/* Utility tests. Copyright (c) 2012-2014, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "test-assert.h" #include #include #include #include #include #if FMT_USE_TYPE_TRAITS # include #endif #include "gmock/gmock.h" #include "gtest-extra.h" #include "mock-allocator.h" #include "util.h" // Check if format.h compiles with windows.h included. #ifdef _WIN32 # include #endif #include "fmt/format.h" #undef min #undef max using fmt::basic_arg; using fmt::buffer; using fmt::StringRef; using fmt::internal::MemoryBuffer; using fmt::internal::value; using testing::_; using testing::Return; using testing::StrictMock; namespace { struct Test {}; template void format_value(fmt::basic_writer &w, Test, fmt::basic_context &) { w.write("test"); } template basic_arg make_arg(const T &value) { return fmt::internal::make_arg(value); } } // namespace void CheckForwarding( MockAllocator &alloc, AllocatorRef< MockAllocator > &ref) { int mem; // Check if value_type is properly defined. AllocatorRef< MockAllocator >::value_type *ptr = &mem; // Check forwarding. EXPECT_CALL(alloc, allocate(42)).WillOnce(Return(ptr)); ref.allocate(42); EXPECT_CALL(alloc, deallocate(ptr, 42)); ref.deallocate(ptr, 42); } TEST(AllocatorTest, AllocatorRef) { StrictMock< MockAllocator > alloc; typedef AllocatorRef< MockAllocator > TestAllocatorRef; TestAllocatorRef ref(&alloc); // Check if AllocatorRef forwards to the underlying allocator. CheckForwarding(alloc, ref); TestAllocatorRef ref2(ref); CheckForwarding(alloc, ref2); TestAllocatorRef ref3; EXPECT_EQ(0, ref3.get()); ref3 = ref; CheckForwarding(alloc, ref3); } #if FMT_USE_TYPE_TRAITS TEST(BufferTest, Noncopyable) { EXPECT_FALSE(std::is_copy_constructible >::value); EXPECT_FALSE(std::is_copy_assignable >::value); } TEST(BufferTest, Nonmoveable) { EXPECT_FALSE(std::is_move_constructible >::value); EXPECT_FALSE(std::is_move_assignable >::value); } #endif // A test buffer with a dummy grow method. template struct TestBuffer : buffer { void grow(std::size_t size) { this->capacity_ = size; } }; template struct MockBuffer : buffer { MOCK_METHOD1(do_grow, void (std::size_t size)); void grow(std::size_t size) { this->capacity_ = size; do_grow(size); } MockBuffer() {} MockBuffer(T *ptr) : buffer(ptr) {} MockBuffer(T *ptr, std::size_t capacity) : buffer(ptr, capacity) {} }; TEST(BufferTest, Ctor) { { MockBuffer buffer; EXPECT_EQ(0, &buffer[0]); EXPECT_EQ(0u, buffer.size()); EXPECT_EQ(0u, buffer.capacity()); } { int dummy; MockBuffer buffer(&dummy); EXPECT_EQ(&dummy, &buffer[0]); EXPECT_EQ(0u, buffer.size()); EXPECT_EQ(0u, buffer.capacity()); } { int dummy; std::size_t capacity = std::numeric_limits::max(); MockBuffer buffer(&dummy, capacity); EXPECT_EQ(&dummy, &buffer[0]); EXPECT_EQ(0u, buffer.size()); EXPECT_EQ(capacity, buffer.capacity()); } } struct DyingBuffer : TestBuffer { MOCK_METHOD0(die, void()); ~DyingBuffer() { die(); } }; TEST(BufferTest, VirtualDtor) { typedef StrictMock StictMockBuffer; StictMockBuffer *mock_buffer = new StictMockBuffer(); EXPECT_CALL(*mock_buffer, die()); buffer *buffer = mock_buffer; delete buffer; } TEST(BufferTest, Access) { char data[10]; MockBuffer buffer(data, sizeof(data)); buffer[0] = 11; EXPECT_EQ(11, buffer[0]); buffer[3] = 42; EXPECT_EQ(42, *(&buffer[0] + 3)); const fmt::buffer &const_buffer = buffer; EXPECT_EQ(42, const_buffer[3]); } TEST(BufferTest, Resize) { char data[123]; MockBuffer buffer(data, sizeof(data)); buffer[10] = 42; EXPECT_EQ(42, buffer[10]); buffer.resize(20); EXPECT_EQ(20u, buffer.size()); EXPECT_EQ(123u, buffer.capacity()); EXPECT_EQ(42, buffer[10]); buffer.resize(5); EXPECT_EQ(5u, buffer.size()); EXPECT_EQ(123u, buffer.capacity()); EXPECT_EQ(42, buffer[10]); // Check if resize calls grow. EXPECT_CALL(buffer, do_grow(124)); buffer.resize(124); EXPECT_CALL(buffer, do_grow(200)); buffer.resize(200); } TEST(BufferTest, Clear) { TestBuffer buffer; buffer.resize(20); buffer.clear(); EXPECT_EQ(0u, buffer.size()); EXPECT_EQ(20u, buffer.capacity()); } TEST(BufferTest, PushBack) { int data[15]; MockBuffer buffer(data, 10); buffer.push_back(11); EXPECT_EQ(11, buffer[0]); EXPECT_EQ(1u, buffer.size()); buffer.resize(10); EXPECT_CALL(buffer, do_grow(11)); buffer.push_back(22); EXPECT_EQ(22, buffer[10]); EXPECT_EQ(11u, buffer.size()); } TEST(BufferTest, Append) { char data[15]; MockBuffer buffer(data, 10); const char *test = "test"; buffer.append(test, test + 5); EXPECT_STREQ(test, &buffer[0]); EXPECT_EQ(5u, buffer.size()); buffer.resize(10); EXPECT_CALL(buffer, do_grow(12)); buffer.append(test, test + 2); EXPECT_EQ('t', buffer[10]); EXPECT_EQ('e', buffer[11]); EXPECT_EQ(12u, buffer.size()); } TEST(BufferTest, AppendAllocatesEnoughStorage) { char data[19]; MockBuffer buffer(data, 10); const char *test = "abcdefgh"; buffer.resize(10); EXPECT_CALL(buffer, do_grow(19)); buffer.append(test, test + 9); } TEST(MemoryBufferTest, Ctor) { MemoryBuffer buffer; EXPECT_EQ(0u, buffer.size()); EXPECT_EQ(123u, buffer.capacity()); } #if FMT_USE_RVALUE_REFERENCES typedef AllocatorRef< std::allocator > TestAllocator; void check_move_buffer(const char *str, MemoryBuffer &buffer) { std::allocator *alloc = buffer.get_allocator().get(); MemoryBuffer buffer2(std::move(buffer)); // Move shouldn't destroy the inline content of the first buffer. EXPECT_EQ(str, std::string(&buffer[0], buffer.size())); EXPECT_EQ(str, std::string(&buffer2[0], buffer2.size())); EXPECT_EQ(5u, buffer2.capacity()); // Move should transfer allocator. EXPECT_EQ(0, buffer.get_allocator().get()); EXPECT_EQ(alloc, buffer2.get_allocator().get()); } TEST(MemoryBufferTest, MoveCtor) { std::allocator alloc; MemoryBuffer buffer((TestAllocator(&alloc))); const char test[] = "test"; buffer.append(test, test + 4); check_move_buffer("test", buffer); // Adding one more character fills the inline buffer, but doesn't cause // dynamic allocation. buffer.push_back('a'); check_move_buffer("testa", buffer); const char *inline_buffer_ptr = &buffer[0]; // Adding one more character causes the content to move from the inline to // a dynamically allocated buffer. buffer.push_back('b'); MemoryBuffer buffer2(std::move(buffer)); // Move should rip the guts of the first buffer. EXPECT_EQ(inline_buffer_ptr, &buffer[0]); EXPECT_EQ("testab", std::string(&buffer2[0], buffer2.size())); EXPECT_GT(buffer2.capacity(), 5u); } void check_move_assign_buffer(const char *str, MemoryBuffer &buffer) { MemoryBuffer buffer2; buffer2 = std::move(buffer); // Move shouldn't destroy the inline content of the first buffer. EXPECT_EQ(str, std::string(&buffer[0], buffer.size())); EXPECT_EQ(str, std::string(&buffer2[0], buffer2.size())); EXPECT_EQ(5u, buffer2.capacity()); } TEST(MemoryBufferTest, MoveAssignment) { MemoryBuffer buffer; const char test[] = "test"; buffer.append(test, test + 4); check_move_assign_buffer("test", buffer); // Adding one more character fills the inline buffer, but doesn't cause // dynamic allocation. buffer.push_back('a'); check_move_assign_buffer("testa", buffer); const char *inline_buffer_ptr = &buffer[0]; // Adding one more character causes the content to move from the inline to // a dynamically allocated buffer. buffer.push_back('b'); MemoryBuffer buffer2; buffer2 = std::move(buffer); // Move should rip the guts of the first buffer. EXPECT_EQ(inline_buffer_ptr, &buffer[0]); EXPECT_EQ("testab", std::string(&buffer2[0], buffer2.size())); EXPECT_GT(buffer2.capacity(), 5u); } #endif // FMT_USE_RVALUE_REFERENCES TEST(MemoryBufferTest, Grow) { typedef AllocatorRef< MockAllocator > Allocator; typedef MemoryBuffer Base; MockAllocator alloc; struct TestMemoryBuffer : Base { TestMemoryBuffer(Allocator alloc) : Base(alloc) {} void grow(std::size_t size) { Base::grow(size); } } buffer((Allocator(&alloc))); buffer.resize(7); using fmt::internal::to_unsigned; for (int i = 0; i < 7; ++i) buffer[to_unsigned(i)] = i * i; EXPECT_EQ(10u, buffer.capacity()); int mem[20]; mem[7] = 0xdead; EXPECT_CALL(alloc, allocate(20)).WillOnce(Return(mem)); buffer.grow(20); EXPECT_EQ(20u, buffer.capacity()); // Check if size elements have been copied for (int i = 0; i < 7; ++i) EXPECT_EQ(i * i, buffer[to_unsigned(i)]); // and no more than that. EXPECT_EQ(0xdead, buffer[7]); EXPECT_CALL(alloc, deallocate(mem, 20)); } TEST(MemoryBufferTest, Allocator) { typedef AllocatorRef< MockAllocator > TestAllocator; MemoryBuffer buffer; EXPECT_EQ(0, buffer.get_allocator().get()); StrictMock< MockAllocator > alloc; char mem; { MemoryBuffer buffer2((TestAllocator(&alloc))); EXPECT_EQ(&alloc, buffer2.get_allocator().get()); std::size_t size = 2 * fmt::internal::INLINE_BUFFER_SIZE; EXPECT_CALL(alloc, allocate(size)).WillOnce(Return(&mem)); buffer2.reserve(size); EXPECT_CALL(alloc, deallocate(&mem, size)); } } TEST(MemoryBufferTest, ExceptionInDeallocate) { typedef AllocatorRef< MockAllocator > TestAllocator; StrictMock< MockAllocator > alloc; MemoryBuffer buffer((TestAllocator(&alloc))); std::size_t size = 2 * fmt::internal::INLINE_BUFFER_SIZE; std::vector mem(size); { EXPECT_CALL(alloc, allocate(size)).WillOnce(Return(&mem[0])); buffer.resize(size); std::fill(&buffer[0], &buffer[0] + size, 'x'); } std::vector mem2(2 * size); { EXPECT_CALL(alloc, allocate(2 * size)).WillOnce(Return(&mem2[0])); std::exception e; EXPECT_CALL(alloc, deallocate(&mem[0], size)).WillOnce(testing::Throw(e)); EXPECT_THROW(buffer.reserve(2 * size), std::exception); EXPECT_EQ(&mem2[0], &buffer[0]); // Check that the data has been copied. for (std::size_t i = 0; i < size; ++i) EXPECT_EQ('x', buffer[i]); } EXPECT_CALL(alloc, deallocate(&mem2[0], 2 * size)); } TEST(UtilTest, Increment) { char s[10] = "123"; increment(s); EXPECT_STREQ("124", s); s[2] = '8'; increment(s); EXPECT_STREQ("129", s); increment(s); EXPECT_STREQ("130", s); s[1] = s[2] = '9'; increment(s); EXPECT_STREQ("200", s); } TEST(UtilTest, FormatArgs) { fmt::args args; EXPECT_FALSE(args[1]); } struct CustomContext { typedef char char_type; bool called; }; void format_value(fmt::writer &, const Test &, CustomContext &ctx) { ctx.called = true; } TEST(UtilTest, MakeValueWithCustomFormatter) { ::Test t; fmt::internal::value arg(t); CustomContext ctx = {false}; fmt::MemoryWriter w; arg.custom.format(w, &t, &ctx); EXPECT_TRUE(ctx.called); } namespace fmt { namespace internal { template bool operator==(CustomValue lhs, CustomValue rhs) { return lhs.value == rhs.value; } } } template struct MockVisitor { // Use a unique result type to make sure that there are no undesirable // conversions. struct Result {}; MockVisitor() { ON_CALL(*this, visit(_)).WillByDefault(Return(Result())); } MOCK_METHOD1_T(visit, Result (T value)); MOCK_METHOD0_T(unexpected, void ()); Result operator()(T value) { return visit(value); } template Result operator()(U value) { unexpected(); return Result(); } }; template struct VisitType { typedef T Type; }; #define VISIT_TYPE(Type_, VisitType_) \ template <> \ struct VisitType { typedef VisitType_ Type; } VISIT_TYPE(signed char, int); VISIT_TYPE(unsigned char, unsigned); VISIT_TYPE(short, int); VISIT_TYPE(unsigned short, unsigned); #if LONG_MAX == INT_MAX VISIT_TYPE(long, int); VISIT_TYPE(unsigned long, unsigned); #else VISIT_TYPE(long, fmt::LongLong); VISIT_TYPE(unsigned long, fmt::ULongLong); #endif VISIT_TYPE(float, double); #define CHECK_ARG_(Char, expected, value) { \ testing::StrictMock> visitor; \ EXPECT_CALL(visitor, visit(expected)); \ fmt::visit(visitor, make_arg>(value)); \ } #define CHECK_ARG(value) { \ typename VisitType::Type expected = value; \ CHECK_ARG_(char, expected, value) \ CHECK_ARG_(wchar_t, expected, value) \ } template class NumericArgTest : public testing::Test {}; typedef ::testing::Types< bool, signed char, unsigned char, signed, unsigned short, int, unsigned, long, unsigned long, fmt::LongLong, fmt::ULongLong, float, double, long double> Types; TYPED_TEST_CASE(NumericArgTest, Types); template typename std::enable_if::value, T>::type test_value() { return static_cast(42); } template typename std::enable_if::value, T>::type test_value() { return static_cast(4.2); } TYPED_TEST(NumericArgTest, MakeAndVisit) { CHECK_ARG(test_value()); CHECK_ARG(std::numeric_limits::min()); CHECK_ARG(std::numeric_limits::max()); } TEST(UtilTest, CharArg) { CHECK_ARG_(char, 'a', 'a'); CHECK_ARG_(wchar_t, L'a', 'a'); CHECK_ARG_(wchar_t, L'a', L'a'); } TEST(UtilTest, StringArg) { char str_data[] = "test"; char *str = str_data; const char *cstr = str; CHECK_ARG_(char, cstr, str); CHECK_ARG_(wchar_t, cstr, str); CHECK_ARG(cstr); StringRef sref(str); CHECK_ARG_(char, sref, std::string(str)); CHECK_ARG_(wchar_t, sref, std::string(str)); CHECK_ARG(sref); } TEST(UtilTest, WStringArg) { wchar_t str_data[] = L"test"; wchar_t *str = str_data; const wchar_t *cstr = str; fmt::WStringRef sref(str); CHECK_ARG_(wchar_t, sref, str); CHECK_ARG_(wchar_t, sref, cstr); CHECK_ARG_(wchar_t, sref, std::wstring(str)); CHECK_ARG_(wchar_t, sref, fmt::WStringRef(str)); } TEST(UtilTest, PointerArg) { void *p = 0; const void *cp = 0; CHECK_ARG_(char, cp, p); CHECK_ARG_(wchar_t, cp, p); CHECK_ARG(cp); } TEST(UtilTest, CustomArg) { ::Test test; typedef MockVisitor> Visitor; testing::StrictMock visitor; EXPECT_CALL(visitor, visit(_)).WillOnce( testing::Invoke([&](fmt::internal::CustomValue custom) { EXPECT_EQ(&test, custom.value); fmt::MemoryWriter w; fmt::context ctx("}", fmt::args()); custom.format(w, &test, &ctx); EXPECT_EQ("test", w.str()); return Visitor::Result(); })); fmt::visit(visitor, make_arg(test)); } TEST(ArgVisitorTest, VisitInvalidArg) { typedef MockVisitor Visitor; testing::StrictMock visitor; EXPECT_CALL(visitor, visit(_)); fmt::basic_arg arg; visit(visitor, arg); } // Tests fmt::internal::count_digits for integer type Int. template void test_count_digits() { for (Int i = 0; i < 10; ++i) EXPECT_EQ(1u, fmt::internal::count_digits(i)); for (Int i = 1, n = 1, end = std::numeric_limits::max() / 10; n <= end; ++i) { n *= 10; EXPECT_EQ(i, fmt::internal::count_digits(n - 1)); EXPECT_EQ(i + 1, fmt::internal::count_digits(n)); } } TEST(UtilTest, StringRef) { // Test that StringRef::size() returns string length, not buffer size. char str[100] = "some string"; EXPECT_EQ(std::strlen(str), StringRef(str).size()); EXPECT_LT(std::strlen(str), sizeof(str)); } // Check StringRef's comparison operator. template