/* Formatting library for C++ Copyright (c) 2012, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Disable useless MSVC warnings. #undef _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS #undef _SCL_SECURE_NO_WARNINGS #define _SCL_SECURE_NO_WARNINGS #include "format.h" #include #include #include #include #include #ifdef _WIN32 # define WIN32_LEAN_AND_MEAN # ifdef __MINGW32__ # include # endif # include # undef ERROR #endif using fmt::ULongLong; #if _MSC_VER # pragma warning(push) # pragma warning(disable: 4127) // conditional expression is constant #endif namespace { #ifndef _MSC_VER inline int SignBit(double value) { // When compiled in C++11 mode signbit is no longer a macro but a function // defined in namespace std and the macro is undefined. #ifdef signbit return signbit(value); #else return std::signbit(value); #endif } inline int IsInf(double x) { #ifdef isinf return isinf(x); #else return std::isinf(x); #endif } #define FMT_SNPRINTF snprintf #else // _MSC_VER inline int SignBit(double value) { if (value < 0) return 1; if (value == value) return 0; int dec = 0, sign = 0; char buffer[2]; // The buffer size must be >= 2 or _ecvt_s will fail. _ecvt_s(buffer, sizeof(buffer), value, 0, &dec, &sign); return sign; } inline int IsInf(double x) { return !_finite(x); } inline int FMT_SNPRINTF(char *buffer, size_t size, const char *format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } #endif // _MSC_VER const char RESET_COLOR[] = "\x1b[0m"; typedef void (*FormatFunc)(fmt::Writer &, int , fmt::StringRef); void ReportError(FormatFunc func, int error_code, fmt::StringRef message) FMT_NOEXCEPT(true) { try { fmt::Writer full_message; func(full_message, error_code, message); // TODO: this may throw? std::fwrite(full_message.c_str(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } catch (...) {} } } // namespace template int fmt::internal::CharTraits::FormatFloat( char *buffer, std::size_t size, const char *format, unsigned width, int precision, T value) { if (width == 0) { return precision < 0 ? FMT_SNPRINTF(buffer, size, format, value) : FMT_SNPRINTF(buffer, size, format, precision, value); } return precision < 0 ? FMT_SNPRINTF(buffer, size, format, width, value) : FMT_SNPRINTF(buffer, size, format, width, precision, value); } template int fmt::internal::CharTraits::FormatFloat( wchar_t *buffer, std::size_t size, const wchar_t *format, unsigned width, int precision, T value) { if (width == 0) { return precision < 0 ? swprintf(buffer, size, format, value) : swprintf(buffer, size, format, precision, value); } return precision < 0 ? swprintf(buffer, size, format, width, value) : swprintf(buffer, size, format, width, precision, value); } const char fmt::internal::DIGITS[] = "0001020304050607080910111213141516171819" "2021222324252627282930313233343536373839" "4041424344454647484950515253545556575859" "6061626364656667686970717273747576777879" "8081828384858687888990919293949596979899"; #define FMT_POWERS_OF_10(factor) \ factor * 10, \ factor * 100, \ factor * 1000, \ factor * 10000, \ factor * 100000, \ factor * 1000000, \ factor * 10000000, \ factor * 100000000, \ factor * 1000000000 const uint32_t fmt::internal::POWERS_OF_10_32[] = {0, FMT_POWERS_OF_10(1)}; const uint64_t fmt::internal::POWERS_OF_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(ULongLong(1000000000)), // Multiply several constants instead of using a single long long constants // to avoid warnings about C++98 not supporting long long. ULongLong(1000000000) * ULongLong(1000000000) * 10 }; void fmt::internal::ReportUnknownType(char code, const char *type) { if (std::isprint(static_cast(code))) { throw fmt::FormatError(fmt::str( fmt::Format("unknown format code '{}' for {}") << code << type)); } throw fmt::FormatError( fmt::str(fmt::Format("unknown format code '\\x{:02x}' for {}") << static_cast(code) << type)); } #ifdef _WIN32 fmt::internal::UTF8ToUTF16::UTF8ToUTF16(fmt::StringRef s) { int length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.c_str(), -1, 0, 0); static const char ERROR[] = "cannot convert string from UTF-8 to UTF-16"; if (length == 0) ThrowWinError(GetLastError(), ERROR); buffer_.resize(length); length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.c_str(), -1, &buffer_[0], length); if (length == 0) ThrowWinError(GetLastError(), ERROR); } fmt::internal::UTF16ToUTF8::UTF16ToUTF8(fmt::WStringRef s) { if (int error_code = Convert(s)) { ThrowWinError(GetLastError(), "cannot convert string from UTF-16 to UTF-8"); } } int fmt::internal::UTF16ToUTF8::Convert(fmt::WStringRef s) { int length = WideCharToMultiByte(CP_UTF8, 0, s.c_str(), -1, 0, 0, 0, 0); if (length == 0) return GetLastError(); buffer_.resize(length); length = WideCharToMultiByte( CP_UTF8, 0, s.c_str(), -1, &buffer_[0], length, 0, 0); if (length == 0) return GetLastError(); return 0; } #endif int fmt::internal::StrError( int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT(true) { assert(buffer != 0 && buffer_size != 0); int result = 0; #ifdef _GNU_SOURCE char *message = strerror_r(error_code, buffer, buffer_size); // If the buffer is full then the message is probably truncated. if (message == buffer && strlen(buffer) == buffer_size - 1) result = ERANGE; buffer = message; #elif _WIN32 # ifdef __MINGW32__ strerror(result); # else result = strerror_s(buffer, buffer_size, error_code); # endif // If the buffer is full then the message is probably truncated. if (result == 0 && std::strlen(buffer) == buffer_size - 1) result = ERANGE; #else result = strerror_r(error_code, buffer, buffer_size); if (result == -1) result = errno; // glibc versions before 2.13 return result in errno. #endif return result; } void fmt::internal::FormatSystemErrorMessage( fmt::Writer &out, int error_code, fmt::StringRef message) { Array buffer; buffer.resize(INLINE_BUFFER_SIZE); char *system_message = 0; for (;;) { system_message = &buffer[0]; int result = StrError(error_code, system_message, buffer.size()); if (result == 0) break; if (result != ERANGE) { // Can't get error message, report error code instead. out << message << ": error code = " << error_code; return; } buffer.resize(buffer.size() * 2); } out << message << ": " << system_message; } #ifdef _WIN32 void fmt::internal::FormatWinErrorMessage( fmt::Writer &out, int error_code, fmt::StringRef message) { class String { private: LPWSTR str_; public: String() : str_() {} ~String() { LocalFree(str_); } LPWSTR *ptr() { return &str_; } LPCWSTR c_str() const { return str_; } }; String system_message; if (FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), reinterpret_cast(system_message.ptr()), 0, 0)) { UTF16ToUTF8 utf8_message; if (!utf8_message.Convert(system_message.c_str())) { out << message << ": " << c_str(utf8_message); return; } } // Can't get error message, report error code instead. out << message << ": error code = " << error_code; } #endif template void fmt::internal::FormatErrorReporter::operator()( const Char *s, fmt::StringRef message) const { for (int n = num_open_braces; *s; ++s) { if (*s == '{') { ++n; } else if (*s == '}') { if (--n == 0) throw fmt::FormatError(message); } } throw fmt::FormatError("unmatched '{' in format"); } // Parses an unsigned integer advancing s to the end of the parsed input. // This function assumes that the first character of s is a digit. template int fmt::internal::ParseNonnegativeInt( const Char *&s, const char *&error) FMT_NOEXCEPT(true) { assert('0' <= *s && *s <= '9'); unsigned value = 0; do { unsigned new_value = value * 10 + (*s++ - '0'); // Check if value wrapped around. value = new_value >= value ? new_value : UINT_MAX; } while ('0' <= *s && *s <= '9'); if (value > INT_MAX) { if (!error) error = "number is too big in format"; return 0; } return value; } template const typename fmt::BasicWriter::ArgInfo fmt::BasicWriter::DUMMY_ARG = {fmt::BasicWriter::INT, 0}; // Fills the padding around the content and returns the pointer to the // content area. template typename fmt::BasicWriter::CharPtr fmt::BasicWriter::FillPadding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill) { std::size_t padding = total_size - content_size; std::size_t left_padding = padding / 2; Char fill_char = static_cast(fill); std::fill_n(buffer, left_padding, fill_char); buffer += left_padding; CharPtr content = buffer; std::fill_n(buffer + content_size, padding - left_padding, fill_char); return content; } template template void fmt::BasicWriter::FormatDouble( T value, const FormatSpec &spec, int precision) { // Check type. char type = spec.type(); bool upper = false; switch (type) { case 0: type = 'g'; break; case 'e': case 'f': case 'g': case 'a': break; case 'F': #ifdef _MSC_VER // MSVC's printf doesn't support 'F'. type = 'f'; #endif // Fall through. case 'E': case 'G': case 'A': upper = true; break; default: internal::ReportUnknownType(type, "double"); break; } char sign = 0; // Use SignBit instead of value < 0 because the latter is always // false for NaN. if (SignBit(static_cast(value))) { sign = '-'; value = -value; } else if (spec.sign_flag()) { sign = spec.plus_flag() ? '+' : ' '; } if (value != value) { // Format NaN ourselves because sprintf's output is not consistent // across platforms. std::size_t size = 4; const char *nan = upper ? " NAN" : " nan"; if (!sign) { --size; ++nan; } CharPtr out = FormatString(nan, size, spec); if (sign) *out = sign; return; } if (IsInf(static_cast(value))) { // Format infinity ourselves because sprintf's output is not consistent // across platforms. std::size_t size = 4; const char *inf = upper ? " INF" : " inf"; if (!sign) { --size; ++inf; } CharPtr out = FormatString(inf, size, spec); if (sign) *out = sign; return; } std::size_t offset = buffer_.size(); unsigned width = spec.width(); if (sign) { buffer_.reserve(buffer_.size() + (std::max)(width, 1u)); if (width > 0) --width; ++offset; } // Build format string. enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg Char format[MAX_FORMAT_SIZE]; Char *format_ptr = format; *format_ptr++ = '%'; unsigned width_for_sprintf = width; if (spec.hash_flag()) *format_ptr++ = '#'; if (spec.align() == ALIGN_CENTER) { width_for_sprintf = 0; } else { if (spec.align() == ALIGN_LEFT) *format_ptr++ = '-'; if (width != 0) *format_ptr++ = '*'; } if (precision >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } if (internal::IsLongDouble::VALUE) *format_ptr++ = 'L'; *format_ptr++ = type; *format_ptr = '\0'; // Format using snprintf. Char fill = static_cast(spec.fill()); for (;;) { std::size_t size = buffer_.capacity() - offset; #if _MSC_VER // MSVC's vsnprintf_s doesn't work with zero size, so reserve // space for at least one extra character to make the size non-zero. // Note that the buffer's capacity will increase by more than 1. if (size == 0) { buffer_.reserve(offset + 1); size = buffer_.capacity() - offset; } #endif Char *start = &buffer_[offset]; int n = internal::CharTraits::FormatFloat( start, size, format, width_for_sprintf, precision, value); if (n >= 0 && offset + n < buffer_.capacity()) { if (sign) { if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) || *start != ' ') { *(start - 1) = sign; sign = 0; } else { *(start - 1) = fill; } ++n; } if (spec.align() == ALIGN_CENTER && spec.width() > static_cast(n)) { unsigned width = spec.width(); CharPtr p = GrowBuffer(width); std::copy(p, p + n, p + (width - n) / 2); FillPadding(p, spec.width(), n, fill); return; } if (spec.fill() != ' ' || sign) { while (*start == ' ') *start++ = fill; if (sign) *(start - 1) = sign; } GrowBuffer(n); return; } // If n is negative we ask to increase the capacity by at least 1, // but as std::vector, the buffer grows exponentially. buffer_.reserve(n >= 0 ? offset + n + 1 : buffer_.capacity() + 1); } } template fmt::ULongLong fmt::BasicWriter::GetIntValue(const ArgInfo &arg) { switch (arg.type) { case INT: return arg.int_value; case UINT: return arg.uint_value; case LONG: return arg.long_value; case ULONG: return arg.ulong_value; case LONG_LONG: return arg.long_long_value; case ULONG_LONG: return arg.ulong_long_value; default: return -1; } } template inline const typename fmt::BasicWriter::ArgInfo &fmt::BasicWriter::FormatParser::ParseArgIndex(const Char *&s) { unsigned arg_index = 0; if (*s < '0' || *s > '9') { if (*s != '}' && *s != ':') report_error_(s, "invalid argument index in format string"); if (next_arg_index_ < 0) { report_error_(s, "cannot switch from manual to automatic argument indexing"); } arg_index = next_arg_index_++; } else { if (next_arg_index_ > 0) { report_error_(s, "cannot switch from automatic to manual argument indexing"); } next_arg_index_ = -1; const char *error = 0; arg_index = internal::ParseNonnegativeInt(s, error); if (error) report_error_(s, error); // TODO } if (arg_index >= num_args_) report_error_(s, "argument index is out of range in format"); return args_[arg_index]; } template void fmt::BasicWriter::FormatParser::CheckSign( const Char *&s, const ArgInfo &arg) { char sign = static_cast(*s); if (arg.type > LAST_NUMERIC_TYPE) { report_error_(s, fmt::Format("format specifier '{}' requires numeric argument") << sign); } if (arg.type == UINT || arg.type == ULONG || arg.type == ULONG_LONG) { report_error_(s, fmt::Format("format specifier '{}' requires signed argument") << sign); } ++s; } template void fmt::BasicWriter::PrintfParser::ParseFlags( FormatSpec &spec, const Char *&s) { for (;;) { switch (*s++) { case '-': spec.align_ = ALIGN_LEFT; break; case '+': spec.flags_ |= SIGN_FLAG | PLUS_FLAG; break; case '0': spec.fill_ = '0'; break; case ' ': spec.flags_ |= SIGN_FLAG; break; case '#': spec.flags_ |= HASH_FLAG; break; default: --s; return; } } } template unsigned fmt::BasicWriter::PrintfParser::ParseHeader( const Char *&s, FormatSpec &spec, const char *&error) { unsigned arg_index = UINT_MAX; Char c = *s; if (c >= '0' && c <= '9') { // Parse an argument index (if followed by '$') or a width possibly // preceded with '0' flag(s). unsigned value = internal::ParseNonnegativeInt(s, error); if (*s == '$') { // value is an argument index ++s; arg_index = value; } else { if (c == '0') spec.fill_ = '0'; if (value != 0) { // Nonzero value means that we parsed width and don't need to // parse it or flags again, so return now. spec.width_ = value; return arg_index; } } } // Parse flags and width. ParseFlags(spec, s); if (*s >= '0' && *s <= '9') { spec.width_ = internal::ParseNonnegativeInt(s, error); } else if (*s == '*') { ++s; const ArgInfo &arg = HandleArgIndex(UINT_MAX, error); if (arg.type <= LAST_INTEGER_TYPE) spec.width_ = GetIntValue(arg); else if (!error) error = "width is not integer"; } return arg_index; } // TODO: move to a base class that doesn't depend on template argument template const typename fmt::BasicWriter::ArgInfo &fmt::BasicWriter::PrintfParser::HandleArgIndex( unsigned arg_index, const char *&error) { if (arg_index != UINT_MAX) { if (next_arg_index_ <= 0) { next_arg_index_ = -1; --arg_index; } else if (!error) { error = "cannot switch from automatic to manual argument indexing"; } } else if (next_arg_index_ >= 0) { arg_index = next_arg_index_++; } else if (!error) { error = "cannot switch from manual to automatic argument indexing"; } if (arg_index < num_args_) return args_[arg_index]; if (!error) error = "argument index is out of range in format"; return DUMMY_ARG; } template void fmt::BasicWriter::PrintfParser::Format( BasicWriter &writer, BasicStringRef format, std::size_t num_args, const ArgInfo *args) { const Char *start = format.c_str(); num_args_ = num_args; args_ = args; next_arg_index_ = 0; const Char *s = start; while (*s) { Char c = *s++; if (c != '%') continue; if (*s == c) { writer.buffer_.append(start, s); start = ++s; continue; } writer.buffer_.append(start, s - 1); FormatSpec spec; spec.align_ = ALIGN_RIGHT; // Reporting errors is delayed till the format specification is // completely parsed. This is done to avoid potentially confusing // error messages for incomplete format strings. For example, in // sprintf("%2$", 42); // the format specification is incomplete. In naive approach we // would parse 2 as an argument index and report an error that the // index is out of range which would be rather confusing if the // use meant "%2d$" rather than "%2$d". If we delay an error, the // user will get an error that the format string is invalid which // is OK for both cases. const char *error = 0; c = *s; const ArgInfo &arg = HandleArgIndex(ParseHeader(s, spec, error), error); if (spec.hash_flag() && GetIntValue(arg) == 0) spec.flags_ &= ~HASH_FLAG; if (spec.fill_ == '0') { if (arg.type <= LAST_NUMERIC_TYPE) spec.align_ = ALIGN_NUMERIC; else spec.fill_ = ' '; // Ignore '0' flag for non-numeric types. } // Parse precision. if (*s == '.') { ++s; if ('0' <= *s && *s <= '9') spec.precision_ = internal::ParseNonnegativeInt(s, error); /*else if (*s == '*') { ++s; ++num_open_braces_; const ArgInfo &precision_arg = ParseArgIndex(s); ULongLong value = 0; switch (precision_arg.type) { case INT: if (precision_arg.int_value < 0) ReportError(s, "negative precision in format"); value = precision_arg.int_value; break; case UINT: value = precision_arg.uint_value; break; case LONG: if (precision_arg.long_value < 0) ReportError(s, "negative precision in format"); value = precision_arg.long_value; break; case ULONG: value = precision_arg.ulong_value; break; case LONG_LONG: if (precision_arg.long_long_value < 0) ReportError(s, "negative precision in format"); value = precision_arg.long_long_value; break; case ULONG_LONG: value = precision_arg.ulong_long_value; break; default: ReportError(s, "precision is not integer"); } if (value > INT_MAX) ReportError(s, "number is too big in format"); precision = static_cast(value); if (*s++ != '}') throw FormatError("unmatched '{' in format"); --num_open_braces_; } else { ReportError(s, "missing precision in format"); } if (arg.type != DOUBLE && arg.type != LONG_DOUBLE) { ReportError(s, "precision specifier requires floating-point argument"); }*/ } // Parse type. if (!*s) throw FormatError("invalid format string"); if (error) throw FormatError(error); spec.type_ = static_cast(*s++); start = s; // Format argument. switch (arg.type) { case INT: writer.FormatInt(arg.int_value, spec); break; case UINT: writer.FormatInt(arg.uint_value, spec); break; case LONG: writer.FormatInt(arg.long_value, spec); break; case ULONG: writer.FormatInt(arg.ulong_value, spec); break; case LONG_LONG: writer.FormatInt(arg.long_long_value, spec); break; case ULONG_LONG: writer.FormatInt(arg.ulong_long_value, spec); break; case DOUBLE: writer.FormatDouble(arg.double_value, spec, spec.precision_); break; case LONG_DOUBLE: writer.FormatDouble(arg.long_double_value, spec, spec.precision_); break; case CHAR: { if (spec.type_ && spec.type_ != 'c') internal::ReportUnknownType(spec.type_, "char"); typedef typename BasicWriter::CharPtr CharPtr; CharPtr out = CharPtr(); if (spec.width_ > 1) { Char fill = static_cast(spec.fill()); out = writer.GrowBuffer(spec.width_); if (spec.align_ == ALIGN_RIGHT) { std::fill_n(out, spec.width_ - 1, fill); out += spec.width_ - 1; } else if (spec.align_ == ALIGN_CENTER) { out = writer.FillPadding(out, spec.width_, 1, fill); } else { std::fill_n(out + 1, spec.width_ - 1, fill); } } else { out = writer.GrowBuffer(1); } *out = static_cast(arg.int_value); break; } case STRING: { if (spec.type_ && spec.type_ != 's') internal::ReportUnknownType(spec.type_, "string"); const Char *str = arg.string.value; std::size_t size = arg.string.size; if (size == 0) { if (!str) throw FormatError("string pointer is null"); if (*str) size = std::char_traits::length(str); } writer.FormatString(str, size, spec); break; } case POINTER: if (spec.type_ && spec.type_ != 'p') internal::ReportUnknownType(spec.type_, "pointer"); spec.flags_= HASH_FLAG; spec.type_ = 'x'; writer.FormatInt(reinterpret_cast(arg.pointer_value), spec); break; case CUSTOM: if (spec.type_) internal::ReportUnknownType(spec.type_, "object"); arg.custom.format(writer, arg.custom.value, spec); break; default: assert(false); break; } } writer.buffer_.append(start, s); } template void fmt::BasicWriter::FormatParser::Format( BasicWriter &writer, BasicStringRef format, std::size_t num_args, const ArgInfo *args) { const char *error = 0; const Char *start = format.c_str(); num_args_ = num_args; args_ = args; next_arg_index_ = 0; const Char *s = start; while (*s) { Char c = *s++; if (c != '{' && c != '}') continue; if (*s == c) { writer.buffer_.append(start, s); start = ++s; continue; } if (c == '}') throw FormatError("unmatched '}' in format"); report_error_.num_open_braces = 1; writer.buffer_.append(start, s - 1); const ArgInfo &arg = ParseArgIndex(s); FormatSpec spec; int precision = -1; if (*s == ':') { ++s; // Parse fill and alignment. if (Char c = *s) { const Char *p = s + 1; spec.align_ = ALIGN_DEFAULT; do { switch (*p) { case '<': spec.align_ = ALIGN_LEFT; break; case '>': spec.align_ = ALIGN_RIGHT; break; case '=': spec.align_ = ALIGN_NUMERIC; break; case '^': spec.align_ = ALIGN_CENTER; break; } if (spec.align_ != ALIGN_DEFAULT) { if (p != s) { if (c == '}') break; if (c == '{') report_error_(s, "invalid fill character '{'"); s += 2; spec.fill_ = c; } else ++s; if (spec.align_ == ALIGN_NUMERIC && arg.type > LAST_NUMERIC_TYPE) report_error_(s, "format specifier '=' requires numeric argument"); break; } } while (--p >= s); } // Parse sign. switch (*s) { case '+': CheckSign(s, arg); spec.flags_ |= SIGN_FLAG | PLUS_FLAG; break; case '-': CheckSign(s, arg); break; case ' ': CheckSign(s, arg); spec.flags_ |= SIGN_FLAG; break; } if (*s == '#') { if (arg.type > LAST_NUMERIC_TYPE) report_error_(s, "format specifier '#' requires numeric argument"); spec.flags_ |= HASH_FLAG; ++s; } // Parse width and zero flag. if ('0' <= *s && *s <= '9') { if (*s == '0') { if (arg.type > LAST_NUMERIC_TYPE) report_error_(s, "format specifier '0' requires numeric argument"); spec.align_ = ALIGN_NUMERIC; spec.fill_ = '0'; } // Zero may be parsed again as a part of the width, but it is simpler // and more efficient than checking if the next char is a digit. spec.width_ = internal::ParseNonnegativeInt(s, error); if (error) report_error_(s, error); } // Parse precision. if (*s == '.') { ++s; precision = 0; if ('0' <= *s && *s <= '9') { precision = internal::ParseNonnegativeInt(s, error); if (error) report_error_(s, error); } else if (*s == '{') { ++s; ++report_error_.num_open_braces; const ArgInfo &precision_arg = ParseArgIndex(s); ULongLong value = 0; switch (precision_arg.type) { case INT: if (precision_arg.int_value < 0) report_error_(s, "negative precision in format"); value = precision_arg.int_value; break; case UINT: value = precision_arg.uint_value; break; case LONG: if (precision_arg.long_value < 0) report_error_(s, "negative precision in format"); value = precision_arg.long_value; break; case ULONG: value = precision_arg.ulong_value; break; case LONG_LONG: if (precision_arg.long_long_value < 0) report_error_(s, "negative precision in format"); value = precision_arg.long_long_value; break; case ULONG_LONG: value = precision_arg.ulong_long_value; break; default: report_error_(s, "precision is not integer"); } if (value > INT_MAX) report_error_(s, "number is too big in format"); precision = static_cast(value); if (*s++ != '}') throw FormatError("unmatched '{' in format"); --report_error_.num_open_braces; } else { report_error_(s, "missing precision in format"); } if (arg.type != DOUBLE && arg.type != LONG_DOUBLE) { report_error_(s, "precision specifier requires floating-point argument"); } } // Parse type. if (*s != '}' && *s) spec.type_ = static_cast(*s++); } if (*s++ != '}') throw FormatError("unmatched '{' in format"); start = s; // Format argument. switch (arg.type) { case INT: writer.FormatInt(arg.int_value, spec); break; case UINT: writer.FormatInt(arg.uint_value, spec); break; case LONG: writer.FormatInt(arg.long_value, spec); break; case ULONG: writer.FormatInt(arg.ulong_value, spec); break; case LONG_LONG: writer.FormatInt(arg.long_long_value, spec); break; case ULONG_LONG: writer.FormatInt(arg.ulong_long_value, spec); break; case DOUBLE: writer.FormatDouble(arg.double_value, spec, precision); break; case LONG_DOUBLE: writer.FormatDouble(arg.long_double_value, spec, precision); break; case CHAR: { if (spec.type_ && spec.type_ != 'c') internal::ReportUnknownType(spec.type_, "char"); typedef typename BasicWriter::CharPtr CharPtr; CharPtr out = CharPtr(); if (spec.width_ > 1) { Char fill = static_cast(spec.fill()); out = writer.GrowBuffer(spec.width_); if (spec.align_ == ALIGN_RIGHT) { std::fill_n(out, spec.width_ - 1, fill); out += spec.width_ - 1; } else if (spec.align_ == ALIGN_CENTER) { out = writer.FillPadding(out, spec.width_, 1, fill); } else { std::fill_n(out + 1, spec.width_ - 1, fill); } } else { out = writer.GrowBuffer(1); } *out = static_cast(arg.int_value); break; } case STRING: { if (spec.type_ && spec.type_ != 's') internal::ReportUnknownType(spec.type_, "string"); const Char *str = arg.string.value; std::size_t size = arg.string.size; if (size == 0) { if (!str) throw FormatError("string pointer is null"); if (*str) size = std::char_traits::length(str); } writer.FormatString(str, size, spec); break; } case POINTER: if (spec.type_ && spec.type_ != 'p') internal::ReportUnknownType(spec.type_, "pointer"); spec.flags_= HASH_FLAG; spec.type_ = 'x'; writer.FormatInt(reinterpret_cast(arg.pointer_value), spec); break; case CUSTOM: if (spec.type_) internal::ReportUnknownType(spec.type_, "object"); arg.custom.format(writer, arg.custom.value, spec); break; default: assert(false); break; } } writer.buffer_.append(start, s); } void fmt::SystemErrorSink::operator()(const fmt::Writer &w) const { Writer message; internal::FormatSystemErrorMessage(message, error_code_, w.c_str()); throw SystemError(message.c_str(), error_code_); } void fmt::ReportSystemError( int error_code, fmt::StringRef message) FMT_NOEXCEPT(true) { // FIXME: FormatSystemErrorMessage may throw ReportError(internal::FormatSystemErrorMessage, error_code, message); } #ifdef _WIN32 void fmt::WinErrorSink::operator()(const Writer &w) const { Writer message; internal::FormatWinErrorMessage(message, error_code_, w.c_str()); throw SystemError(message.c_str(), error_code_); } void fmt::ReportWinError( int error_code, fmt::StringRef message) FMT_NOEXCEPT(true) { // FIXME: FormatWinErrorMessage may throw ReportError(internal::FormatWinErrorMessage, error_code, message); } #endif void fmt::ANSITerminalSink::operator()( const fmt::BasicWriter &w) const { char escape[] = "\x1b[30m"; escape[3] = '0' + static_cast(color_); std::fputs(escape, file_); std::fwrite(w.data(), 1, w.size(), file_); std::fputs(RESET_COLOR, file_); } // Explicit instantiations for char. template fmt::BasicWriter::CharPtr fmt::BasicWriter::FillPadding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill); template void fmt::BasicWriter::FormatParser::Format( BasicWriter &writer, BasicStringRef format, std::size_t num_args, const ArgInfo *args); template void fmt::BasicWriter::PrintfParser::Format( BasicWriter &writer, BasicStringRef format, std::size_t num_args, const ArgInfo *args); // Explicit instantiations for wchar_t. template fmt::BasicWriter::CharPtr fmt::BasicWriter::FillPadding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill); template void fmt::BasicWriter::FormatParser::Format( BasicWriter &writer, BasicStringRef format, std::size_t num_args, const ArgInfo *args); template void fmt::BasicWriter::PrintfParser::Format( BasicWriter &writer, BasicStringRef format, std::size_t num_args, const ArgInfo *args); #if _MSC_VER # pragma warning(pop) #endif