// Formatting library for C++ // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include "format.h" #include #include #include #include #include #include #include // for std::ptrdiff_t #include #if defined(_WIN32) && defined(__MINGW32__) # include #endif #if FMT_USE_WINDOWS_H # if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN) # define WIN32_LEAN_AND_MEAN # endif # if defined(NOMINMAX) || defined(FMT_WIN_MINMAX) # include # else # define NOMINMAX # include # undef NOMINMAX # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4127) // conditional expression is constant # pragma warning(disable: 4702) // unreachable code // Disable deprecation warning for strerror. The latter is not called but // MSVC fails to detect it. # pragma warning(disable: 4996) #endif // Dummy implementations of strerror_r and strerror_s called if corresponding // system functions are not available. inline fmt::internal::null<> strerror_r(int, char *, ...) { return fmt::internal::null<>(); } inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) { return fmt::internal::null<>(); } FMT_BEGIN_NAMESPACE namespace { #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER #if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT) # define FMT_SWPRINTF snwprintf #else # define FMT_SWPRINTF swprintf #endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT) const char RESET_COLOR[] = "\x1b[0m"; const wchar_t WRESET_COLOR[] = L"\x1b[0m"; typedef void (*FormatFunc)(internal::buffer &, int, string_view); // Portable thread-safe version of strerror. // Sets buffer to point to a string describing the error code. // This can be either a pointer to a string stored in buffer, // or a pointer to some static immutable string. // Returns one of the following values: // 0 - success // ERANGE - buffer is not large enough to store the error message // other - failure // Buffer should be at least of size 1. int safe_strerror( int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT { FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer"); class dispatcher { private: int error_code_; char *&buffer_; std::size_t buffer_size_; // A noop assignment operator to avoid bogus warnings. void operator=(const dispatcher &) {} // Handle the result of XSI-compliant version of strerror_r. int handle(int result) { // glibc versions before 2.13 return result in errno. return result == -1 ? errno : result; } // Handle the result of GNU-specific version of strerror_r. int handle(char *message) { // If the buffer is full then the message is probably truncated. if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) return ERANGE; buffer_ = message; return 0; } // Handle the case when strerror_r is not available. int handle(internal::null<>) { return fallback(strerror_s(buffer_, buffer_size_, error_code_)); } // Fallback to strerror_s when strerror_r is not available. int fallback(int result) { // If the buffer is full then the message is probably truncated. return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result; } // Fallback to strerror if strerror_r and strerror_s are not available. int fallback(internal::null<>) { errno = 0; buffer_ = strerror(error_code_); return errno; } public: dispatcher(int err_code, char *&buf, std::size_t buf_size) : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); } }; return dispatcher(error_code, buffer, buffer_size).run(); } void format_error_code(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; typedef internal::int_traits::main_type main_type; main_type abs_value = static_cast(error_code); if (internal::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += internal::count_digits(abs_value); writer w(out); if (message.size() <= inline_buffer_size - error_code_size) { w.write(message); w.write(SEP); } w.write(ERROR_STR); w.write(error_code); assert(out.size() <= inline_buffer_size); } void report_error(FormatFunc func, int error_code, string_view message) FMT_NOEXCEPT { memory_buffer full_message; func(full_message, error_code, message); // Use Writer::data instead of Writer::c_str to avoid potential memory // allocation. std::fwrite(full_message.data(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } } // namespace class locale { private: std::locale locale_; public: explicit locale(std::locale loc = std::locale()) : locale_(loc) {} std::locale get() { return locale_; } }; template FMT_FUNC Char internal::thousands_sep(locale_provider *lp) { std::locale loc = lp ? lp->locale().get() : std::locale(); return std::use_facet>(loc).thousands_sep(); } FMT_FUNC void system_error::init( int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; format_system_error(buffer, err_code, vformat(format_str, args)); std::runtime_error &base = *this; base = std::runtime_error(to_string(buffer)); } namespace internal { template int char_traits::format_float( char *buffer, std::size_t size, const char *format, int precision, T value) { return precision < 0 ? FMT_SNPRINTF(buffer, size, format, value) : FMT_SNPRINTF(buffer, size, format, precision, value); } template int char_traits::format_float( wchar_t *buffer, std::size_t size, const wchar_t *format, int precision, T value) { return precision < 0 ? FMT_SWPRINTF(buffer, size, format, value) : FMT_SWPRINTF(buffer, size, format, precision, value); } template const char basic_data::DIGITS[] = "0001020304050607080910111213141516171819" "2021222324252627282930313233343536373839" "4041424344454647484950515253545556575859" "6061626364656667686970717273747576777879" "8081828384858687888990919293949596979899"; #define FMT_POWERS_OF_10(factor) \ factor * 10, \ factor * 100, \ factor * 1000, \ factor * 10000, \ factor * 100000, \ factor * 1000000, \ factor * 10000000, \ factor * 100000000, \ factor * 1000000000 template const uint32_t basic_data::POWERS_OF_10_32[] = { 0, FMT_POWERS_OF_10(1) }; template const uint64_t basic_data::POWERS_OF_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull), 10000000000000000000ull }; // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. template const uint64_t basic_data::POW10_SIGNIFICANDS[] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b }; // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. template const int16_t basic_data::POW10_EXPONENTS[] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066 }; FMT_FUNC fp operator*(fp x, fp y) { // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = x.f >> 32, b = x.f & mask; uint64_t c = y.f >> 32, d = y.f & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64); } FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) { const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10) int index = static_cast(std::ceil( (min_exponent + fp::significand_size - 1) * one_over_log2_10)); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between two consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]); } } // namespace internal #if FMT_USE_WINDOWS_H FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) { static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16"; if (s.size() > INT_MAX) FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG)); int s_size = static_cast(s.size()); if (s_size == 0) { // MultiByteToWideChar does not support zero length, handle separately. buffer_.resize(1); buffer_[0] = 0; return; } int length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0); if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); buffer_.resize(length + 1); length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length); if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); buffer_[length] = 0; } FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) { if (int error_code = convert(s)) { FMT_THROW(windows_error(error_code, "cannot convert string from UTF-16 to UTF-8")); } } FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) { if (s.size() > INT_MAX) return ERROR_INVALID_PARAMETER; int s_size = static_cast(s.size()); if (s_size == 0) { // WideCharToMultiByte does not support zero length, handle separately. buffer_.resize(1); buffer_[0] = 0; return 0; } int length = WideCharToMultiByte( CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL); if (length == 0) return GetLastError(); buffer_.resize(length + 1); length = WideCharToMultiByte( CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL); if (length == 0) return GetLastError(); buffer_[length] = 0; return 0; } FMT_FUNC void windows_error::init( int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; internal::format_windows_error(buffer, err_code, vformat(format_str, args)); std::runtime_error &base = *this; base = std::runtime_error(to_string(buffer)); } FMT_FUNC void internal::format_windows_error( internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { wmemory_buffer buf; buf.resize(inline_buffer_size); for (;;) { wchar_t *system_message = &buf[0]; int result = FormatMessageW( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message, static_cast(buf.size()), FMT_NULL); if (result != 0) { utf16_to_utf8 utf8_message; if (utf8_message.convert(system_message) == ERROR_SUCCESS) { writer w(out); w.write(message); w.write(": "); w.write(utf8_message); return; } break; } if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } #endif // FMT_USE_WINDOWS_H FMT_FUNC void format_system_error( internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { memory_buffer buf; buf.resize(inline_buffer_size); for (;;) { char *system_message = &buf[0]; int result = safe_strerror(error_code, system_message, buf.size()); if (result == 0) { writer w(out); w.write(message); w.write(": "); w.write(system_message); return; } if (result != ERANGE) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } template void basic_fixed_buffer::grow(std::size_t) { FMT_THROW(std::runtime_error("buffer overflow")); } FMT_FUNC void internal::error_handler::on_error(const char *message) { FMT_THROW(format_error(message)); } FMT_FUNC void report_system_error( int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(format_system_error, error_code, message); } #if FMT_USE_WINDOWS_H FMT_FUNC void report_windows_error( int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(internal::format_windows_error, error_code, message); } #endif FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) { memory_buffer buffer; vformat_to(buffer, format_str, args); std::fwrite(buffer.data(), 1, buffer.size(), f); } FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) { wmemory_buffer buffer; vformat_to(buffer, format_str, args); std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f); } FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } FMT_FUNC void vprint(wstring_view format_str, wformat_args args) { vprint(stdout, format_str, args); } FMT_FUNC void vprint_colored(color c, string_view format, format_args args) { char escape[] = "\x1b[30m"; escape[3] = static_cast('0' + c); std::fputs(escape, stdout); vprint(format, args); std::fputs(RESET_COLOR, stdout); } FMT_FUNC void vprint_colored(color c, wstring_view format, wformat_args args) { wchar_t escape[] = L"\x1b[30m"; escape[3] = static_cast('0' + c); std::fputws(escape, stdout); vprint(format, args); std::fputws(WRESET_COLOR, stdout); } FMT_FUNC locale locale_provider::locale() { return fmt::locale(); } FMT_END_NAMESPACE #ifdef _MSC_VER # pragma warning(pop) #endif #endif // FMT_FORMAT_INL_H_