// Formatting library for C++ - core tests // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. // clang-format off #include "test-assert.h" // clang-format on #include "fmt/base.h" #include <climits> // INT_MAX #include <cstring> // std::strlen #include <functional> // std::equal_to #include <iterator> // std::back_insert_iterator, std::distance #include <limits> // std::numeric_limits #include <string> // std::string #include <type_traits> // std::is_same #include "gmock/gmock.h" using fmt::string_view; using fmt::detail::buffer; using testing::_; using testing::Invoke; using testing::Return; #ifdef FMT_FORMAT_H_ # error core-test includes format.h #endif fmt::appender copy(fmt::string_view s, fmt::appender out) { for (char c : s) *out++ = c; return out; } TEST(string_view_test, value_type) { static_assert(std::is_same<string_view::value_type, char>::value, ""); } TEST(string_view_test, ctor) { EXPECT_STREQ("abc", fmt::string_view("abc").data()); EXPECT_EQ(3u, fmt::string_view("abc").size()); EXPECT_STREQ("defg", fmt::string_view(std::string("defg")).data()); EXPECT_EQ(4u, fmt::string_view(std::string("defg")).size()); } TEST(string_view_test, length) { // Test that string_view::size() returns string length, not buffer size. char str[100] = "some string"; EXPECT_EQ(std::strlen(str), string_view(str).size()); EXPECT_LT(std::strlen(str), sizeof(str)); } // Check string_view's comparison operator. template <template <typename> class Op> void check_op() { const char* inputs[] = {"foo", "fop", "fo"}; size_t num_inputs = sizeof(inputs) / sizeof(*inputs); for (size_t i = 0; i < num_inputs; ++i) { for (size_t j = 0; j < num_inputs; ++j) { string_view lhs(inputs[i]), rhs(inputs[j]); EXPECT_EQ(Op<int>()(lhs.compare(rhs), 0), Op<string_view>()(lhs, rhs)); } } } TEST(string_view_test, compare) { EXPECT_EQ(string_view("foo").compare(string_view("foo")), 0); EXPECT_GT(string_view("fop").compare(string_view("foo")), 0); EXPECT_LT(string_view("foo").compare(string_view("fop")), 0); EXPECT_GT(string_view("foo").compare(string_view("fo")), 0); EXPECT_LT(string_view("fo").compare(string_view("foo")), 0); EXPECT_TRUE(string_view("foo").starts_with('f')); EXPECT_FALSE(string_view("foo").starts_with('o')); EXPECT_FALSE(string_view().starts_with('o')); EXPECT_TRUE(string_view("foo").starts_with("fo")); EXPECT_TRUE(string_view("foo").starts_with("foo")); EXPECT_FALSE(string_view("foo").starts_with("fooo")); EXPECT_FALSE(string_view().starts_with("fooo")); check_op<std::equal_to>(); check_op<std::not_equal_to>(); check_op<std::less>(); check_op<std::less_equal>(); check_op<std::greater>(); check_op<std::greater_equal>(); } TEST(base_test, is_output_iterator) { EXPECT_TRUE((fmt::detail::is_output_iterator<char*, char>::value)); EXPECT_FALSE((fmt::detail::is_output_iterator<const char*, char>::value)); EXPECT_FALSE((fmt::detail::is_output_iterator<std::string, char>::value)); EXPECT_TRUE( (fmt::detail::is_output_iterator<std::back_insert_iterator<std::string>, char>::value)); EXPECT_TRUE( (fmt::detail::is_output_iterator<std::string::iterator, char>::value)); EXPECT_FALSE((fmt::detail::is_output_iterator<std::string::const_iterator, char>::value)); } TEST(base_test, is_back_insert_iterator) { EXPECT_TRUE(fmt::detail::is_back_insert_iterator< std::back_insert_iterator<std::string>>::value); EXPECT_FALSE(fmt::detail::is_back_insert_iterator< std::front_insert_iterator<std::string>>::value); } TEST(base_test, buffer_appender) { #ifdef __cpp_lib_ranges EXPECT_TRUE((std::output_iterator<fmt::appender, char>)); #endif } #if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 470 TEST(buffer_test, noncopyable) { EXPECT_FALSE(std::is_copy_constructible<buffer<char>>::value); # if !FMT_MSC_VERSION // std::is_copy_assignable is broken in MSVC2013. EXPECT_FALSE(std::is_copy_assignable<buffer<char>>::value); # endif } TEST(buffer_test, nonmoveable) { EXPECT_FALSE(std::is_move_constructible<buffer<char>>::value); # if !FMT_MSC_VERSION // std::is_move_assignable is broken in MSVC2013. EXPECT_FALSE(std::is_move_assignable<buffer<char>>::value); # endif } #endif TEST(buffer_test, indestructible) { static_assert(!std::is_destructible<fmt::detail::buffer<int>>(), "buffer's destructor is protected"); } template <typename T> struct mock_buffer final : buffer<T> { MOCK_METHOD(size_t, do_grow, (size_t)); static void grow(buffer<T>& buf, size_t capacity) { auto& self = static_cast<mock_buffer&>(buf); self.set(buf.data(), self.do_grow(capacity)); } mock_buffer(T* data = nullptr, size_t buf_capacity = 0) : buffer<T>(grow) { this->set(data, buf_capacity); ON_CALL(*this, do_grow(_)).WillByDefault(Invoke([](size_t capacity) { return capacity; })); } }; TEST(buffer_test, ctor) { { mock_buffer<int> buffer; EXPECT_EQ(nullptr, buffer.data()); EXPECT_EQ(static_cast<size_t>(0), buffer.size()); EXPECT_EQ(static_cast<size_t>(0), buffer.capacity()); } { int dummy; mock_buffer<int> buffer(&dummy); EXPECT_EQ(&dummy, &buffer[0]); EXPECT_EQ(static_cast<size_t>(0), buffer.size()); EXPECT_EQ(static_cast<size_t>(0), buffer.capacity()); } { int dummy; size_t capacity = std::numeric_limits<size_t>::max(); mock_buffer<int> buffer(&dummy, capacity); EXPECT_EQ(&dummy, &buffer[0]); EXPECT_EQ(static_cast<size_t>(0), buffer.size()); EXPECT_EQ(capacity, buffer.capacity()); } } TEST(buffer_test, access) { char data[10]; mock_buffer<char> buffer(data, sizeof(data)); buffer[0] = 11; EXPECT_EQ(11, buffer[0]); buffer[3] = 42; EXPECT_EQ(42, *(&buffer[0] + 3)); const fmt::detail::buffer<char>& const_buffer = buffer; EXPECT_EQ(42, const_buffer[3]); } TEST(buffer_test, try_resize) { char data[123]; mock_buffer<char> buffer(data, sizeof(data)); buffer[10] = 42; EXPECT_EQ(42, buffer[10]); buffer.try_resize(20); EXPECT_EQ(20u, buffer.size()); EXPECT_EQ(123u, buffer.capacity()); EXPECT_EQ(42, buffer[10]); buffer.try_resize(5); EXPECT_EQ(5u, buffer.size()); EXPECT_EQ(123u, buffer.capacity()); EXPECT_EQ(42, buffer[10]); // Check if try_resize calls grow. EXPECT_CALL(buffer, do_grow(124)); buffer.try_resize(124); EXPECT_CALL(buffer, do_grow(200)); buffer.try_resize(200); } TEST(buffer_test, try_resize_partial) { char data[10]; mock_buffer<char> buffer(data, sizeof(data)); EXPECT_CALL(buffer, do_grow(20)).WillOnce(Return(15)); buffer.try_resize(20); EXPECT_EQ(buffer.capacity(), 15); EXPECT_EQ(buffer.size(), 15); } TEST(buffer_test, clear) { mock_buffer<char> buffer; EXPECT_CALL(buffer, do_grow(20)); buffer.try_resize(20); buffer.try_resize(0); EXPECT_EQ(static_cast<size_t>(0), buffer.size()); EXPECT_EQ(20u, buffer.capacity()); } TEST(buffer_test, append) { char data[15]; mock_buffer<char> buffer(data, 10); auto test = "test"; buffer.append(test, test + 5); EXPECT_STREQ(test, &buffer[0]); EXPECT_EQ(5u, buffer.size()); buffer.try_resize(10); EXPECT_CALL(buffer, do_grow(12)); buffer.append(test, test + 2); EXPECT_EQ('t', buffer[10]); EXPECT_EQ('e', buffer[11]); EXPECT_EQ(12u, buffer.size()); } TEST(buffer_test, append_partial) { char data[10]; mock_buffer<char> buffer(data, sizeof(data)); testing::InSequence seq; EXPECT_CALL(buffer, do_grow(15)).WillOnce(Return(10)); EXPECT_CALL(buffer, do_grow(15)).WillOnce(Invoke([&buffer](size_t) { EXPECT_EQ(fmt::string_view(buffer.data(), buffer.size()), "0123456789"); buffer.clear(); return 10; })); auto test = "0123456789abcde"; buffer.append(test, test + 15); } TEST(buffer_test, append_allocates_enough_storage) { char data[19]; mock_buffer<char> buffer(data, 10); auto test = "abcdefgh"; buffer.try_resize(10); EXPECT_CALL(buffer, do_grow(19)); buffer.append(test, test + 9); } TEST(base_test, get_buffer) { mock_buffer<char> buffer; void* buffer_ptr = &buffer; auto&& appender_result = fmt::detail::get_buffer<char>(fmt::appender(buffer)); EXPECT_EQ(&appender_result, buffer_ptr); auto&& back_inserter_result = fmt::detail::get_buffer<char>(std::back_inserter(buffer)); EXPECT_EQ(&back_inserter_result, buffer_ptr); } struct custom_context { using char_type = char; using parse_context_type = fmt::format_parse_context; bool called = false; template <typename T> struct formatter_type { FMT_CONSTEXPR auto parse(fmt::format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } const char* format(const T&, custom_context& ctx) const { ctx.called = true; return nullptr; } }; void advance_to(const char*) {} }; struct test_struct {}; FMT_BEGIN_NAMESPACE template <typename Char> struct formatter<test_struct, Char> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(test_struct, format_context& ctx) const -> decltype(ctx.out()) { return copy("test", ctx.out()); } }; FMT_END_NAMESPACE TEST(arg_test, format_args) { auto args = fmt::format_args(); EXPECT_FALSE(args.get(1)); } TEST(arg_test, make_value_with_custom_context) { auto t = test_struct(); auto arg = fmt::detail::value<custom_context>( fmt::detail::arg_mapper<custom_context>().map(t)); auto ctx = custom_context(); auto parse_ctx = fmt::format_parse_context(""); arg.custom.format(&t, parse_ctx, ctx); EXPECT_TRUE(ctx.called); } // Use a unique result type to make sure that there are no undesirable // conversions. struct test_result {}; template <typename T> struct mock_visitor { template <typename U> struct result { using type = test_result; }; mock_visitor() { ON_CALL(*this, visit(_)).WillByDefault(Return(test_result())); } MOCK_METHOD(test_result, visit, (T)); MOCK_METHOD(void, unexpected, ()); auto operator()(T value) -> test_result { return visit(value); } template <typename U> auto operator()(U) -> test_result { unexpected(); return test_result(); } }; template <typename T> struct visit_type { using type = T; }; #define VISIT_TYPE(type_, visit_type_) \ template <> struct visit_type<type_> { \ using type = visit_type_; \ } VISIT_TYPE(signed char, int); VISIT_TYPE(unsigned char, unsigned); VISIT_TYPE(short, int); VISIT_TYPE(unsigned short, unsigned); #if LONG_MAX == INT_MAX VISIT_TYPE(long, int); VISIT_TYPE(unsigned long, unsigned); #else VISIT_TYPE(long, long long); VISIT_TYPE(unsigned long, unsigned long long); #endif #define CHECK_ARG(Char, expected, value) \ { \ testing::StrictMock<mock_visitor<decltype(expected)>> visitor; \ EXPECT_CALL(visitor, visit(expected)); \ using iterator = fmt::basic_appender<Char>; \ auto var = value; \ fmt::detail::make_arg<fmt::basic_format_context<iterator, Char>>(var) \ .visit(visitor); \ } #define CHECK_ARG_SIMPLE(value) \ { \ using value_type = decltype(value); \ typename visit_type<value_type>::type expected = value; \ CHECK_ARG(char, expected, value) \ } template <typename T> class numeric_arg_test : public testing::Test {}; using test_types = testing::Types<bool, signed char, unsigned char, short, unsigned short, int, unsigned, long, unsigned long, long long, unsigned long long, float, double, long double>; TYPED_TEST_SUITE(numeric_arg_test, test_types); template <typename T, fmt::enable_if_t<std::is_integral<T>::value, int> = 0> auto test_value() -> T { return static_cast<T>(42); } template <typename T, fmt::enable_if_t<std::is_floating_point<T>::value, int> = 0> auto test_value() -> T { return static_cast<T>(4.2); } TYPED_TEST(numeric_arg_test, make_and_visit) { CHECK_ARG_SIMPLE(test_value<TypeParam>()); CHECK_ARG_SIMPLE(std::numeric_limits<TypeParam>::min()); CHECK_ARG_SIMPLE(std::numeric_limits<TypeParam>::max()); } TEST(arg_test, char_arg) { CHECK_ARG(char, 'a', 'a'); } TEST(arg_test, string_arg) { char str_data[] = "test"; char* str = str_data; const char* cstr = str; CHECK_ARG(char, cstr, str); auto sv = fmt::string_view(str); CHECK_ARG(char, sv, std::string(str)); } TEST(arg_test, pointer_arg) { void* p = nullptr; const void* cp = nullptr; CHECK_ARG(char, cp, p); CHECK_ARG_SIMPLE(cp); } TEST(arg_test, volatile_pointer_arg) { const void* p = nullptr; volatile int* vip = nullptr; const volatile int* cvip = nullptr; CHECK_ARG(char, p, static_cast<volatile void*>(vip)); CHECK_ARG(char, p, static_cast<const volatile void*>(cvip)); } struct check_custom { auto operator()(fmt::basic_format_arg<fmt::format_context>::handle h) const -> test_result { struct test_buffer final : fmt::detail::buffer<char> { char data[10]; test_buffer() : fmt::detail::buffer<char>([](buffer<char>&, size_t) {}, data, 0, 10) {} } buffer; auto parse_ctx = fmt::format_parse_context(""); auto ctx = fmt::format_context(fmt::appender(buffer), fmt::format_args()); h.format(parse_ctx, ctx); EXPECT_EQ("test", std::string(buffer.data, buffer.size())); return test_result(); } }; TEST(arg_test, custom_arg) { auto test = test_struct(); using visitor = mock_visitor<fmt::basic_format_arg<fmt::format_context>::handle>; auto&& v = testing::StrictMock<visitor>(); EXPECT_CALL(v, visit(_)).WillOnce(Invoke(check_custom())); fmt::detail::make_arg<fmt::format_context>(test).visit(v); } TEST(arg_test, visit_invalid_arg) { auto&& visitor = testing::StrictMock<mock_visitor<fmt::monostate>>(); EXPECT_CALL(visitor, visit(_)); fmt::basic_format_arg<fmt::format_context>().visit(visitor); } #if FMT_USE_CONSTEXPR enum class arg_id_result { none, empty, index, name }; struct test_arg_id_handler { arg_id_result res = arg_id_result::none; int index = 0; string_view name; constexpr void on_auto() { res = arg_id_result::empty; } constexpr void on_index(int i) { res = arg_id_result::index; index = i; } constexpr void on_name(string_view n) { res = arg_id_result::name; name = n; } }; template <size_t N> constexpr test_arg_id_handler parse_arg_id(const char (&s)[N]) { auto h = test_arg_id_handler(); fmt::detail::parse_arg_id(s, s + N, h); return h; } TEST(base_test, constexpr_parse_arg_id) { static_assert(parse_arg_id(":").res == arg_id_result::empty, ""); static_assert(parse_arg_id("}").res == arg_id_result::empty, ""); static_assert(parse_arg_id("42:").res == arg_id_result::index, ""); static_assert(parse_arg_id("42:").index == 42, ""); static_assert(parse_arg_id("foo:").res == arg_id_result::name, ""); static_assert(parse_arg_id("foo:").name.size() == 3, ""); } template <size_t N> constexpr auto parse_test_specs(const char (&s)[N]) { auto ctx = fmt::detail::compile_parse_context<char>(fmt::string_view(s, N), 43, nullptr); auto specs = fmt::detail::dynamic_format_specs<>(); fmt::detail::parse_format_specs(s, s + N - 1, specs, ctx, fmt::detail::type::float_type); return specs; } TEST(base_test, constexpr_parse_format_specs) { static_assert(parse_test_specs("<").align == fmt::align::left, ""); static_assert(parse_test_specs("*^").fill.get<char>() == '*', ""); static_assert(parse_test_specs("+").sign == fmt::sign::plus, ""); static_assert(parse_test_specs("-").sign == fmt::sign::minus, ""); static_assert(parse_test_specs(" ").sign == fmt::sign::space, ""); static_assert(parse_test_specs("#").alt, ""); static_assert(parse_test_specs("0").align == fmt::align::numeric, ""); static_assert(parse_test_specs("L").localized, ""); static_assert(parse_test_specs("42").width == 42, ""); static_assert(parse_test_specs("{42}").width_ref.val.index == 42, ""); static_assert(parse_test_specs(".42").precision == 42, ""); static_assert(parse_test_specs(".{42}").precision_ref.val.index == 42, ""); static_assert(parse_test_specs("f").type == fmt::presentation_type::fixed, ""); } struct test_format_string_handler { constexpr void on_text(const char*, const char*) {} constexpr auto on_arg_id() -> int { return 0; } template <typename T> constexpr auto on_arg_id(T) -> int { return 0; } constexpr void on_replacement_field(int, const char*) {} constexpr auto on_format_specs(int, const char* begin, const char*) -> const char* { return begin; } constexpr void on_error(const char*) { error = true; } bool error = false; }; template <size_t N> constexpr bool parse_string(const char (&s)[N]) { auto h = test_format_string_handler(); fmt::detail::parse_format_string<true>(fmt::string_view(s, N - 1), h); return !h.error; } TEST(base_test, constexpr_parse_format_string) { static_assert(parse_string("foo"), ""); static_assert(!parse_string("}"), ""); static_assert(parse_string("{}"), ""); static_assert(parse_string("{42}"), ""); static_assert(parse_string("{foo}"), ""); static_assert(parse_string("{:}"), ""); } #endif // FMT_USE_CONSTEXPR struct enabled_formatter {}; struct enabled_ptr_formatter {}; struct disabled_formatter {}; struct disabled_formatter_convertible { operator int() const { return 42; } }; FMT_BEGIN_NAMESPACE template <> struct formatter<enabled_formatter> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(enabled_formatter, format_context& ctx) const -> decltype(ctx.out()) { return ctx.out(); } }; template <> struct formatter<enabled_ptr_formatter*> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(enabled_ptr_formatter*, format_context& ctx) const -> decltype(ctx.out()) { return ctx.out(); } }; FMT_END_NAMESPACE TEST(base_test, has_formatter) { using fmt::has_formatter; using context = fmt::format_context; static_assert(has_formatter<enabled_formatter, context>::value, ""); static_assert(!has_formatter<disabled_formatter, context>::value, ""); static_assert(!has_formatter<disabled_formatter_convertible, context>::value, ""); } struct const_formattable {}; struct nonconst_formattable {}; FMT_BEGIN_NAMESPACE template <> struct formatter<const_formattable> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(const const_formattable&, format_context& ctx) const -> decltype(ctx.out()) { return copy("test", ctx.out()); } }; template <> struct formatter<nonconst_formattable> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(nonconst_formattable&, format_context& ctx) const -> decltype(ctx.out()) { return copy("test", ctx.out()); } }; FMT_END_NAMESPACE struct convertible_to_pointer { operator const int*() const { return nullptr; } }; struct convertible_to_pointer_formattable { operator const int*() const { return nullptr; } }; FMT_BEGIN_NAMESPACE template <> struct formatter<convertible_to_pointer_formattable> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(convertible_to_pointer_formattable, format_context& ctx) const -> decltype(ctx.out()) { return copy("test", ctx.out()); } }; FMT_END_NAMESPACE enum class unformattable_scoped_enum {}; TEST(base_test, is_formattable) { static_assert(!fmt::is_formattable<wchar_t>::value, ""); #ifdef __cpp_char8_t static_assert(!fmt::is_formattable<char8_t>::value, ""); #endif static_assert(!fmt::is_formattable<char16_t>::value, ""); static_assert(!fmt::is_formattable<char32_t>::value, ""); static_assert(!fmt::is_formattable<signed char*>::value, ""); static_assert(!fmt::is_formattable<unsigned char*>::value, ""); static_assert(!fmt::is_formattable<const signed char*>::value, ""); static_assert(!fmt::is_formattable<const unsigned char*>::value, ""); static_assert(!fmt::is_formattable<const wchar_t*>::value, ""); static_assert(!fmt::is_formattable<const wchar_t[3]>::value, ""); static_assert(!fmt::is_formattable<fmt::basic_string_view<wchar_t>>::value, ""); static_assert(fmt::is_formattable<enabled_formatter>::value, ""); static_assert(!fmt::is_formattable<enabled_ptr_formatter*>::value, ""); static_assert(!fmt::is_formattable<disabled_formatter>::value, ""); static_assert(!fmt::is_formattable<disabled_formatter_convertible>::value, ""); static_assert(fmt::is_formattable<const_formattable&>::value, ""); static_assert(fmt::is_formattable<const const_formattable&>::value, ""); static_assert(fmt::is_formattable<nonconst_formattable&>::value, ""); #if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1910 static_assert(!fmt::is_formattable<const nonconst_formattable&>::value, ""); #endif static_assert(!fmt::is_formattable<convertible_to_pointer>::value, ""); const auto f = convertible_to_pointer_formattable(); auto str = std::string(); fmt::format_to(std::back_inserter(str), "{}", f); EXPECT_EQ(str, "test"); static_assert(!fmt::is_formattable<void (*)()>::value, ""); struct s; static_assert(!fmt::is_formattable<int(s::*)>::value, ""); static_assert(!fmt::is_formattable<int (s::*)()>::value, ""); static_assert(!fmt::is_formattable<unformattable_scoped_enum>::value, ""); static_assert(!fmt::is_formattable<unformattable_scoped_enum>::value, ""); } #if FMT_USE_CONCEPTS TEST(base_test, formattable) { static_assert(fmt::formattable<char>); static_assert(fmt::formattable<char&>); static_assert(fmt::formattable<char&&>); static_assert(fmt::formattable<const char>); static_assert(fmt::formattable<const char&>); static_assert(fmt::formattable<const char&&>); static_assert(fmt::formattable<int>); static_assert(!fmt::formattable<wchar_t>); } #endif TEST(base_test, format_to) { auto s = std::string(); fmt::format_to(std::back_inserter(s), "{}", 42); EXPECT_EQ(s, "42"); } TEST(base_test, format_to_array) { char buffer[4]; auto result = fmt::format_to(buffer, "{}", 12345); EXPECT_EQ(4, std::distance(&buffer[0], result.out)); EXPECT_TRUE(result.truncated); EXPECT_EQ(buffer + 4, result.out); EXPECT_EQ("1234", fmt::string_view(buffer, 4)); char* out = nullptr; EXPECT_THROW(out = result, std::runtime_error); (void)out; result = fmt::format_to(buffer, "{:s}", "foobar"); EXPECT_EQ(4, std::distance(&buffer[0], result.out)); EXPECT_TRUE(result.truncated); EXPECT_EQ(buffer + 4, result.out); EXPECT_EQ("foob", fmt::string_view(buffer, 4)); buffer[0] = 'x'; buffer[1] = 'x'; buffer[2] = 'x'; buffer[3] = 'x'; result = fmt::format_to(buffer, "{}", 'A'); EXPECT_EQ(1, std::distance(&buffer[0], result.out)); EXPECT_FALSE(result.truncated); EXPECT_EQ(buffer + 1, result.out); EXPECT_EQ("Axxx", fmt::string_view(buffer, 4)); result = fmt::format_to(buffer, "{}{} ", 'B', 'C'); EXPECT_EQ(3, std::distance(&buffer[0], result.out)); EXPECT_FALSE(result.truncated); EXPECT_EQ(buffer + 3, result.out); EXPECT_EQ("BC x", fmt::string_view(buffer, 4)); result = fmt::format_to(buffer, "{}", "ABCDE"); EXPECT_EQ(4, std::distance(&buffer[0], result.out)); EXPECT_TRUE(result.truncated); EXPECT_EQ("ABCD", fmt::string_view(buffer, 4)); result = fmt::format_to(buffer, "{}", std::string(1000, '*')); EXPECT_EQ(4, std::distance(&buffer[0], result.out)); EXPECT_TRUE(result.truncated); EXPECT_EQ("****", fmt::string_view(buffer, 4)); } #ifdef __cpp_lib_byte TEST(base_test, format_byte) { auto s = std::string(); fmt::format_to(std::back_inserter(s), "{}", std::byte(42)); EXPECT_EQ(s, "42"); } #endif // Test that check is not found by ADL. template <typename T> void check(T); TEST(base_test, adl_check) { auto s = std::string(); fmt::format_to(std::back_inserter(s), "{}", test_struct()); EXPECT_EQ(s, "test"); } struct implicitly_convertible_to_string_view { operator fmt::string_view() const { return "foo"; } }; TEST(base_test, no_implicit_conversion_to_string_view) { EXPECT_FALSE( fmt::is_formattable<implicitly_convertible_to_string_view>::value); } #ifdef FMT_USE_STRING_VIEW struct implicitly_convertible_to_std_string_view { operator std::string_view() const { return "foo"; } }; TEST(base_test, no_implicit_conversion_to_std_string_view) { EXPECT_FALSE( fmt::is_formattable<implicitly_convertible_to_std_string_view>::value); } #endif // std::is_constructible is broken in MSVC until version 2015. #if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1900 struct explicitly_convertible_to_string_view { explicit operator fmt::string_view() const { return "foo"; } }; TEST(base_test, format_explicitly_convertible_to_string_view) { // Types explicitly convertible to string_view are not formattable by // default because it may introduce ODR violations. static_assert( !fmt::is_formattable<explicitly_convertible_to_string_view>::value, ""); } # ifdef FMT_USE_STRING_VIEW struct explicitly_convertible_to_std_string_view { explicit operator std::string_view() const { return "foo"; } }; TEST(base_test, format_explicitly_convertible_to_std_string_view) { // Types explicitly convertible to string_view are not formattable by // default because it may introduce ODR violations. static_assert( !fmt::is_formattable<explicitly_convertible_to_std_string_view>::value, ""); } # endif #endif TEST(base_test, has_const_formatter) { EXPECT_TRUE((fmt::detail::has_const_formatter<const_formattable, fmt::format_context>())); EXPECT_FALSE((fmt::detail::has_const_formatter<nonconst_formattable, fmt::format_context>())); } TEST(base_test, format_nonconst) { auto s = std::string(); fmt::format_to(std::back_inserter(s), "{}", nonconst_formattable()); EXPECT_EQ(s, "test"); } TEST(base_test, throw_in_buffer_dtor) { enum { buffer_size = 256 }; struct throwing_iterator { int& count; auto operator=(char) -> throwing_iterator& { if (++count > buffer_size) throw std::exception(); return *this; } auto operator*() -> throwing_iterator& { return *this; } auto operator++() -> throwing_iterator& { return *this; } auto operator++(int) -> throwing_iterator { return *this; } }; try { int count = 0; fmt::format_to(throwing_iterator{count}, fmt::runtime("{:{}}{"), "", buffer_size + 1); } catch (const std::exception&) { } } struct its_a_trap { template <typename T> operator T() const { auto v = T(); v.x = 42; return v; } }; FMT_BEGIN_NAMESPACE template <> struct formatter<its_a_trap> { FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> decltype(ctx.begin()) { return ctx.begin(); } auto format(its_a_trap, format_context& ctx) const -> decltype(ctx.out()) const { auto out = ctx.out(); *out++ = 'x'; return out; } }; FMT_END_NAMESPACE TEST(base_test, trappy_conversion) { auto s = std::string(); fmt::format_to(std::back_inserter(s), "{}", its_a_trap()); EXPECT_EQ(s, "x"); }