fmt/test/format-impl-test.cc
Gleb Mazovetskiy a8a73da7e4
Add an option to avoid wchar APIs on Windows (#3636)
With this, fmt can be used on Windows 98 and the Original Xbox with:

    set(FMT_OS OFF)

It is not exposed as a CMake option but one can define it manually
in the fmt subproject, e.g.:

    target_compile_definitions(fmt PUBLIC FMT_WINDOWS_NO_WCHAR)

Fixes #3631
2023-09-17 08:49:51 -07:00

484 lines
15 KiB
C++

// Formatting library for C++ - formatting library implementation tests
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include <algorithm>
#include <cstring>
// clang-format off
#include "test-assert.h"
// clang-format on
#include "fmt/format.h"
#include "gmock/gmock.h"
#include "util.h"
using fmt::detail::bigint;
using fmt::detail::fp;
using fmt::detail::max_value;
static_assert(!std::is_copy_constructible<bigint>::value, "");
static_assert(!std::is_copy_assignable<bigint>::value, "");
TEST(bigint_test, construct) {
EXPECT_EQ(fmt::to_string(bigint()), "");
EXPECT_EQ(fmt::to_string(bigint(0x42)), "42");
EXPECT_EQ(fmt::to_string(bigint(0x123456789abcedf0)), "123456789abcedf0");
}
TEST(bigint_test, compare) {
bigint n1(42);
bigint n2(42);
EXPECT_EQ(compare(n1, n2), 0);
n2 <<= 32;
EXPECT_LT(compare(n1, n2), 0);
bigint n3(43);
EXPECT_LT(compare(n1, n3), 0);
EXPECT_GT(compare(n3, n1), 0);
bigint n4(42 * 0x100000001);
EXPECT_LT(compare(n2, n4), 0);
EXPECT_GT(compare(n4, n2), 0);
}
TEST(bigint_test, add_compare) {
EXPECT_LT(
add_compare(bigint(0xffffffff), bigint(0xffffffff), bigint(1) <<= 64), 0);
EXPECT_LT(add_compare(bigint(1) <<= 32, bigint(1), bigint(1) <<= 96), 0);
EXPECT_GT(add_compare(bigint(1) <<= 32, bigint(0), bigint(0xffffffff)), 0);
EXPECT_GT(add_compare(bigint(0), bigint(1) <<= 32, bigint(0xffffffff)), 0);
EXPECT_GT(add_compare(bigint(42), bigint(1), bigint(42)), 0);
EXPECT_GT(add_compare(bigint(0xffffffff), bigint(1), bigint(0xffffffff)), 0);
EXPECT_LT(add_compare(bigint(10), bigint(10), bigint(22)), 0);
EXPECT_LT(add_compare(bigint(0x100000010), bigint(0x100000010),
bigint(0x300000010)),
0);
EXPECT_GT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000000)),
0);
EXPECT_EQ(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000001)),
0);
EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000002)),
0);
EXPECT_LT(add_compare(bigint(0x1ffffffff), bigint(0x100000002),
bigint(0x300000003)),
0);
}
TEST(bigint_test, shift_left) {
bigint n(0x42);
n <<= 0;
EXPECT_EQ(fmt::to_string(n), "42");
n <<= 1;
EXPECT_EQ(fmt::to_string(n), "84");
n <<= 25;
EXPECT_EQ(fmt::to_string(n), "108000000");
}
TEST(bigint_test, multiply) {
bigint n(0x42);
EXPECT_THROW(n *= 0, assertion_failure);
n *= 1;
EXPECT_EQ(fmt::to_string(n), "42");
n *= 2;
EXPECT_EQ(fmt::to_string(n), "84");
n *= 0x12345678;
EXPECT_EQ(fmt::to_string(n), "962fc95e0");
bigint bigmax(max_value<uint32_t>());
bigmax *= max_value<uint32_t>();
EXPECT_EQ(fmt::to_string(bigmax), "fffffffe00000001");
const auto max64 = max_value<uint64_t>();
bigmax = max64;
bigmax *= max64;
EXPECT_EQ(fmt::to_string(bigmax), "fffffffffffffffe0000000000000001");
const auto max128 = (fmt::detail::uint128_t(max64) << 64) | max64;
bigmax = max128;
bigmax *= max128;
EXPECT_EQ(fmt::to_string(bigmax),
"fffffffffffffffffffffffffffffffe00000000000000000000000000000001");
}
TEST(bigint_test, square) {
bigint n0(0);
n0.square();
EXPECT_EQ(fmt::to_string(n0), "0");
bigint n1(0x100);
n1.square();
EXPECT_EQ(fmt::to_string(n1), "10000");
bigint n2(0xfffffffff);
n2.square();
EXPECT_EQ(fmt::to_string(n2), "ffffffffe000000001");
bigint n3(max_value<uint64_t>());
n3.square();
EXPECT_EQ(fmt::to_string(n3), "fffffffffffffffe0000000000000001");
bigint n4;
n4.assign_pow10(10);
EXPECT_EQ(fmt::to_string(n4), "2540be400");
}
TEST(bigint_test, divmod_assign_zero_divisor) {
bigint zero(0);
EXPECT_THROW(bigint(0).divmod_assign(zero), assertion_failure);
EXPECT_THROW(bigint(42).divmod_assign(zero), assertion_failure);
}
TEST(bigint_test, divmod_assign_self) {
bigint n(100);
EXPECT_THROW(n.divmod_assign(n), assertion_failure);
}
TEST(bigint_test, divmod_assign_unaligned) {
// (42 << 340) / pow(10, 100):
bigint n1(42);
n1 <<= 340;
bigint n2;
n2.assign_pow10(100);
int result = n1.divmod_assign(n2);
EXPECT_EQ(result, 9406);
EXPECT_EQ(fmt::to_string(n1),
"10f8353019583bfc29ffc8f564e1b9f9d819dbb4cf783e4507eca1539220p96");
}
TEST(bigint_test, divmod_assign) {
// 100 / 10:
bigint n1(100);
int result = n1.divmod_assign(bigint(10));
EXPECT_EQ(result, 10);
EXPECT_EQ(fmt::to_string(n1), "0");
// pow(10, 100) / (42 << 320):
n1.assign_pow10(100);
result = n1.divmod_assign(bigint(42) <<= 320);
EXPECT_EQ(result, 111);
EXPECT_EQ(fmt::to_string(n1),
"13ad2594c37ceb0b2784c4ce0bf38ace408e211a7caab24308a82e8f10p96");
// 42 / 100:
bigint n2(42);
n1.assign_pow10(2);
result = n2.divmod_assign(n1);
EXPECT_EQ(result, 0);
EXPECT_EQ(fmt::to_string(n2), "2a");
}
template <bool is_iec559> void run_double_tests() {
fmt::print("warning: double is not IEC559, skipping FP tests\n");
}
template <> void run_double_tests<true>() {
// Construct from double.
EXPECT_EQ(fp(1.23), fp(0x13ae147ae147aeu, -52));
}
TEST(fp_test, double_tests) {
run_double_tests<std::numeric_limits<double>::is_iec559>();
}
TEST(fp_test, normalize) {
const auto v = fp(0xbeef, 42);
auto normalized = normalize(v);
EXPECT_EQ(normalized.f, 0xbeef000000000000);
EXPECT_EQ(normalized.e, -6);
}
TEST(fp_test, multiply) {
auto v = fp(123ULL << 32, 4) * fp(56ULL << 32, 7);
EXPECT_EQ(v.f, 123u * 56u);
EXPECT_EQ(v.e, 4 + 7 + 64);
v = fp(123ULL << 32, 4) * fp(567ULL << 31, 8);
EXPECT_EQ(v.f, (123 * 567 + 1u) / 2);
EXPECT_EQ(v.e, 4 + 8 + 64);
}
TEST(fp_test, dragonbox_max_k) {
using fmt::detail::dragonbox::floor_log10_pow2;
using float_info = fmt::detail::dragonbox::float_info<float>;
EXPECT_EQ(
fmt::detail::const_check(float_info::max_k),
float_info::kappa -
floor_log10_pow2(std::numeric_limits<float>::min_exponent -
fmt::detail::num_significand_bits<float>() - 1));
using double_info = fmt::detail::dragonbox::float_info<double>;
EXPECT_EQ(fmt::detail::const_check(double_info::max_k),
double_info::kappa -
floor_log10_pow2(
std::numeric_limits<double>::min_exponent -
2 * fmt::detail::num_significand_bits<double>() - 1));
}
TEST(format_impl_test, format_error_code) {
std::string msg = "error 42", sep = ": ";
{
auto buffer = fmt::memory_buffer();
fmt::format_to(fmt::appender(buffer), "garbage");
fmt::detail::format_error_code(buffer, 42, "test");
EXPECT_EQ(to_string(buffer), "test: " + msg);
}
{
auto buffer = fmt::memory_buffer();
auto prefix =
std::string(fmt::inline_buffer_size - msg.size() - sep.size() + 1, 'x');
fmt::detail::format_error_code(buffer, 42, prefix);
EXPECT_EQ(msg, to_string(buffer));
}
int codes[] = {42, -1};
for (size_t i = 0, n = sizeof(codes) / sizeof(*codes); i < n; ++i) {
// Test maximum buffer size.
msg = fmt::format("error {}", codes[i]);
fmt::memory_buffer buffer;
auto prefix =
std::string(fmt::inline_buffer_size - msg.size() - sep.size(), 'x');
fmt::detail::format_error_code(buffer, codes[i], prefix);
EXPECT_EQ(prefix + sep + msg, to_string(buffer));
size_t size = fmt::inline_buffer_size;
EXPECT_EQ(size, buffer.size());
buffer.resize(0);
// Test with a message that doesn't fit into the buffer.
prefix += 'x';
fmt::detail::format_error_code(buffer, codes[i], prefix);
EXPECT_EQ(to_string(buffer), msg);
}
}
TEST(format_impl_test, compute_width) {
EXPECT_EQ(4,
fmt::detail::compute_width(
fmt::basic_string_view<fmt::detail::char8_type>(
reinterpret_cast<const fmt::detail::char8_type*>("ёжик"))));
}
// Tests fmt::detail::count_digits for integer type Int.
template <typename Int> void test_count_digits() {
for (Int i = 0; i < 10; ++i) EXPECT_EQ(1u, fmt::detail::count_digits(i));
for (Int i = 1, n = 1, end = max_value<Int>() / 10; n <= end; ++i) {
n *= 10;
EXPECT_EQ(fmt::detail::count_digits(n - 1), i);
EXPECT_EQ(fmt::detail::count_digits(n), i + 1);
}
}
TEST(format_impl_test, count_digits) {
test_count_digits<uint32_t>();
test_count_digits<uint64_t>();
}
TEST(format_impl_test, countl_zero) {
constexpr auto num_bits = fmt::detail::num_bits<uint32_t>();
uint32_t n = 1u;
for (int i = 1; i < num_bits - 1; i++) {
n <<= 1;
EXPECT_EQ(fmt::detail::countl_zero(n - 1), num_bits - i);
EXPECT_EQ(fmt::detail::countl_zero(n), num_bits - i - 1);
}
}
#if FMT_USE_FLOAT128
TEST(format_impl_test, write_float128) {
auto s = std::string();
fmt::detail::write<char>(std::back_inserter(s), __float128(42));
EXPECT_EQ(s, "42");
}
#endif
struct double_double {
double a;
double b;
explicit constexpr double_double(double a_val = 0, double b_val = 0)
: a(a_val), b(b_val) {}
operator double() const { return a + b; }
auto operator-() const -> double_double { return double_double(-a, -b); }
};
auto format_as(double_double d) -> double { return d; }
bool operator>=(const double_double& lhs, const double_double& rhs) {
return lhs.a + lhs.b >= rhs.a + rhs.b;
}
struct slow_float {
float value;
explicit constexpr slow_float(float val = 0) : value(val) {}
operator float() const { return value; }
auto operator-() const -> slow_float { return slow_float(-value); }
};
auto format_as(slow_float f) -> float { return f; }
namespace std {
template <> struct is_floating_point<double_double> : std::true_type {};
template <> struct numeric_limits<double_double> {
// is_iec559 is true for double-double in libstdc++.
static constexpr bool is_iec559 = true;
static constexpr int digits = 106;
};
template <> struct is_floating_point<slow_float> : std::true_type {};
template <> struct numeric_limits<slow_float> : numeric_limits<float> {};
} // namespace std
FMT_BEGIN_NAMESPACE
namespace detail {
template <> struct is_fast_float<slow_float> : std::false_type {};
namespace dragonbox {
template <> struct float_info<slow_float> {
using carrier_uint = uint32_t;
static const int exponent_bits = 8;
};
} // namespace dragonbox
} // namespace detail
FMT_END_NAMESPACE
TEST(format_impl_test, write_double_double) {
auto s = std::string();
fmt::detail::write<char>(std::back_inserter(s), double_double(42), {});
// Specializing is_floating_point is broken in MSVC.
if (!FMT_MSC_VERSION) EXPECT_EQ(s, "42");
}
TEST(format_impl_test, write_dragon_even) {
auto s = std::string();
fmt::detail::write<char>(std::back_inserter(s), slow_float(33554450.0f), {});
// Specializing is_floating_point is broken in MSVC.
if (!FMT_MSC_VERSION) EXPECT_EQ(s, "33554450");
}
#if defined(_WIN32) && !defined(FMT_WINDOWS_NO_WCHAR)
# include <windows.h>
TEST(format_impl_test, write_console_signature) {
decltype(::WriteConsoleW)* p = fmt::detail::WriteConsoleW;
(void)p;
}
#endif
// A public domain branchless UTF-8 decoder by Christopher Wellons:
// https://github.com/skeeto/branchless-utf8
constexpr bool unicode_is_surrogate(uint32_t c) {
return c >= 0xD800U && c <= 0xDFFFU;
}
FMT_CONSTEXPR char* utf8_encode(char* s, uint32_t c) {
if (c >= (1UL << 16)) {
s[0] = static_cast<char>(0xf0 | (c >> 18));
s[1] = static_cast<char>(0x80 | ((c >> 12) & 0x3f));
s[2] = static_cast<char>(0x80 | ((c >> 6) & 0x3f));
s[3] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));
return s + 4;
} else if (c >= (1UL << 11)) {
s[0] = static_cast<char>(0xe0 | (c >> 12));
s[1] = static_cast<char>(0x80 | ((c >> 6) & 0x3f));
s[2] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));
return s + 3;
} else if (c >= (1UL << 7)) {
s[0] = static_cast<char>(0xc0 | (c >> 6));
s[1] = static_cast<char>(0x80 | ((c >> 0) & 0x3f));
return s + 2;
} else {
s[0] = static_cast<char>(c);
return s + 1;
}
}
// Make sure it can decode every character
TEST(format_impl_test, utf8_decode_decode_all) {
for (uint32_t i = 0; i < 0x10ffff; i++) {
if (!unicode_is_surrogate(i)) {
int e;
uint32_t c;
char buf[8] = {0};
char* end = utf8_encode(buf, i);
const char* res = fmt::detail::utf8_decode(buf, &c, &e);
EXPECT_EQ(end, res);
EXPECT_EQ(c, i);
EXPECT_EQ(e, 0);
}
}
}
// Reject everything outside of U+0000..U+10FFFF
TEST(format_impl_test, utf8_decode_out_of_range) {
for (uint32_t i = 0x110000; i < 0x1fffff; i++) {
int e;
uint32_t c;
char buf[8] = {0};
utf8_encode(buf, i);
const char* end = fmt::detail::utf8_decode(buf, &c, &e);
EXPECT_NE(e, 0);
EXPECT_EQ(end - buf, 4);
}
}
// Does it reject all surrogate halves?
TEST(format_impl_test, utf8_decode_surrogate_halves) {
for (uint32_t i = 0xd800; i <= 0xdfff; i++) {
int e;
uint32_t c;
char buf[8] = {0};
utf8_encode(buf, i);
fmt::detail::utf8_decode(buf, &c, &e);
EXPECT_NE(e, 0);
}
}
// How about non-canonical encodings?
TEST(format_impl_test, utf8_decode_non_canonical_encodings) {
int e;
uint32_t c;
const char* end;
char buf2[8] = {char(0xc0), char(0xA4)};
end = fmt::detail::utf8_decode(buf2, &c, &e);
EXPECT_NE(e, 0); // non-canonical len 2
EXPECT_EQ(end, buf2 + 2); // non-canonical recover 2
char buf3[8] = {char(0xe0), char(0x80), char(0xA4)};
end = fmt::detail::utf8_decode(buf3, &c, &e);
EXPECT_NE(e, 0); // non-canonical len 3
EXPECT_EQ(end, buf3 + 3); // non-canonical recover 3
char buf4[8] = {char(0xf0), char(0x80), char(0x80), char(0xA4)};
end = fmt::detail::utf8_decode(buf4, &c, &e);
EXPECT_NE(e, 0); // non-canonical encoding len 4
EXPECT_EQ(end, buf4 + 4); // non-canonical recover 4
}
// Let's try some bogus byte sequences
TEST(format_impl_test, utf8_decode_bogus_byte_sequences) {
int e;
uint32_t c;
// Invalid first byte
char buf0[4] = {char(0xff)};
auto len = fmt::detail::utf8_decode(buf0, &c, &e) - buf0;
EXPECT_NE(e, 0); // "bogus [ff] 0x%02x U+%04lx", e, (unsigned long)c);
EXPECT_EQ(len, 1); // "bogus [ff] recovery %d", len);
// Invalid first byte
char buf1[4] = {char(0x80)};
len = fmt::detail::utf8_decode(buf1, &c, &e) - buf1;
EXPECT_NE(e, 0); // "bogus [80] 0x%02x U+%04lx", e, (unsigned long)c);
EXPECT_EQ(len, 1); // "bogus [80] recovery %d", len);
// Looks like a two-byte sequence but second byte is wrong
char buf2[4] = {char(0xc0), char(0x0a)};
len = fmt::detail::utf8_decode(buf2, &c, &e) - buf2;
EXPECT_NE(e, 0); // "bogus [c0 0a] 0x%02x U+%04lx", e, (unsigned long)c
EXPECT_EQ(len, 2); // "bogus [c0 0a] recovery %d", len);
}
TEST(format_impl_test, to_utf8) {
auto s = std::string("ёжик");
auto u = fmt::detail::to_utf8<wchar_t>(L"\x0451\x0436\x0438\x043A");
EXPECT_EQ(s, u.str());
EXPECT_EQ(s.size(), u.size());
}