dolphin/Source/Core/VideoCommon/VertexLoaderManager.cpp
2015-02-14 02:30:05 +01:00

273 lines
7.3 KiB
C++

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include <algorithm>
#include <memory>
#include <mutex>
#include <unordered_map>
#include <utility>
#include <vector>
#include "Common/CommonFuncs.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/IndexGenerator.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexLoaderBase.h"
#include "VideoCommon/VertexLoaderManager.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoCommon.h"
namespace VertexLoaderManager
{
typedef std::unordered_map<PortableVertexDeclaration, std::unique_ptr<NativeVertexFormat>> NativeVertexFormatMap;
static NativeVertexFormatMap s_native_vertex_map;
static NativeVertexFormat* s_current_vtx_fmt;
typedef std::unordered_map<VertexLoaderUID, std::unique_ptr<VertexLoaderBase>> VertexLoaderMap;
static std::mutex s_vertex_loader_map_lock;
static VertexLoaderMap s_vertex_loader_map;
// TODO - change into array of pointers. Keep a map of all seen so far.
void Init()
{
MarkAllDirty();
for (auto& map_entry : g_main_cp_state.vertex_loaders)
map_entry = nullptr;
for (auto& map_entry : g_preprocess_cp_state.vertex_loaders)
map_entry = nullptr;
RecomputeCachedArraybases();
SETSTAT(stats.numVertexLoaders, 0);
}
void Shutdown()
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
s_vertex_loader_map.clear();
s_native_vertex_map.clear();
}
namespace
{
struct entry
{
std::string text;
u64 num_verts;
bool operator < (const entry &other) const
{
return num_verts > other.num_verts;
}
};
}
void AppendListToString(std::string *dest)
{
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
std::vector<entry> entries;
size_t total_size = 0;
for (const auto& map_entry : s_vertex_loader_map)
{
entry e;
map_entry.second->AppendToString(&e.text);
e.num_verts = map_entry.second->m_numLoadedVertices;
entries.push_back(e);
total_size += e.text.size() + 1;
}
sort(entries.begin(), entries.end());
dest->reserve(dest->size() + total_size);
for (const entry& entry : entries)
{
dest->append(entry.text);
}
}
void MarkAllDirty()
{
g_main_cp_state.attr_dirty = BitSet32::AllTrue(8);
g_preprocess_cp_state.attr_dirty = BitSet32::AllTrue(8);
}
static VertexLoaderBase* RefreshLoader(int vtx_attr_group, bool preprocess = false)
{
CPState* state = preprocess ? &g_preprocess_cp_state : &g_main_cp_state;
VertexLoaderBase* loader;
if (state->attr_dirty[vtx_attr_group])
{
// We are not allowed to create a native vertex format on preprocessing as this is on the wrong thread
bool check_for_native_format = !preprocess;
VertexLoaderUID uid(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
std::lock_guard<std::mutex> lk(s_vertex_loader_map_lock);
VertexLoaderMap::iterator iter = s_vertex_loader_map.find(uid);
if (iter != s_vertex_loader_map.end())
{
loader = iter->second.get();
check_for_native_format &= !loader->m_native_vertex_format;
}
else
{
loader = VertexLoaderBase::CreateVertexLoader(state->vtx_desc, state->vtx_attr[vtx_attr_group]);
s_vertex_loader_map[uid] = std::unique_ptr<VertexLoaderBase>(loader);
INCSTAT(stats.numVertexLoaders);
}
if (check_for_native_format)
{
// search for a cached native vertex format
const PortableVertexDeclaration& format = loader->m_native_vtx_decl;
std::unique_ptr<NativeVertexFormat>& native = s_native_vertex_map[format];
if (!native)
{
native.reset(g_vertex_manager->CreateNativeVertexFormat());
native->Initialize(format);
native->m_components = loader->m_native_components;
}
loader->m_native_vertex_format = native.get();
}
state->vertex_loaders[vtx_attr_group] = loader;
state->attr_dirty[vtx_attr_group] = false;
} else {
loader = state->vertex_loaders[vtx_attr_group];
}
return loader;
}
int RunVertices(int vtx_attr_group, int primitive, int count, DataReader src, bool skip_drawing, bool is_preprocess)
{
if (!count)
return 0;
VertexLoaderBase* loader = RefreshLoader(vtx_attr_group, is_preprocess);
int size = count * loader->m_VertexSize;
if ((int)src.size() < size)
return -1;
if (skip_drawing || is_preprocess)
return size;
// If the native vertex format changed, force a flush.
if (loader->m_native_vertex_format != s_current_vtx_fmt)
VertexManager::Flush();
s_current_vtx_fmt = loader->m_native_vertex_format;
// if cull mode is CULL_ALL, tell VertexManager to skip triangles and quads.
// They still need to go through vertex loading, because we need to calculate a zfreeze refrence slope.
bool cullall = (bpmem.genMode.cullmode == GenMode::CULL_ALL && primitive < 5);
DataReader dst = VertexManager::PrepareForAdditionalData(primitive, count,
loader->m_native_vtx_decl.stride, cullall);
count = loader->RunVertices(primitive, count, src, dst);
IndexGenerator::AddIndices(primitive, count);
VertexManager::FlushData(count, loader->m_native_vtx_decl.stride);
ADDSTAT(stats.thisFrame.numPrims, count);
INCSTAT(stats.thisFrame.numPrimitiveJoins);
return size;
}
NativeVertexFormat* GetCurrentVertexFormat()
{
return s_current_vtx_fmt;
}
} // namespace
void LoadCPReg(u32 sub_cmd, u32 value, bool is_preprocess)
{
bool update_global_state = !is_preprocess;
CPState* state = is_preprocess ? &g_preprocess_cp_state : &g_main_cp_state;
switch (sub_cmd & 0xF0)
{
case 0x30:
if (update_global_state)
VertexShaderManager::SetTexMatrixChangedA(value);
break;
case 0x40:
if (update_global_state)
VertexShaderManager::SetTexMatrixChangedB(value);
break;
case 0x50:
state->vtx_desc.Hex &= ~0x1FFFF; // keep the Upper bits
state->vtx_desc.Hex |= value;
state->attr_dirty = BitSet32::AllTrue(8);
break;
case 0x60:
state->vtx_desc.Hex &= 0x1FFFF; // keep the lower 17Bits
state->vtx_desc.Hex |= (u64)value << 17;
state->attr_dirty = BitSet32::AllTrue(8);
break;
case 0x70:
_assert_((sub_cmd & 0x0F) < 8);
state->vtx_attr[sub_cmd & 7].g0.Hex = value;
state->attr_dirty[sub_cmd & 7] = true;
break;
case 0x80:
_assert_((sub_cmd & 0x0F) < 8);
state->vtx_attr[sub_cmd & 7].g1.Hex = value;
state->attr_dirty[sub_cmd & 7] = true;
break;
case 0x90:
_assert_((sub_cmd & 0x0F) < 8);
state->vtx_attr[sub_cmd & 7].g2.Hex = value;
state->attr_dirty[sub_cmd & 7] = true;
break;
// Pointers to vertex arrays in GC RAM
case 0xA0:
state->array_bases[sub_cmd & 0xF] = value;
if (update_global_state)
cached_arraybases[sub_cmd & 0xF] = Memory::GetPointer(value);
break;
case 0xB0:
state->array_strides[sub_cmd & 0xF] = value & 0xFF;
break;
}
}
void FillCPMemoryArray(u32 *memory)
{
memory[0x30] = g_main_cp_state.matrix_index_a.Hex;
memory[0x40] = g_main_cp_state.matrix_index_b.Hex;
memory[0x50] = (u32)g_main_cp_state.vtx_desc.Hex;
memory[0x60] = (u32)(g_main_cp_state.vtx_desc.Hex >> 17);
for (int i = 0; i < 8; ++i)
{
memory[0x70 + i] = g_main_cp_state.vtx_attr[i].g0.Hex;
memory[0x80 + i] = g_main_cp_state.vtx_attr[i].g1.Hex;
memory[0x90 + i] = g_main_cp_state.vtx_attr[i].g2.Hex;
}
for (int i = 0; i < 16; ++i)
{
memory[0xA0 + i] = g_main_cp_state.array_bases[i];
memory[0xB0 + i] = g_main_cp_state.array_strides[i];
}
}
void RecomputeCachedArraybases()
{
for (int i = 0; i < 16; i++)
{
cached_arraybases[i] = Memory::GetPointer(g_main_cp_state.array_bases[i]);
}
}