diff --git a/include/fmt/format-inl.h b/include/fmt/format-inl.h index e4039e52..b30b52e7 100644 --- a/include/fmt/format-inl.h +++ b/include/fmt/format-inl.h @@ -1629,48 +1629,6 @@ struct fixed_handler { } }; -// The shortest representation digit handler. -struct grisu_shortest_handler { - char* buf; - int size; - // Distance between scaled value and upper bound (wp_W in Grisu3). - uint64_t diff; - - digits::result on_start(uint64_t, uint64_t, uint64_t, int&) { - return digits::more; - } - - // Decrement the generated number approaching value from above. - void round(uint64_t d, uint64_t divisor, uint64_t& remainder, - uint64_t error) { - while ( - remainder < d && error - remainder >= divisor && - (remainder + divisor < d || d - remainder >= remainder + divisor - d)) { - --buf[size - 1]; - remainder += divisor; - } - } - - // Implements Grisu's round_weed. - digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder, - uint64_t error, int exp, bool integral) { - buf[size++] = digit; - if (remainder >= error) return digits::more; - uint64_t unit = integral ? 1 : data::powers_of_10_64[-exp]; - uint64_t up = (diff - 1) * unit; // wp_Wup - round(up, divisor, remainder, error); - uint64_t down = (diff + 1) * unit; // wp_Wdown - if (remainder < down && error - remainder >= divisor && - (remainder + divisor < down || - down - remainder > remainder + divisor - down)) { - return digits::error; - } - return 2 * unit <= remainder && remainder <= error - 4 * unit - ? digits::done - : digits::error; - } -}; - // Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox. namespace dragonbox { // Computes 128-bit result of multiplication of two 64-bit unsigned integers. @@ -1827,27 +1785,17 @@ bool check_divisibility_and_divide_by_pow5(uint32_t& n) FMT_NOEXCEPT { return result; } -// Computes floor(n / 10^N) for small n and N -// Precondition: n <= 10^(N+1) -template struct small_division_by_pow10_info; - -template <> struct small_division_by_pow10_info<1> { - static const uint32_t magic_number = 0xcccd; - static const int shift_amount = 19; - static const int divisor_times_10 = 100; -}; - -template <> struct small_division_by_pow10_info<2> { - static const uint32_t magic_number = 0xa3d8; - static const int shift_amount = 22; - static const int divisor_times_10 = 1000; -}; - +// Computes floor(n / pow(10, N)) for small n and N. +// Precondition: n <= pow(10, N + 1). template uint32_t small_division_by_pow10(uint32_t n) FMT_NOEXCEPT { - FMT_ASSERT(n <= small_division_by_pow10_info::divisor_times_10, - "n is too large"); - return (n * small_division_by_pow10_info::magic_number) >> - small_division_by_pow10_info::shift_amount; + static constexpr struct { + uint32_t magic_number; + int shift_amount; + int divisor_times_10; + } infos[] = {{0xcccd, 19, 100}, {0xa3d8, 22, 1000}}; + constexpr auto info = infos[N - 1]; + FMT_ASSERT(n <= info.divisor_times_10, "n is too large"); + return n * info.magic_number >> info.shift_amount; } // Computes floor(n / 10^(kappa + 1)) (float) @@ -2026,38 +1974,25 @@ bool is_left_endpoint_integer_shorter_interval(int exponent) FMT_NOEXCEPT { template bool is_endpoint_integer(typename float_info::carrier_uint two_f, int exponent, int minus_k) FMT_NOEXCEPT { - if (exponent < float_info::case_fc_pm_half_lower_threshold) { - return false; - } - // For k >= 0 - else if (exponent <= float_info::case_fc_pm_half_upper_threshold) { - return true; - } - // For k < 0 - else if (exponent > float_info::divisibility_check_by_5_threshold) { - return false; - } else { - return divisible_by_power_of_5(two_f, minus_k); - } + if (exponent < float_info::case_fc_pm_half_lower_threshold) return false; + // For k >= 0. + if (exponent <= float_info::case_fc_pm_half_upper_threshold) return true; + // For k < 0. + if (exponent > float_info::divisibility_check_by_5_threshold) return false; + return divisible_by_power_of_5(two_f, minus_k); } template bool is_center_integer(typename float_info::carrier_uint two_f, int exponent, int minus_k) FMT_NOEXCEPT { - // Exponent for 5 is negative - if (exponent > float_info::divisibility_check_by_5_threshold) { - return false; - } else if (exponent > float_info::case_fc_upper_threshold) { + // Exponent for 5 is negative. + if (exponent > float_info::divisibility_check_by_5_threshold) return false; + if (exponent > float_info::case_fc_upper_threshold) return divisible_by_power_of_5(two_f, minus_k); - } - // Both exponents are nonnegative - else if (exponent >= float_info::case_fc_lower_threshold) { - return true; - } - // Exponent for 2 is negative - else { - return divisible_by_power_of_2(two_f, minus_k - exponent + 1); - } + // Both exponents are nonnegative. + if (exponent >= float_info::case_fc_lower_threshold) return true; + // Exponent for 2 is negative. + return divisible_by_power_of_2(two_f, minus_k - exponent + 1); } // Remove trailing zeros from n and return the number of zeros removed (float) @@ -2067,9 +2002,8 @@ FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT { #else int t = ctz(n); #endif - if (t > float_info::max_trailing_zeros) { + if (t > float_info::max_trailing_zeros) t = float_info::max_trailing_zeros; - } const uint32_t mod_inv1 = 0xcccccccd; const uint32_t max_quotient1 = 0x33333333; @@ -2078,9 +2012,7 @@ FMT_ALWAYS_INLINE int remove_trailing_zeros(uint32_t& n) FMT_NOEXCEPT { int s = 0; for (; s < t - 1; s += 2) { - if (n * mod_inv2 > max_quotient2) { - break; - } + if (n * mod_inv2 > max_quotient2) break; n *= mod_inv2; } if (s < t && n * mod_inv1 <= max_quotient1) { @@ -2098,9 +2030,8 @@ FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT { #else int t = ctzll(n); #endif - if (t > float_info::max_trailing_zeros) { + if (t > float_info::max_trailing_zeros) t = float_info::max_trailing_zeros; - } // Divide by 10^8 and reduce to 32-bits // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17, // both of the quotient and the r should fit in 32-bits @@ -2119,9 +2050,7 @@ FMT_ALWAYS_INLINE int remove_trailing_zeros(uint64_t& n) FMT_NOEXCEPT { int s = 8; for (; s < t; ++s) { - if (quotient * mod_inv1 > max_quotient1) { - break; - } + if (quotient * mod_inv1 > max_quotient1) break; quotient *= mod_inv1; } quotient >>= (s - 8); @@ -2198,9 +2127,7 @@ FMT_ALWAYS_INLINE FMT_SAFEBUFFERS decimal_fp shorter_interval_case( cache, beta_minus_1); // If the left endpoint is not an integer, increase it - if (!is_left_endpoint_integer_shorter_interval(exponent)) { - ++xi; - } + if (!is_left_endpoint_integer_shorter_interval(exponent)) ++xi; // Try bigger divisor ret_value.significand = zi / 10; @@ -2258,9 +2185,7 @@ FMT_SAFEBUFFERS decimal_fp to_decimal(T x) FMT_NOEXCEPT { (static_cast(1) << float_info::significand_bits); } else { // Subnormal case; the interval is always regular. - if (significand == 0) { - return decimal_fp{0, 0}; - } + if (significand == 0) return {0, 0}; exponent = float_info::min_exponent - float_info::significand_bits; }