dolphin/Externals/ffmpeg/include/libavutil/mathematics.h
2017-02-28 12:29:45 -05:00

243 lines
7.8 KiB
C

/*
* copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* @addtogroup lavu_math
* Mathematical utilities for working with timestamp and time base.
*/
#ifndef AVUTIL_MATHEMATICS_H
#define AVUTIL_MATHEMATICS_H
#include <stdint.h>
#include <math.h>
#include "attributes.h"
#include "rational.h"
#include "intfloat.h"
#ifndef M_E
#define M_E 2.7182818284590452354 /* e */
#endif
#ifndef M_LN2
#define M_LN2 0.69314718055994530942 /* log_e 2 */
#endif
#ifndef M_LN10
#define M_LN10 2.30258509299404568402 /* log_e 10 */
#endif
#ifndef M_LOG2_10
#define M_LOG2_10 3.32192809488736234787 /* log_2 10 */
#endif
#ifndef M_PHI
#define M_PHI 1.61803398874989484820 /* phi / golden ratio */
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#endif
#ifndef M_SQRT1_2
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
#endif
#ifndef M_SQRT2
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#endif
#ifndef NAN
#define NAN av_int2float(0x7fc00000)
#endif
#ifndef INFINITY
#define INFINITY av_int2float(0x7f800000)
#endif
/**
* @addtogroup lavu_math
*
* @{
*/
/**
* Rounding methods.
*/
enum AVRounding {
AV_ROUND_ZERO = 0, ///< Round toward zero.
AV_ROUND_INF = 1, ///< Round away from zero.
AV_ROUND_DOWN = 2, ///< Round toward -infinity.
AV_ROUND_UP = 3, ///< Round toward +infinity.
AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero.
/**
* Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through
* unchanged, avoiding special cases for #AV_NOPTS_VALUE.
*
* Unlike other values of the enumeration AVRounding, this value is a
* bitmask that must be used in conjunction with another value of the
* enumeration through a bitwise OR, in order to set behavior for normal
* cases.
*
* @code{.c}
* av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
* // Rescaling 3:
* // Calculating 3 * 1 / 2
* // 3 / 2 is rounded up to 2
* // => 2
*
* av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
* // Rescaling AV_NOPTS_VALUE:
* // AV_NOPTS_VALUE == INT64_MIN
* // AV_NOPTS_VALUE is passed through
* // => AV_NOPTS_VALUE
* @endcode
*/
AV_ROUND_PASS_MINMAX = 8192,
};
/**
* Compute the greatest common divisor of two integer operands.
*
* @param a,b Operands
* @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0;
* if a == 0 and b == 0, returns 0.
*/
int64_t av_const av_gcd(int64_t a, int64_t b);
/**
* Rescale a 64-bit integer with rounding to nearest.
*
* The operation is mathematically equivalent to `a * b / c`, but writing that
* directly can overflow.
*
* This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF.
*
* @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd()
*/
int64_t av_rescale(int64_t a, int64_t b, int64_t c) av_const;
/**
* Rescale a 64-bit integer with specified rounding.
*
* The operation is mathematically equivalent to `a * b / c`, but writing that
* directly can overflow, and does not support different rounding methods.
*
* @see av_rescale(), av_rescale_q(), av_rescale_q_rnd()
*/
int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd) av_const;
/**
* Rescale a 64-bit integer by 2 rational numbers.
*
* The operation is mathematically equivalent to `a * bq / cq`.
*
* This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF.
*
* @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd()
*/
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) av_const;
/**
* Rescale a 64-bit integer by 2 rational numbers with specified rounding.
*
* The operation is mathematically equivalent to `a * bq / cq`.
*
* @see av_rescale(), av_rescale_rnd(), av_rescale_q()
*/
int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
enum AVRounding rnd) av_const;
/**
* Compare two timestamps each in its own time base.
*
* @return One of the following values:
* - -1 if `ts_a` is before `ts_b`
* - 1 if `ts_a` is after `ts_b`
* - 0 if they represent the same position
*
* @warning
* The result of the function is undefined if one of the timestamps is outside
* the `int64_t` range when represented in the other's timebase.
*/
int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b);
/**
* Compare the remainders of two integer operands divided by a common divisor.
*
* In other words, compare the least significant `log2(mod)` bits of integers
* `a` and `b`.
*
* @code{.c}
* av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10 (0x1) < 0x02 % 0x10 (0x2)
* av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02)
* @endcode
*
* @param a,b Operands
* @param mod Divisor; must be a power of 2
* @return
* - a negative value if `a % mod < b % mod`
* - a positive value if `a % mod > b % mod`
* - zero if `a % mod == b % mod`
*/
int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod);
/**
* Rescale a timestamp while preserving known durations.
*
* This function is designed to be called per audio packet to scale the input
* timestamp to a different time base. Compared to a simple av_rescale_q()
* call, this function is robust against possible inconsistent frame durations.
*
* The `last` parameter is a state variable that must be preserved for all
* subsequent calls for the same stream. For the first call, `*last` should be
* initialized to #AV_NOPTS_VALUE.
*
* @param[in] in_tb Input time base
* @param[in] in_ts Input timestamp
* @param[in] fs_tb Duration time base; typically this is finer-grained
* (greater) than `in_tb` and `out_tb`
* @param[in] duration Duration till the next call to this function (i.e.
* duration of the current packet/frame)
* @param[in,out] last Pointer to a timestamp expressed in terms of
* `fs_tb`, acting as a state variable
* @param[in] out_tb Output timebase
* @return Timestamp expressed in terms of `out_tb`
*
* @note In the context of this function, "duration" is in term of samples, not
* seconds.
*/
int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb);
/**
* Add a value to a timestamp.
*
* This function guarantees that when the same value is repeatly added that
* no accumulation of rounding errors occurs.
*
* @param[in] ts Input timestamp
* @param[in] ts_tb Input timestamp time base
* @param[in] inc Value to be added
* @param[in] inc_tb Time base of `inc`
*/
int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc);
/**
* @}
*/
#endif /* AVUTIL_MATHEMATICS_H */