Michael Maltese d10d09ccc1 VideoCommon: rework anamorphic widescreen heuristic
Some widescreen hacks (see below) properly force anamorphic output, but
don't make the last projection in a frame 16:9, so Dolphin doesn't
display it correctly.

This changes the heuristic code to assume a frame is anamorphic based on
the total number of vertex flushes in 4:3 and 16:9 projections that
frame. It also adds a bit of "aspect ratio inertia" by making it harder
to switch aspect ratios, which takes care of aspect ratio flickering
that some games / widescreen hacks would be susceptible with the new
logic.

I've tested this on SSX Tricky's native anamorphic support, Tom Clancy's
Splinter Cell (it stayed in 4:3 the whole time), and on the following
widescreen hacks for which the heuristic doesn't currently work:

Paper Mario: The Thousand-Year Door (Gecko widescreen code from Nintendont)
C202F310 00000003
3DC08042 3DE03FD8
91EEF6D8 4E800020
60000000 00000000
04199598 4E800020
C200F500 00000004
3DE08082 3DC0402B
61CE12A2 91CFA1BC
60000000 387D015C
60000000 00000000
C200F508 00000004
3DE08082 3DC04063
61CEE8D3 91CFA1BC
60000000 7FC3F378
60000000 00000000

The Simpsons: Hit & Run (AR widescreen code from the wiki)
04004600 C002A604
04004604 C09F0014
04004608 FC002040
0400460C 4082000C
04004610 C002A608
04004614 EC630032
04004618 48220508
04041A5C 38600001
04224344 C002A60C
04224B1C 4BDDFAE4
044786B0 3FAAAAAB
04479F28 3FA33333
2017-04-05 17:23:16 -07:00

225 lines
8.0 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#pragma once
#include <condition_variable>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <tuple>
#include <vector>
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/Flag.h"
#include "Common/MathUtil.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/VideoCommon.h"
class PostProcessingShaderImplementation;
enum class EFBAccessType;
struct EfbPokeData
{
u16 x, y;
u32 data;
};
// TODO: Move these out of here.
extern int frameCount;
extern int OSDChoice;
// Renderer really isn't a very good name for this class - it's more like "Misc".
// The long term goal is to get rid of this class and replace it with others that make
// more sense.
class Renderer
{
public:
Renderer(int backbuffer_width, int backbuffer_height);
virtual ~Renderer();
enum PixelPerfQuery
{
PP_ZCOMP_INPUT_ZCOMPLOC,
PP_ZCOMP_OUTPUT_ZCOMPLOC,
PP_ZCOMP_INPUT,
PP_ZCOMP_OUTPUT,
PP_BLEND_INPUT,
PP_EFB_COPY_CLOCKS
};
virtual void SetColorMask() {}
virtual void SetBlendMode(bool forceUpdate) {}
virtual void SetScissorRect(const EFBRectangle& rc) {}
virtual void SetGenerationMode() {}
virtual void SetDepthMode() {}
virtual void SetLogicOpMode() {}
virtual void SetDitherMode() {}
virtual void SetSamplerState(int stage, int texindex, bool custom_tex) {}
virtual void SetInterlacingMode() {}
virtual void SetViewport() {}
virtual void SetFullscreen(bool enable_fullscreen) {}
virtual bool IsFullscreen() const { return false; }
virtual void ApplyState() {}
virtual void RestoreState() {}
virtual void ResetAPIState() {}
virtual void RestoreAPIState() {}
// Ideal internal resolution - determined by display resolution (automatic scaling) and/or a
// multiple of the native EFB resolution
int GetTargetWidth() { return m_target_width; }
int GetTargetHeight() { return m_target_height; }
// Display resolution
int GetBackbufferWidth() { return m_backbuffer_width; }
int GetBackbufferHeight() { return m_backbuffer_height; }
void SetWindowSize(int width, int height);
// EFB coordinate conversion functions
// Use this to convert a whole native EFB rect to backbuffer coordinates
virtual TargetRectangle ConvertEFBRectangle(const EFBRectangle& rc) = 0;
const TargetRectangle& GetTargetRectangle() { return m_target_rectangle; }
float CalculateDrawAspectRatio(int target_width, int target_height);
std::tuple<float, float> ScaleToDisplayAspectRatio(int width, int height);
TargetRectangle CalculateFrameDumpDrawRectangle();
void UpdateDrawRectangle();
// Use this to convert a single target rectangle to two stereo rectangles
void ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc,
TargetRectangle& rightRc);
// Use this to upscale native EFB coordinates to IDEAL internal resolution
int EFBToScaledX(int x);
int EFBToScaledY(int y);
// Floating point versions of the above - only use them if really necessary
float EFBToScaledXf(float x) { return x * ((float)GetTargetWidth() / (float)EFB_WIDTH); }
float EFBToScaledYf(float y) { return y * ((float)GetTargetHeight() / (float)EFB_HEIGHT); }
// Random utilities
void SaveScreenshot(const std::string& filename, bool wait_for_completion);
void DrawDebugText();
virtual void RenderText(const std::string& text, int left, int top, u32 color) = 0;
virtual void ClearScreen(const EFBRectangle& rc, bool colorEnable, bool alphaEnable, bool zEnable,
u32 color, u32 z) = 0;
virtual void ReinterpretPixelData(unsigned int convtype) = 0;
void RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma = 1.0f);
virtual u32 AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data) = 0;
virtual void PokeEFB(EFBAccessType type, const EfbPokeData* points, size_t num_points) = 0;
virtual u16 BBoxRead(int index) = 0;
virtual void BBoxWrite(int index, u16 value) = 0;
// Finish up the current frame, print some stats
void Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, u64 ticks,
float Gamma = 1.0f);
virtual void SwapImpl(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight,
const EFBRectangle& rc, u64 ticks, float Gamma = 1.0f) = 0;
PEControl::PixelFormat GetPrevPixelFormat() { return m_prev_efb_format; }
void StorePixelFormat(PEControl::PixelFormat new_format) { m_prev_efb_format = new_format; }
PostProcessingShaderImplementation* GetPostProcessor() { return m_post_processor.get(); }
// Final surface changing
// This is called when the surface is resized (WX) or the window changes (Android).
virtual void ChangeSurface(void* new_surface_handle) {}
bool UseVertexDepthRange() const;
protected:
void CalculateTargetScale(int x, int y, int* scaledX, int* scaledY);
bool CalculateTargetSize();
void CheckFifoRecording();
void RecordVideoMemory();
bool IsFrameDumping();
void DumpFrameData(const u8* data, int w, int h, int stride, const AVIDump::Frame& state,
bool swap_upside_down = false);
void FinishFrameData();
Common::Flag m_screenshot_request;
Common::Event m_screenshot_completed;
std::mutex m_screenshot_lock;
std::string m_screenshot_name;
bool m_aspect_wide = false;
// The framebuffer size
int m_target_width = 0;
int m_target_height = 0;
// TODO: Add functionality to reinit all the render targets when the window is resized.
int m_backbuffer_width = 0;
int m_backbuffer_height = 0;
int m_last_efb_scale = 0;
TargetRectangle m_target_rectangle = {};
bool m_xfb_written = false;
FPSCounter m_fps_counter;
std::unique_ptr<PostProcessingShaderImplementation> m_post_processor;
static const float GX_MAX_DEPTH;
Common::Flag m_surface_needs_change;
Common::Event m_surface_changed;
void* m_new_surface_handle = nullptr;
private:
void RunFrameDumps();
void ShutdownFrameDumping();
PEControl::PixelFormat m_prev_efb_format = PEControl::INVALID_FMT;
unsigned int m_efb_scale_numeratorX = 1;
unsigned int m_efb_scale_numeratorY = 1;
unsigned int m_efb_scale_denominatorX = 1;
unsigned int m_efb_scale_denominatorY = 1;
// These will be set on the first call to SetWindowSize.
int m_last_window_request_width = 0;
int m_last_window_request_height = 0;
// frame dumping
std::thread m_frame_dump_thread;
Common::Event m_frame_dump_start;
Common::Event m_frame_dump_done;
Common::Flag m_frame_dump_thread_running;
u32 m_frame_dump_image_counter = 0;
bool m_frame_dump_frame_running = false;
struct FrameDumpConfig
{
const u8* data;
int width;
int height;
int stride;
bool upside_down;
AVIDump::Frame state;
} m_frame_dump_config;
// NOTE: The methods below are called on the framedumping thread.
bool StartFrameDumpToAVI(const FrameDumpConfig& config);
void DumpFrameToAVI(const FrameDumpConfig& config);
void StopFrameDumpToAVI();
std::string GetFrameDumpNextImageFileName() const;
bool StartFrameDumpToImage(const FrameDumpConfig& config);
void DumpFrameToImage(const FrameDumpConfig& config);
};
extern std::unique_ptr<Renderer> g_renderer;