|
unsigned width() const { return 0; }
|
|
|
|
bool sign_flag() const { return false; }
|
|
bool plus_flag() const { return false; }
|
|
bool hash_flag() const { return false; }
|
|
|
|
char type() const { return TYPE; }
|
|
char fill() const { return ' '; }
|
|
};
|
|
|
|
struct WidthSpec {
|
|
unsigned width_;
|
|
char fill_;
|
|
|
|
WidthSpec(unsigned width, char fill) : width_(width), fill_(fill) {}
|
|
|
|
unsigned width() const { return width_; }
|
|
char fill() const { return fill_; }
|
|
};
|
|
|
|
struct AlignSpec : WidthSpec {
|
|
Alignment align_;
|
|
|
|
AlignSpec(unsigned width, char fill)
|
|
: WidthSpec(width, fill), align_(ALIGN_DEFAULT) {}
|
|
|
|
Alignment align() const { return align_; }
|
|
};
|
|
|
|
template <char TYPE>
|
|
struct AlignTypeSpec : AlignSpec {
|
|
AlignTypeSpec(unsigned width, char fill) : AlignSpec(width, fill) {}
|
|
|
|
bool sign_flag() const { return false; }
|
|
bool plus_flag() const { return false; }
|
|
bool hash_flag() const { return false; }
|
|
|
|
char type() const { return TYPE; }
|
|
};
|
|
|
|
struct FormatSpec : AlignSpec {
|
|
unsigned flags_;
|
|
char type_;
|
|
|
|
FormatSpec(unsigned width = 0, char type = 0, char fill = ' ')
|
|
: AlignSpec(width, fill), flags_(0), type_(type) {}
|
|
|
|
Alignment align() const { return align_; }
|
|
|
|
bool sign_flag() const { return (flags_ & SIGN_FLAG) != 0; }
|
|
bool plus_flag() const { return (flags_ & PLUS_FLAG) != 0; }
|
|
bool hash_flag() const { return (flags_ & HASH_FLAG) != 0; }
|
|
|
|
char type() const { return type_; }
|
|
};
|
|
|
|
template <typename T, typename SpecT>
|
|
class IntFormatter : public SpecT {
|
|
private:
|
|
T value_;
|
|
|
|
public:
|
|
IntFormatter(T value, const SpecT &spec = SpecT())
|
|
: SpecT(spec), value_(value) {}
|
|
|
|
T value() const { return value_; }
|
|
};
|
|
|
|
/**
|
|
Returns an integer formatter that formats the value in base 8.
|
|
*/
|
|
IntFormatter<int, TypeSpec<'o'> > oct(int value);
|
|
|
|
/**
|
|
Returns an integer formatter that formats the value in base 16 using
|
|
lower-case letters for the digits above 9.
|
|
*/
|
|
IntFormatter<int, TypeSpec<'x'> > hex(int value);
|
|
|
|
/**
|
|
Returns an integer formatter that formats the value in base 16 using
|
|
upper-case letters for the digits above 9.
|
|
*/
|
|
IntFormatter<int, TypeSpec<'X'> > hexu(int value);
|
|
|
|
/**
|
|
\rst
|
|
Returns an integer formatter that pads the formatted argument with the fill
|
|
character to the specified width using the default (right) alignment.
|
|
|
|
**Example**::
|
|
|
|
std::string s = str(BasicWriter() << pad(hex(0xcafe), 8, '0'));
|
|
// s == "0000cafe"
|
|
|
|
\endrst
|
|
*/
|
|
template <char TYPE_CODE>
|
|
IntFormatter<int, AlignTypeSpec<TYPE_CODE> > pad(
|
|
int value, unsigned width, char fill = ' ');
|
|
|
|
#define DEFINE_INT_FORMATTERS(TYPE) \
|
|
inline IntFormatter<TYPE, TypeSpec<'o'> > oct(TYPE value) { \
|
|
return IntFormatter<TYPE, TypeSpec<'o'> >(value, TypeSpec<'o'>()); \
|
|
} \
|
|
\
|
|
inline IntFormatter<TYPE, TypeSpec<'x'> > hex(TYPE value) { \
|
|
return IntFormatter<TYPE, TypeSpec<'x'> >(value, TypeSpec<'x'>()); \
|
|
} \
|
|
\
|
|
inline IntFormatter<TYPE, TypeSpec<'X'> > hexu(TYPE value) { \
|
|
return IntFormatter<TYPE, TypeSpec<'X'> >(value, TypeSpec<'X'>()); \
|
|
} \
|
|
\
|
|
template <char TYPE_CODE> \
|
|
inline IntFormatter<TYPE, AlignTypeSpec<TYPE_CODE> > pad( \
|
|
IntFormatter<TYPE, TypeSpec<TYPE_CODE> > f, \
|
|
unsigned width, char fill = ' ') { \
|
|
return IntFormatter<TYPE, AlignTypeSpec<TYPE_CODE> >( \
|
|
f.value(), AlignTypeSpec<TYPE_CODE>(width, fill)); \
|
|
} \
|
|
\
|
|
inline IntFormatter<TYPE, AlignTypeSpec<0> > pad( \
|
|
TYPE value, unsigned width, char fill = ' ') { \
|
|
return IntFormatter<TYPE, AlignTypeSpec<0> >( \
|
|
value, AlignTypeSpec<0>(width, fill)); \
|
|
}
|
|
|
|
DEFINE_INT_FORMATTERS(int)
|
|
DEFINE_INT_FORMATTERS(long)
|
|
DEFINE_INT_FORMATTERS(unsigned)
|
|
DEFINE_INT_FORMATTERS(unsigned long)
|
|
|
|
template <typename Char>
|
|
class BasicWriter {
|
|
private:
|
|
static void FormatDecimal(Char *buffer, uint64_t value, unsigned num_digits);
|
|
|
|
protected:
|
|
static Char *FillPadding(Char *buffer,
|
|
unsigned total_size, std::size_t content_size, char fill);
|
|
|
|
enum { INLINE_BUFFER_SIZE = 500 };
|
|
mutable internal::Array<Char, INLINE_BUFFER_SIZE> buffer_; // Output buffer.
|
|
|
|
// Grows the buffer by n characters and returns a pointer to the newly
|
|
// allocated area.
|
|
Char *GrowBuffer(std::size_t n) {
|
|
std::size_t size = buffer_.size();
|
|
buffer_.resize(size + n);
|
|
return &buffer_[size];
|
|
}
|
|
|
|
Char *PrepareFilledBuffer(unsigned size, const Spec &, char sign) {
|
|
Char *p = GrowBuffer(size);
|
|
*p = sign;
|
|
return p + size - 1;
|
|
}
|
|
|
|
Char *PrepareFilledBuffer(unsigned size, const AlignSpec &spec, char sign);
|
|
|
|
// Formats an integer.
|
|
template <typename T>
|
|
void FormatInt(T value, const FormatSpec &spec) {
|
|
*this << IntFormatter<T, FormatSpec>(value, spec);
|
|
}
|
|
|
|
// Formats a floating point number (double or long double).
|
|
template <typename T>
|
|
void FormatDouble(T value, const FormatSpec &spec, int precision);
|
|
|
|
char *FormatString(const char *s, std::size_t size, const FormatSpec &spec);
|
|
|
|
public:
|
|
/**
|
|
Returns the number of characters written to the output buffer.
|
|
*/
|
|
std::size_t size() const { return buffer_.size(); }
|
|
|
|
/**
|
|
Returns a pointer to the output buffer content. No terminating null
|
|
character is appended.
|
|
*/
|
|
const Char *data() const { return &buffer_[0]; }
|
|
|
|
/**
|
|
Returns a pointer to the output buffer content with terminating null
|
|
character appended.
|
|
*/
|
|
const Char *c_str() const {
|
|
std::size_t size = buffer_.size();
|
|
buffer_.reserve(size + 1);
|
|
buffer_[size] = '\0';
|
|
return &buffer_[0];
|
|
}
|
|
|
|
/**
|
|
Returns the content of the output buffer as an `std::string`.
|
|
*/
|
|
std::basic_string<Char> str() const {
|
|
return std::basic_string<Char>(&buffer_[0], buffer_.size());
|
|
}
|
|
|
|
BasicWriter &operator<<(int value) {
|
|
return *this << IntFormatter<int, TypeSpec<0> >(value, TypeSpec<0>());
|
|
}
|
|
BasicWriter &operator<<(unsigned value) {
|
|
return *this << IntFormatter<unsigned, TypeSpec<0> >(value, TypeSpec<0>());
|
|
}
|
|
|
|
BasicWriter &operator<<(double value) {
|
|
FormatDouble(value, FormatSpec(), -1);
|
|
return *this;
|
|
}
|
|
|
|
BasicWriter &operator<<(Char value) {
|
|
*GrowBuffer(1) = value;
|
|
return *this;
|
|
}
|
|
|
|
BasicWriter &operator<<(const Char *value) {
|
|
std::size_t size = std::strlen(value);
|
|
std::strncpy(GrowBuffer(size), value, size);
|
|
return *this;
|
|
}
|
|
|
|
template <typename T, typename Spec>
|
|
BasicWriter &operator<<(const IntFormatter<T, Spec> &f);
|
|
|
|
void Write(const std::basic_string<char> &s, const FormatSpec &spec) {
|
|
FormatString(s.data(), s.size(), spec);
|
|
}
|
|
|
|
void Clear() {
|
|
buffer_.clear();
|
|
}
|
|
};
|
|
|
|
// Fills the padding around the content and returns the pointer to the
|
|
// content area.
|
|
template <typename Char>
|
|
Char *BasicWriter<Char>::FillPadding(Char *buffer,
|
|
unsigned total_size, std::size_t content_size, char fill) {
|
|
std::size_t padding = total_size - content_size;
|
|
std::size_t left_padding = padding / 2;
|
|
std::fill_n(buffer, left_padding, fill);
|
|
buffer += left_padding;
|
|
Char *content = buffer;
|
|
std::fill_n(buffer + content_size, padding - left_padding, fill);
|
|
return content;
|
|
}
|
|
|
|
template <typename Char>
|
|
void BasicWriter<Char>::FormatDecimal(
|
|
Char *buffer, uint64_t value, unsigned num_digits) {
|
|
--num_digits;
|
|
while (value >= 100) {
|
|
// Integer division is slow so do it for a group of two digits instead
|
|
// of for every digit. The idea comes from the talk by Alexandrescu
|
|
// "Three Optimization Tips for C++". See speed-test for a comparison.
|
|
unsigned index = (value % 100) * 2;
|
|
value /= 100;
|
|
buffer[num_digits] = internal::DIGITS[index + 1];
|
|
buffer[num_digits - 1] = internal::DIGITS[index];
|
|
num_digits -= 2;
|
|
}
|
|
if (value < 10) {
|
|
*buffer = static_cast<char>('0' + value);
|
|
return;
|
|
}
|
|
unsigned index = static_cast<unsigned>(value * 2);
|
|
buffer[1] = internal::DIGITS[index + 1];
|
|
buffer[0] = internal::DIGITS[index];
|
|
}
|
|
|
|
template <typename Char>
|
|
Char *BasicWriter<Char>::PrepareFilledBuffer(
|
|
unsigned size, const AlignSpec &spec, char sign) {
|
|
unsigned width = spec.width();
|
|
if (width <= size) {
|
|
Char *p = GrowBuffer(size);
|
|
*p = sign;
|
|
return p + size - 1;
|
|
}
|
|
char *p = GrowBuffer(width);
|
|
char *end = p + width;
|
|
Alignment align = spec.align();
|
|
if (align == ALIGN_LEFT) {
|
|
*p = sign;
|
|
p += size;
|
|
std::fill(p, end, spec.fill());
|
|
} else if (align == ALIGN_CENTER) {
|
|
p = FillPadding(p, width, size, spec.fill());
|
|
*p = sign;
|
|
p += size;
|
|
} else {
|
|
if (align == ALIGN_NUMERIC) {
|
|
if (sign) {
|
|
*p++ = sign;
|
|
--size;
|
|
}
|
|
} else {
|
|
*(end - size) = sign;
|
|
}
|
|
std::fill(p, end - size, spec.fill());
|
|
p = end;
|
|
}
|
|
return p - 1;
|
|
}
|
|
|
|
template <typename Char>
|
|
template <typename T>
|
|
void BasicWriter<Char>::FormatDouble(
|
|
T value, const FormatSpec &spec, int precision) {
|
|
// Check type.
|
|
char type = spec.type();
|
|
bool upper = false;
|
|
switch (type) {
|
|
case 0:
|
|
type = 'g';
|
|
break;
|
|
case 'e': case 'f': case 'g':
|
|
break;
|
|
case 'F':
|
|
#ifdef _MSC_VER
|
|
// MSVC's printf doesn't support 'F'.
|
|
type = 'f';
|
|
#endif
|
|
// Fall through.
|
|
case 'E': case 'G':
|
|
upper = true;
|
|
break;
|
|
default:
|
|
internal::ReportUnknownType(type, "double");
|
|
break;
|
|
}
|
|
|
|
char sign = 0;
|
|
// Use SignBit instead of value < 0 because the latter is always
|
|
// false for NaN.
|
|
if (internal::SignBit(value)) {
|
|
sign = '-';
|
|
value = -value;
|
|
} else if (spec.sign_flag()) {
|
|
sign = spec.plus_flag() ? '+' : ' ';
|
|
}
|
|
|
|
if (value != value) {
|
|
// Format NaN ourselves because sprintf's output is not consistent
|
|
// across platforms.
|
|
std::size_t size = 4;
|
|
const char *nan = upper ? " NAN" : " nan";
|
|
if (!sign) {
|
|
--size;
|
|
++nan;
|
|
}
|
|
char *out = FormatString(nan, size, spec);
|
|
if (sign)
|
|
*out = sign;
|
|
return;
|
|
}
|
|
|
|
if (internal::IsInf(value)) {
|
|
// Format infinity ourselves because sprintf's output is not consistent
|
|
// across platforms.
|
|
std::size_t size = 4;
|
|
const char *inf = upper ? " INF" : " inf";
|
|
if (!sign) {
|
|
--size;
|
|
++inf;
|
|
}
|
|
char *out = FormatString(inf, size, spec);
|
|
if (sign)
|
|
*out = sign;
|
|
return;
|
|
}
|
|
|
|
std::size_t offset = buffer_.size();
|
|
unsigned width = spec.width();
|
|
if (sign) {
|
|
buffer_.reserve(buffer_.size() + std::max(width, 1u));
|
|
if (width > 0)
|
|
--width;
|
|
++offset;
|
|
}
|
|
|
|
// Build format string.
|
|
enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg
|
|
char format[MAX_FORMAT_SIZE];
|
|
char *format_ptr = format;
|
|
*format_ptr++ = '%';
|
|
unsigned width_for_sprintf = width;
|
|
if (spec.hash_flag())
|
|
*format_ptr++ = '#';
|
|
if (spec.align() == ALIGN_CENTER) {
|
|
width_for_sprintf = 0;
|
|
} else {
|
|
if (spec.align() == ALIGN_LEFT)
|
|
*format_ptr++ = '-';
|
|
if (width != 0)
|
|
*format_ptr++ = '*';
|
|
}
|
|
if (precision >= 0) {
|
|
*format_ptr++ = '.';
|
|
*format_ptr++ = '*';
|
|
}
|
|
if (internal::IsLongDouble<T>::VALUE)
|
|
*format_ptr++ = 'L';
|
|
*format_ptr++ = type;
|
|
*format_ptr = '\0';
|
|
|
|
// Format using snprintf.
|
|
for (;;) {
|
|
std::size_t size = buffer_.capacity() - offset;
|
|
int n = 0;
|
|
Char *start = &buffer_[offset];
|
|
if (width_for_sprintf == 0) {
|
|
n = precision < 0 ?
|
|
FMT_SNPRINTF(start, size, format, value) :
|
|
FMT_SNPRINTF(start, size, format, precision, value);
|
|
} else {
|
|
n = precision < 0 ?
|
|
FMT_SNPRINTF(start, size, format, width_for_sprintf, value) :
|
|
FMT_SNPRINTF(start, size, format, width_for_sprintf,
|
|
precision, value);
|
|
}
|
|
if (n >= 0 && offset + n < buffer_.capacity()) {
|
|
if (sign) {
|
|
if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) ||
|
|
*start != ' ') {
|
|
*(start - 1) = sign;
|
|
sign = 0;
|
|
} else {
|
|
*(start - 1) = spec.fill();
|
|
}
|
|
++n;
|
|
}
|
|
if (spec.align() == ALIGN_CENTER &&
|
|
spec.width() > static_cast<unsigned>(n)) {
|
|
char *p = GrowBuffer(spec.width());
|
|
std::copy(p, p + n, p + (spec.width() - n) / 2);
|
|
FillPadding(p, spec.width(), n, spec.fill());
|
|
return;
|
|
}
|
|
if (spec.fill() != ' ' || sign) {
|
|
while (*start == ' ')
|
|
*start++ = spec.fill();
|
|
if (sign)
|
|
*(start - 1) = sign;
|
|
}
|
|
GrowBuffer(n);
|
|
return;
|
|
}
|
|
buffer_.reserve(n >= 0 ? offset + n + 1 : 2 * buffer_.capacity());
|
|
}
|
|
}
|
|
|
|
template <typename Char>
|
|
char *BasicWriter<Char>::FormatString(
|
|
const char *s, std::size_t size, const FormatSpec &spec) {
|
|
char *out = 0;
|
|
if (spec.width() > size) {
|
|
out = GrowBuffer(spec.width());
|
|
if (spec.align() == ALIGN_RIGHT) {
|
|
std::fill_n(out, spec.width() - size, spec.fill());
|
|
out += spec.width() - size;
|
|
} else if (spec.align() == ALIGN_CENTER) {
|
|
out = FillPadding(out, spec.width(), size, spec.fill());
|
|
} else {
|
|
std::fill_n(out + size, spec.width() - size, spec.fill());
|
|
}
|
|
} else {
|
|
out = GrowBuffer(size);
|
|
}
|
|
std::copy(s, s + size, out);
|
|
return out;
|
|
}
|
|
|
|
template <typename Char>
|
|
template <typename T, typename Spec>
|
|
BasicWriter<Char> &BasicWriter<Char>::operator<<(
|
|
const IntFormatter<T, Spec> &f) {
|
|
T value = f.value();
|
|
unsigned size = 0;
|
|
char sign = 0;
|
|
typedef typename internal::IntTraits<T>::UnsignedType UnsignedType;
|
|
UnsignedType abs_value = value;
|
|
if (internal::IntTraits<T>::IsNegative(value)) {
|
|
sign = '-';
|
|
++size;
|
|
abs_value = 0 - abs_value;
|
|
} else if (f.sign_flag()) {
|
|
sign = f.plus_flag() ? '+' : ' ';
|
|
++size;
|
|
}
|
|
switch (f.type()) {
|
|
case 0: case 'd': {
|
|
unsigned num_digits = internal::CountDigits(abs_value);
|
|
Char *p = PrepareFilledBuffer(size + num_digits, f, sign) - num_digits + 1;
|
|
BasicWriter::FormatDecimal(p, abs_value, num_digits);
|
|
break;
|
|
}
|
|
case 'x': case 'X': {
|
|
UnsignedType n = abs_value;
|
|
bool print_prefix = f.hash_flag();
|
|
if (print_prefix) size += 2;
|
|
do {
|
|
++size;
|
|
} while ((n >>= 4) != 0);
|
|
Char *p = PrepareFilledBuffer(size, f, sign);
|
|
n = abs_value;
|
|
const char *digits = f.type() == 'x' ?
|
|
"0123456789abcdef" : "0123456789ABCDEF";
|
|
do {
|
|
*p-- = digits[n & 0xf];
|
|
} while ((n >>= 4) != 0);
|
|
if (print_prefix) {
|
|
*p-- = f.type();
|
|
*p = '0';
|
|
}
|
|
break;
|
|
}
|
|
case 'o': {
|
|
UnsignedType n = abs_value;
|
|
bool print_prefix = f.hash_flag();
|
|
if (print_prefix) ++size;
|
|
do {
|
|
++size;
|
|
} while ((n >>= 3) != 0);
|
|
Char *p = PrepareFilledBuffer(size, f, sign);
|
|
n = abs_value;
|
|
do {
|
|
*p-- = '0' + (n & 7);
|
|
} while ((n >>= 3) != 0);
|
|
if (print_prefix)
|
|
*p = '0';
|
|
break;
|
|
}
|
|
default:
|
|
internal::ReportUnknownType(f.type(), "integer");
|
|
break;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
typedef BasicWriter<char> Writer;
|
|
typedef BasicWriter<wchar_t> WWriter;
|
|
|
|
// The default formatting function.
|
|
template <typename Char, typename T>
|
|
void Format(BasicWriter<Char> &w, const FormatSpec &spec, const T &value) {
|
|
std::basic_ostringstream<Char> os;
|
|
os << value;
|
|
w.Write(os.str(), spec);
|
|
}
|
|
|
|
namespace internal {
|
|
// Formats an argument of a custom type, such as a user-defined class.
|
|
template <typename Char, typename T>
|
|
void FormatCustomArg(
|
|
BasicWriter<Char> &w, const void *arg, const FormatSpec &spec) {
|
|
Format(w, spec, *static_cast<const T*>(arg));
|
|
}
|
|
}
|
|
|
|
/**
|
|
\rst
|
|
The :cpp:class:`fmt::BasicFormatter` template provides string formatting
|
|
functionality similar to Python's `str.format
|
|
<http://docs.python.org/3/library/stdtypes.html#str.format>`__.
|
|
The output is stored in a memory buffer that grows dynamically.
|
|
|
|
**Example**::
|
|
|
|
Formatter out;
|
|
out("Current point:\n");
|
|
out("(-{:+f}, {:+f})") << 3.14 << -3.14;
|
|
|
|
This will populate the buffer of the ``out`` object with the following
|
|
output:
|
|
|
|
.. code-block:: none
|
|
|
|
Current point:
|
|
(-3.140000, +3.140000)
|
|
|
|
The buffer can be accessed using :meth:`data` or :meth:`c_str`.
|
|
\endrst
|
|
*/
|
|
template <typename Char>
|
|
class BasicFormatter : public BasicWriter<Char> {
|
|
private:
|
|
enum Type {
|
|
// Numeric types should go first.
|
|
INT, UINT, LONG, ULONG, DOUBLE, LONG_DOUBLE,
|
|
LAST_NUMERIC_TYPE = LONG_DOUBLE,
|
|
CHAR, STRING, WSTRING, POINTER, CUSTOM
|
|
};
|
|
|
|
typedef void (*FormatFunc)(
|
|
BasicWriter<Char> &w, const void *arg, const FormatSpec &spec);
|
|
|
|
// A format argument.
|
|
class Arg {
|
|
private:
|
|
// This method is private to disallow formatting of arbitrary pointers.
|
|
// If you want to output a pointer cast it to const void*. Do not implement!
|
|
template <typename T>
|
|
Arg(const T *value);
|
|
|
|
// This method is private to disallow formatting of arbitrary pointers.
|
|
// If you want to output a pointer cast it to void*. Do not implement!
|
|
template <typename T>
|
|
Arg(T *value);
|
|
|
|
// This method is private to disallow formatting of wide characters.
|
|
// If you want to output a wide character cast it to integer type.
|
|
// Do not implement!
|
|
Arg(wchar_t value);
|
|
|
|
public:
|
|
Type type;
|
|
union {
|
|
int int_value;
|
|
unsigned uint_value;
|
|
double double_value;
|
|
long long_value;
|
|
unsigned long ulong_value;
|
|
long double long_double_value;
|
|
const void *pointer_value;
|
|
struct {
|
|
const char *value;
|
|
std::size_t size;
|
|
} string;
|
|
struct {
|
|
const void *value;
|
|
FormatFunc format;
|
|
} custom;
|
|
};
|
|
mutable BasicFormatter *formatter;
|
|
|
|
Arg(int value) : type(INT), int_value(value), formatter(0) {}
|
|
Arg(unsigned value) : type(UINT), uint_value(value), formatter(0) {}
|
|
Arg(long value) : type(LONG), long_value(value), formatter(0) {}
|
|
Arg(unsigned long value) : type(ULONG), ulong_value(value), formatter(0) {}
|
|
Arg(double value) : type(DOUBLE), double_value(value), formatter(0) {}
|
|
Arg(long double value)
|
|
: type(LONG_DOUBLE), long_double_value(value), formatter(0) {}
|
|
Arg(char value) : type(CHAR), int_value(value), formatter(0) {}
|
|
|
|
Arg(const char *value) : type(STRING), formatter(0) {
|
|
string.value = value;
|
|
string.size = 0;
|
|
}
|
|
|
|
Arg(char *value) : type(STRING), formatter(0) {
|
|
string.value = value;
|
|
string.size = 0;
|
|
}
|
|
|
|
Arg(const void *value)
|
|
: type(POINTER), pointer_value(value), formatter(0) {}
|
|
|
|
Arg(void *value) : type(POINTER), pointer_value(value), formatter(0) {}
|
|
|
|
Arg(const std::string &value) : type(STRING), formatter(0) {
|
|
string.value = value.c_str();
|
|
string.size = value.size();
|
|
}
|
|
|
|
template <typename T>
|
|
Arg(const T &value) : type(CUSTOM), formatter(0) {
|
|
custom.value = &value;
|
|
custom.format = &internal::FormatCustomArg<Char, T>;
|
|
}
|
|
|
|
~Arg() {
|
|
// Format is called here to make sure that a referred object is
|
|
// still alive, for example:
|
|
//
|
|
// Print("{0}") << std::string("test");
|
|
//
|
|
// Here an Arg object refers to a temporary std::string which is
|
|
// destroyed at the end of the statement. Since the string object is
|
|
// constructed before the Arg object, it will be destroyed after,
|
|
// so it will be alive in the Arg's destructor where Format is called.
|
|
// Note that the string object will not necessarily be alive when
|
|
// the destructor of ArgInserter is called.
|
|
if (formatter)
|
|
formatter->CompleteFormatting();
|
|
}
|
|
};
|
|
|
|
enum { NUM_INLINE_ARGS = 10 };
|
|
internal::Array<const Arg*, NUM_INLINE_ARGS> args_; // Format arguments.
|
|
|
|
const Char *format_; // Format string.
|
|
int num_open_braces_;
|
|
int next_arg_index_;
|
|
|
|
friend class internal::ArgInserter<Char>;
|
|
friend class internal::FormatterProxy<Char>;
|
|
|
|
void Add(const Arg &arg) {
|
|
args_.push_back(&arg);
|
|
}
|
|
|
|
void ReportError(const char *s, StringRef message) const;
|
|
|
|
unsigned ParseUInt(const char *&s) const;
|
|
|
|
// Parses argument index and returns an argument with this index.
|
|
const Arg &ParseArgIndex(const char *&s);
|
|
|
|
void CheckSign(const char *&s, const Arg &arg);
|
|
|
|
void DoFormat();
|
|
|
|
void CompleteFormatting() {
|
|
if (!format_) return;
|
|
DoFormat();
|
|
}
|
|
|
|
public:
|
|
/**
|
|
Constructs a formatter with an empty output buffer.
|
|
*/
|
|
BasicFormatter() : format_(0) {}
|
|
|
|
/**
|
|
Formats a string appending the output to the internal buffer.
|
|
Arguments are accepted through the returned `ArgInserter` object
|
|
using inserter operator `<<`.
|
|
*/
|
|
internal::ArgInserter<Char> operator()(StringRef format);
|
|
};
|
|
|
|
typedef BasicFormatter<char> Formatter;
|
|
typedef BasicFormatter<wchar_t> WFormatter;
|
|
|
|
template <typename Char>
|
|
inline std::basic_string<Char> str(const BasicWriter<Char> &f) {
|
|
return f.str();
|
|
}
|
|
|
|
template <typename Char>
|
|
inline const Char *c_str(const BasicWriter<Char> &f) { return f.c_str(); }
|
|
|
|
std::string str(internal::FormatterProxy<char> p);
|
|
const char *c_str(internal::FormatterProxy<char> p);
|
|
|
|
namespace internal {
|
|
|
|
using fmt::str;
|
|
using fmt::c_str;
|
|
|
|
template <typename Char>
|
|
class FormatterProxy {
|
|
private:
|
|
BasicFormatter<Char> *formatter_;
|
|
|
|
public:
|
|
explicit FormatterProxy(BasicFormatter<Char> *f) : formatter_(f) {}
|
|
|
|
BasicFormatter<Char> *Format() {
|
|
formatter_->CompleteFormatting();
|
|
return formatter_;
|
|
}
|
|
};
|
|
|
|
// This is a transient object that normally exists only as a temporary
|
|
// returned by one of the formatting functions. It stores a reference
|
|
// to a formatter and provides operator<< that feeds arguments to the
|
|
// formatter.
|
|
template <typename Char>
|
|
class ArgInserter {
|
|
private:
|
|
mutable BasicFormatter<Char> *formatter_;
|
|
|
|
friend class fmt::BasicFormatter<Char>;
|
|
friend class fmt::StringRef;
|
|
|
|
// Do not implement.
|
|
void operator=(const ArgInserter& other);
|
|
|
|
protected:
|
|
explicit ArgInserter(BasicFormatter<Char> *f = 0) : formatter_(f) {}
|
|
|
|
void Init(BasicFormatter<Char> &f, const char *format) {
|
|
const ArgInserter &other = f(format);
|
|
formatter_ = other.formatter_;
|
|
other.formatter_ = 0;
|
|
}
|
|
|
|
ArgInserter(const ArgInserter& other)
|
|
: formatter_(other.formatter_) {
|
|
other.formatter_ = 0;
|
|
}
|
|
|
|
const BasicFormatter<Char> *Format() const {
|
|
BasicFormatter<Char> *f = formatter_;
|
|
if (f) {
|
|
formatter_ = 0;
|
|
f->CompleteFormatting();
|
|
}
|
|
return f;
|
|
}
|
|
|
|
BasicFormatter<Char> *formatter() const { return formatter_; }
|
|
const char *format() const { return formatter_->format_; }
|
|
|
|
void ResetFormatter() const { formatter_ = 0; }
|
|
|
|
public:
|
|
~ArgInserter() {
|
|
if (formatter_)
|
|
formatter_->CompleteFormatting();
|
|
}
|
|
|
|
// Feeds an argument to a formatter.
|
|
ArgInserter &operator<<(const typename BasicFormatter<Char>::Arg &arg) {
|
|
arg.formatter = formatter_;
|
|
formatter_->Add(arg);
|
|
return *this;
|
|
}
|
|
|
|
operator FormatterProxy<Char>() {
|
|
BasicFormatter<Char> *f = formatter_;
|
|
formatter_ = 0;
|
|
return FormatterProxy<Char>(f);
|
|
}
|
|
|
|
operator StringRef() {
|
|
const BasicFormatter<Char> *f = Format();
|
|
return StringRef(f->c_str(), f->size());
|
|
}
|
|
};
|
|
}
|
|
|
|
/**
|
|
Returns the content of the output buffer as an `std::string`.
|
|
*/
|
|
inline std::string str(internal::FormatterProxy<char> p) {
|
|
return p.Format()->str();
|
|
}
|
|
|
|
/**
|
|
Returns a pointer to the output buffer content with terminating null
|
|
character appended.
|
|
*/
|
|
inline const char *c_str(internal::FormatterProxy<char> p) {
|
|
return p.Format()->c_str();
|
|
}
|
|
|
|
template <typename Char>
|
|
inline internal::ArgInserter<Char>
|
|
BasicFormatter<Char>::operator()(StringRef format) {
|
|
internal::ArgInserter<Char> inserter(this);
|
|
format_ = format.c_str();
|
|
args_.clear();
|
|
return inserter;
|
|
}
|
|
|
|
/**
|
|
A formatting action that does nothing.
|
|
*/
|
|
class NoAction {
|
|
public:
|
|
/** Does nothing. */
|
|
template <typename Char>
|
|
void operator()(const BasicFormatter<Char> &) const {}
|
|
};
|
|
|
|
/**
|
|
A formatter with an action performed when formatting is complete.
|
|
Objects of this class normally exist only as temporaries returned
|
|
by one of the formatting functions which explains the name.
|
|
*/
|
|
template <typename Char, typename Action = NoAction>
|
|
class TempFormatter : public internal::ArgInserter<Char> {
|
|
private:
|
|
BasicFormatter<Char> formatter_;
|
|
Action action_;
|
|
|
|
// Forbid copying other than from a temporary. Do not implement.
|
|
TempFormatter(TempFormatter &);
|
|
|
|
// Do not implement.
|
|
TempFormatter& operator=(const TempFormatter &);
|
|
|
|
struct Proxy {
|
|
const char *format;
|
|
Action action;
|
|
|
|
Proxy(const char *fmt, Action a) : format(fmt), action(a) {}
|
|
};
|
|
|
|
public:
|
|
/**
|
|
\rst
|
|
Constructs a temporary formatter with a format string and an action.
|
|
The action should be an unary function object that takes a const
|
|
reference to :cpp:class:`fmt::BasicFormatter` as an argument.
|
|
See :cpp:class:`fmt::NoAction` and :cpp:class:`fmt::Write` for
|
|
examples of action classes.
|
|
\endrst
|
|
*/
|
|
explicit TempFormatter(StringRef format, Action a = Action())
|
|
: action_(a) {
|
|
this->Init(formatter_, format.c_str());
|
|
}
|
|
|
|
/**
|
|
Constructs a temporary formatter from a proxy object.
|
|
*/
|
|
TempFormatter(const Proxy &p)
|
|
: internal::ArgInserter<Char>(0), action_(p.action) {
|
|
this->Init(formatter_, p.format);
|
|
}
|
|
|
|
/**
|
|
Performs the actual formatting, invokes the action and destroys the object.
|
|
*/
|
|
~TempFormatter() {
|
|
if (this->formatter())
|
|
action_(*this->Format());
|
|
}
|
|
|
|
/**
|
|
Converts a temporary formatter into a proxy object.
|
|
*/
|
|
operator Proxy() {
|
|
const char *fmt = this->format();
|
|
this->ResetFormatter();
|
|
return Proxy(fmt, action_);
|
|
}
|
|
};
|
|
|
|
/**
|
|
\rst
|
|
Formats a string. Returns a temporary formatter object that accepts
|
|
arguments via operator ``<<``. *format* is a format string that contains
|
|
literal text and replacement fields surrounded by braces ``{}``.
|
|
The formatter object replaces the fields with formatted arguments
|
|
and stores the output in a memory buffer. The content of the buffer can
|
|
be converted to ``std::string`` with :cpp:func:`fmt::str()` or
|
|
accessed as a C string with :cpp:func:`fmt::c_str()`.
|
|
|
|
**Example**::
|
|
|
|
std::string message = str(Format("The answer is {}") << 42);
|
|
|
|
See also `Format String Syntax`_.
|
|
\endrst
|
|
*/
|
|
inline TempFormatter<char> Format(StringRef format) {
|
|
return TempFormatter<char>(format);
|
|
}
|
|
|
|
// A formatting action that writes formatted output to stdout.
|
|
struct Write {
|
|
void operator()(const BasicFormatter<char> &f) const {
|
|
std::fwrite(f.data(), 1, f.size(), stdout);
|
|
}
|
|
};
|
|
|
|
// Formats a string and prints it to stdout.
|
|
// Example:
|
|
// Print("Elapsed time: {0:.2f} seconds") << 1.23;
|
|
inline TempFormatter<char, Write> Print(StringRef format) {
|
|
return TempFormatter<char, Write>(format);
|
|
}
|
|
|
|
// Throws Exception(message) if format contains '}', otherwise throws
|
|
// FormatError reporting unmatched '{'. The idea is that unmatched '{'
|
|
// should override other errors.
|
|
template <typename Char>
|
|
void BasicFormatter<Char>::ReportError(const char *s, StringRef message) const {
|
|
for (int num_open_braces = num_open_braces_; *s; ++s) {
|
|
if (*s == '{') {
|
|
++num_open_braces;
|
|
} else if (*s == '}') {
|
|
if (--num_open_braces == 0)
|
|
throw fmt::FormatError(message);
|
|
}
|
|
}
|
|
throw fmt::FormatError("unmatched '{' in format");
|
|
}
|
|
|
|
// Parses an unsigned integer advancing s to the end of the parsed input.
|
|
// This function assumes that the first character of s is a digit.
|
|
template <typename Char>
|
|
unsigned BasicFormatter<Char>::ParseUInt(const char *&s) const {
|
|
assert('0' <= *s && *s <= '9');
|
|
unsigned value = 0;
|
|
do {
|
|
unsigned new_value = value * 10 + (*s++ - '0');
|
|
if (new_value < value) // Check if value wrapped around.
|
|
ReportError(s, "number is too big in format");
|
|
value = new_value;
|
|
} while ('0' <= *s && *s <= '9');
|
|
return value;
|
|
}
|
|
|
|
template <typename Char>
|
|
inline const typename BasicFormatter<Char>::Arg
|
|
&BasicFormatter<Char>::ParseArgIndex(const char *&s) {
|
|
unsigned arg_index = 0;
|
|
if (*s < '0' || *s > '9') {
|
|
if (*s != '}' && *s != ':')
|
|
ReportError(s, "invalid argument index in format string");
|
|
if (next_arg_index_ < 0) {
|
|
ReportError(s,
|
|
"cannot switch from manual to automatic argument indexing");
|
|
}
|
|
arg_index = next_arg_index_++;
|
|
} else {
|
|
if (next_arg_index_ > 0) {
|
|
ReportError(s,
|
|
"cannot switch from automatic to manual argument indexing");
|
|
}
|
|
next_arg_index_ = -1;
|
|
arg_index = ParseUInt(s);
|
|
}
|
|
if (arg_index >= args_.size())
|
|
ReportError(s, "argument index is out of range in format");
|
|
return *args_[arg_index];
|
|
}
|
|
|
|
template <typename Char>
|
|
void BasicFormatter<Char>::CheckSign(const char *&s, const Arg &arg) {
|
|
if (arg.type > LAST_NUMERIC_TYPE) {
|
|
ReportError(s,
|
|
Format("format specifier '{0}' requires numeric argument") << *s);
|
|
}
|
|
if (arg.type == UINT || arg.type == ULONG) {
|
|
ReportError(s,
|
|
Format("format specifier '{0}' requires signed argument") << *s);
|
|
}
|
|
++s;
|
|
}
|
|
|
|
template <typename Char>
|
|
void BasicFormatter<Char>::DoFormat() {
|
|
const Char *start = format_;
|
|
format_ = 0;
|
|
next_arg_index_ = 0;
|
|
const Char *s = start;
|
|
while (*s) {
|
|
char c = *s++;
|
|
if (c != '{' && c != '}') continue;
|
|
if (*s == c) {
|
|
this->buffer_.append(start, s);
|
|
start = ++s;
|
|
continue;
|
|
}
|
|
if (c == '}')
|
|
throw FormatError("unmatched '}' in format");
|
|
num_open_braces_= 1;
|
|
this->buffer_.append(start, s - 1);
|
|
|
|
const Arg &arg = ParseArgIndex(s);
|
|
|
|
FormatSpec spec;
|
|
int precision = -1;
|
|
if (*s == ':') {
|
|
++s;
|
|
|
|
// Parse fill and alignment.
|
|
if (char c = *s) {
|
|
const char *p = s + 1;
|
|
spec.align_ = ALIGN_DEFAULT;
|
|
do {
|
|
switch (*p) {
|
|
case '<':
|
|
spec.align_ = ALIGN_LEFT;
|
|
break;
|
|
case '>':
|
|
spec.align_ = ALIGN_RIGHT;
|
|
break;
|
|
case '=':
|
|
spec.align_ = ALIGN_NUMERIC;
|
|
break;
|
|
case '^':
|
|
spec.align_ = ALIGN_CENTER;
|
|
break;
|
|
}
|
|
if (spec.align_ != ALIGN_DEFAULT) {
|
|
if (p != s) {
|
|
if (c == '}') break;
|
|
if (c == '{')
|
|
ReportError(s, "invalid fill character '{'");
|
|
s += 2;
|
|
spec.fill_ = c;
|
|
} else ++s;
|
|
if (spec.align_ == ALIGN_NUMERIC && arg.type > LAST_NUMERIC_TYPE)
|
|
ReportError(s, "format specifier '=' requires numeric argument");
|
|
break;
|
|
}
|
|
} while (--p >= s);
|
|
}
|
|
|
|
// Parse sign.
|
|
switch (*s) {
|
|
case '+':
|
|
CheckSign(s, arg);
|
|
spec.flags_ |= SIGN_FLAG | PLUS_FLAG;
|
|
break;
|
|
case '-':
|
|
CheckSign(s, arg);
|
|
break;
|
|
case ' ':
|
|
CheckSign(s, arg);
|
|
spec.flags_ |= SIGN_FLAG;
|
|
break;
|
|
}
|
|
|
|
if (*s == '#') {
|
|
if (arg.type > LAST_NUMERIC_TYPE)
|
|
ReportError(s, "format specifier '#' requires numeric argument");
|
|
spec.flags_ |= HASH_FLAG;
|
|
++s;
|
|
}
|
|
|
|
// Parse width and zero flag.
|
|
if ('0' <= *s && *s <= '9') {
|
|
if (*s == '0') {
|
|
if (arg.type > LAST_NUMERIC_TYPE)
|
|
ReportError(s, "format specifier '0' requires numeric argument");
|
|
spec.align_ = ALIGN_NUMERIC;
|
|
spec.fill_ = '0';
|
|
}
|
|
// Zero may be parsed again as a part of the width, but it is simpler
|
|
// and more efficient than checking if the next char is a digit.
|
|
unsigned value = ParseUInt(s);
|
|
if (value > INT_MAX)
|
|
ReportError(s, "number is too big in format");
|
|
spec.width_ = value;
|
|
}
|
|
|
|
// Parse precision.
|
|
if (*s == '.') {
|
|
++s;
|
|
precision = 0;
|
|
if ('0' <= *s && *s <= '9') {
|
|
unsigned value = ParseUInt(s);
|
|
if (value > INT_MAX)
|
|
ReportError(s, "number is too big in format");
|
|
precision = value;
|
|
} else if (*s == '{') {
|
|
++s;
|
|
++num_open_braces_;
|
|
const Arg &precision_arg = ParseArgIndex(s);
|
|
unsigned long value = 0;
|
|
switch (precision_arg.type) {
|
|
case INT:
|
|
if (precision_arg.int_value < 0)
|
|
ReportError(s, "negative precision in format");
|
|
value = precision_arg.int_value;
|
|
break;
|
|
case UINT:
|
|
value = precision_arg.uint_value;
|
|
break;
|
|
case LONG:
|
|
if (precision_arg.long_value < 0)
|
|
ReportError(s, "negative precision in format");
|
|
value = precision_arg.long_value;
|
|
break;
|
|
case ULONG:
|
|
value = precision_arg.ulong_value;
|
|
break;
|
|
default:
|
|
ReportError(s, "precision is not integer");
|
|
}
|
|
if (value > INT_MAX)
|
|
ReportError(s, "number is too big in format");
|
|
precision = value;
|
|
if (*s++ != '}')
|
|
throw FormatError("unmatched '{' in format");
|
|
--num_open_braces_;
|
|
} else {
|
|
ReportError(s, "missing precision in format");
|
|
}
|
|
if (arg.type != DOUBLE && arg.type != LONG_DOUBLE) {
|
|
ReportError(s,
|
|
"precision specifier requires floating-point argument");
|
|
}
|
|
}
|
|
|
|
// Parse type.
|
|
if (*s != '}' && *s)
|
|
spec.type_ = *s++;
|
|
}
|
|
|
|
if (*s++ != '}')
|
|
throw FormatError("unmatched '{' in format");
|
|
start = s;
|
|
|
|
// Format argument.
|
|
switch (arg.type) {
|
|
case INT:
|
|
this->FormatInt(arg.int_value, spec);
|
|
break;
|
|
case UINT:
|
|
this->FormatInt(arg.uint_value, spec);
|
|
break;
|
|
case LONG:
|
|
this->FormatInt(arg.long_value, spec);
|
|
break;
|
|
case ULONG:
|
|
this->FormatInt(arg.ulong_value, spec);
|
|
break;
|
|
case DOUBLE:
|
|
this->FormatDouble(arg.double_value, spec, precision);
|
|
break;
|
|
case LONG_DOUBLE:
|
|
this->FormatDouble(arg.long_double_value, spec, precision);
|
|
break;
|
|
case CHAR: {
|
|
if (spec.type_ && spec.type_ != 'c')
|
|
internal::ReportUnknownType(spec.type_, "char");
|
|
char *out = 0;
|
|
if (spec.width_ > 1) {
|
|
out = this->GrowBuffer(spec.width_);
|
|
if (spec.align_ == ALIGN_RIGHT) {
|
|
std::fill_n(out, spec.width_ - 1, spec.fill_);
|
|
out += spec.width_ - 1;
|
|
} else if (spec.align_ == ALIGN_CENTER) {
|
|
out = this->FillPadding(out, spec.width_, 1, spec.fill_);
|
|
} else {
|
|
std::fill_n(out + 1, spec.width_ - 1, spec.fill_);
|
|
}
|
|
} else {
|
|
out = this->GrowBuffer(1);
|
|
}
|
|
*out = arg.int_value;
|
|
break;
|
|
}
|
|
case STRING: {
|
|
if (spec.type_ && spec.type_ != 's')
|
|
internal::ReportUnknownType(spec.type_, "string");
|
|
const char *str = arg.string.value;
|
|
std::size_t size = arg.string.size;
|
|
if (size == 0) {
|
|
if (!str)
|
|
throw FormatError("string pointer is null");
|
|
if (*str)
|
|
size = std::strlen(str);
|
|
}
|
|
this->FormatString(str, size, spec);
|
|
break;
|
|
}
|
|
case POINTER:
|
|
if (spec.type_ && spec.type_ != 'p')
|
|
internal::ReportUnknownType(spec.type_, "pointer");
|
|
spec.flags_= HASH_FLAG;
|
|
spec.type_ = 'x';
|
|
this->FormatInt(reinterpret_cast<uintptr_t>(arg.pointer_value), spec);
|
|
break;
|
|
case CUSTOM:
|
|
if (spec.type_)
|
|
internal::ReportUnknownType(spec.type_, "object");
|
|
arg.custom.format(*this, arg.custom.value, spec);
|
|
break;
|
|
default:
|
|
assert(false);
|
|
break;
|
|
}
|
|
}
|
|
this->buffer_.append(start, s);
|
|
}
|
|
}
|
|
|
|
#endif // FORMAT_H_
|