diff --git a/include/fmt/format-inl.h b/include/fmt/format-inl.h index d2c68548..733a3d9d 100644 --- a/include/fmt/format-inl.h +++ b/include/fmt/format-inl.h @@ -1835,115 +1835,86 @@ bool is_left_endpoint_integer_shorter_interval(int exponent) noexcept { // Remove trailing zeros from n and return the number of zeros removed (float) FMT_INLINE int remove_trailing_zeros(uint32_t& n) noexcept { -#ifdef FMT_BUILTIN_CTZ - int t = FMT_BUILTIN_CTZ(n); -#else - int t = ctz(n); -#endif - if (t > float_info::max_trailing_zeros) - t = float_info::max_trailing_zeros; - - const uint32_t mod_inv1 = 0xcccccccd; - const uint32_t max_quotient1 = 0x33333333; - const uint32_t mod_inv2 = 0xc28f5c29; - const uint32_t max_quotient2 = 0x0a3d70a3; + FMT_ASSERT(n != 0, ""); + const uint32_t mod_inv_5 = 0xcccccccd; + const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5; int s = 0; - for (; s < t - 1; s += 2) { - if (n * mod_inv2 > max_quotient2) break; - n *= mod_inv2; + while (true) { + auto q = rotr(n * mod_inv_25, 2); + if (q <= std::numeric_limits::max() / 100) { + n = q; + s += 2; + } else { + break; + } } - if (s < t && n * mod_inv1 <= max_quotient1) { - n *= mod_inv1; - ++s; + auto q = rotr(n * mod_inv_5, 1); + if (q <= std::numeric_limits::max() / 10) { + n = q; + s |= 1; } - n >>= s; + return s; } // Removes trailing zeros and returns the number of zeros removed (double) FMT_INLINE int remove_trailing_zeros(uint64_t& n) noexcept { -#ifdef FMT_BUILTIN_CTZLL - int t = FMT_BUILTIN_CTZLL(n); -#else - int t = ctzll(n); -#endif - if (t > float_info::max_trailing_zeros) - t = float_info::max_trailing_zeros; - // Divide by 10^8 and reduce to 32-bits - // Since ret_value.significand <= (2^64 - 1) / 1000 < 10^17, - // both of the quotient and the r should fit in 32-bits + FMT_ASSERT(n != 0, ""); - const uint32_t mod_inv1 = 0xcccccccd; - const uint32_t max_quotient1 = 0x33333333; - const uint64_t mod_inv8 = 0xc767074b22e90e21; - const uint64_t max_quotient8 = 0x00002af31dc46118; + // This magic number is ceil(2^90 / 10^8). + constexpr auto magic_number = uint64_t(12379400392853802749ull); + auto nm = umul128(n, magic_number); - // If the number is divisible by 1'0000'0000, work with the quotient - if (t >= 8) { - auto quotient_candidate = n * mod_inv8; + // Is n is divisible by 10^8? + if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) { + // If yes, work with the quotient. + auto n32 = static_cast(nm.high() >> (90 - 64)); - if (quotient_candidate <= max_quotient8) { - auto quotient = static_cast(quotient_candidate >> 8); + const uint32_t mod_inv_5 = 0xcccccccd; + const uint32_t mod_inv_25 = mod_inv_5 * mod_inv_5; - int s = 8; - for (; s < t; ++s) { - if (quotient * mod_inv1 > max_quotient1) break; - quotient *= mod_inv1; + int s = 8; + while (true) { + auto q = rotr(n32 * mod_inv_25, 2); + if (q <= std::numeric_limits::max() / 100) { + n32 = q; + s += 2; + } else { + break; } - quotient >>= (s - 8); - n = quotient; - return s; + } + auto q = rotr(n32 * mod_inv_5, 1); + if (q <= std::numeric_limits::max() / 10) { + n32 = q; + s |= 1; + } + + n = n32; + return s; + } + + // If n is not divisible by 10^8, work with n itself. + const uint64_t mod_inv_5 = 0xcccccccc'cccccccd; + const uint64_t mod_inv_25 = mod_inv_5 * mod_inv_5; + + int s = 0; + while (true) { + auto q = rotr(n * mod_inv_25, 2); + if (q <= std::numeric_limits::max() / 100) { + n = q; + s += 2; + } else { + break; } } - - // Otherwise, work with the remainder - auto quotient = static_cast(n / 100000000); - auto remainder = static_cast(n - 100000000 * quotient); - - if (t == 0 || remainder * mod_inv1 > max_quotient1) { - return 0; + auto q = rotr(n * mod_inv_5, 1); + if (q <= std::numeric_limits::max() / 10) { + n = q; + s |= 1; } - remainder *= mod_inv1; - if (t == 1 || remainder * mod_inv1 > max_quotient1) { - n = (remainder >> 1) + quotient * 10000000ull; - return 1; - } - remainder *= mod_inv1; - - if (t == 2 || remainder * mod_inv1 > max_quotient1) { - n = (remainder >> 2) + quotient * 1000000ull; - return 2; - } - remainder *= mod_inv1; - - if (t == 3 || remainder * mod_inv1 > max_quotient1) { - n = (remainder >> 3) + quotient * 100000ull; - return 3; - } - remainder *= mod_inv1; - - if (t == 4 || remainder * mod_inv1 > max_quotient1) { - n = (remainder >> 4) + quotient * 10000ull; - return 4; - } - remainder *= mod_inv1; - - if (t == 5 || remainder * mod_inv1 > max_quotient1) { - n = (remainder >> 5) + quotient * 1000ull; - return 5; - } - remainder *= mod_inv1; - - if (t == 6 || remainder * mod_inv1 > max_quotient1) { - n = (remainder >> 6) + quotient * 100ull; - return 6; - } - remainder *= mod_inv1; - - n = (remainder >> 7) + quotient * 10ull; - return 7; + return s; } // The main algorithm for shorter interval case