// Copyright (C) 2003-2009 Dolphin Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official SVN repository and contact information can be found at // http://code.google.com/p/dolphin-emu/ #include #include "Common.h" #include "MathUtil.h" #include namespace { static u32 saved_sse_state = _mm_getcsr(); static const u32 default_sse_state = _mm_getcsr(); } namespace MathUtil { int ClassifyDouble(double dvalue) { // TODO: Optimize the below to be as fast as possible. IntDouble value; value.d = dvalue; // 5 bits (C, <, >, =, ?) // easy cases first if (value.i == 0) { // positive zero return 0x2; } else if (value.i == 0x8000000000000000ULL) { // negative zero return 0x12; } else if (value.i == 0x7FF0000000000000ULL) { // positive inf return 0x5; } else if (value.i == 0xFFF0000000000000ULL) { // negative inf return 0x9; } else { // OK let's dissect this thing. int sign = value.i >> 63; int exp = (int)((value.i >> 52) & 0x7FF); if (exp >= 1 && exp <= 2046) { // Nice normalized number. if (sign) { return 0x8; // negative } else { return 0x4; // positive } } u64 mantissa = value.i & 0x000FFFFFFFFFFFFFULL; if (exp == 0 && mantissa) { // Denormalized number. if (sign) { return 0x18; } else { return 0x14; } } else if (exp == 0x7FF && mantissa /* && mantissa_top*/) { return 0x11; // Quiet NAN } } return 0x4; } int ClassifyFloat(float fvalue) { // TODO: Optimize the below to be as fast as possible. IntFloat value; value.f = fvalue; // 5 bits (C, <, >, =, ?) // easy cases first if (value.i == 0) { // positive zero return 0x2; } else if (value.i == 0x80000000) { // negative zero return 0x12; } else if (value.i == 0x7F800000) { // positive inf return 0x5; } else if (value.i == 0xFF800000) { // negative inf return 0x9; } else { // OK let's dissect this thing. int sign = value.i >> 31; int exp = (int)((value.i >> 23) & 0xFF); if (exp >= 1 && exp <= 254) { // Nice normalized number. if (sign) { return 0x8; // negative } else { return 0x4; // positive } } u64 mantissa = value.i & 0x007FFFFF; if (exp == 0 && mantissa) { // Denormalized number. if (sign) { return 0x18; } else { return 0x14; } } else if (exp == 0xFF && mantissa /* && mantissa_top*/) { return 0x11; // Quiet NAN } } return 0x4; } } // namespace void LoadDefaultSSEState() { _mm_setcsr(default_sse_state); } void LoadSSEState() { _mm_setcsr(saved_sse_state); } void SaveSSEState() { saved_sse_state = _mm_getcsr(); } inline void MatrixMul(int n, const float *a, const float *b, float *result) { for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { float temp = 0; for (int k = 0; k < n; ++k) { temp += a[i * n + k] * b[k * n + j]; } result[i * n + j] = temp; } } } // Calculate sum of a float list float MathFloatVectorSum(std::vector Vec) { float Sum = 0.0; for(unsigned i = 0; i < Vec.size(); i++) { Sum += Vec.at(i); } return Sum; } void Matrix33::LoadIdentity(Matrix33 &mtx) { memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1.0f; mtx.data[4] = 1.0f; mtx.data[8] = 1.0f; } void Matrix33::RotateX(Matrix33 &mtx, float rad) { float s = sin(rad); float c = cos(rad); memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1; mtx.data[4] = c; mtx.data[5] = -s; mtx.data[7] = s; mtx.data[8] = c; } void Matrix33::RotateY(Matrix33 &mtx, float rad) { float s = sin(rad); float c = cos(rad); memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = c; mtx.data[2] = s; mtx.data[4] = 1; mtx.data[6] = -s; mtx.data[8] = c; } void Matrix33::Multiply(const Matrix33 &a, const Matrix33 &b, Matrix33 &result) { MatrixMul(3, a.data, b.data, result.data); } void Matrix33::Multiply(const Matrix33 &a, const float vec[3], float result[3]) { for (int i = 0; i < 3; ++i) { result[i] = 0; for (int k = 0; k < 3; ++k) { result[i] += a.data[i * 3 + k] * vec[k]; } } } void Matrix44::LoadIdentity(Matrix44 &mtx) { memset(mtx.data, 0, sizeof(mtx.data)); mtx.data[0] = 1.0f; mtx.data[5] = 1.0f; mtx.data[10] = 1.0f; mtx.data[15] = 1.0f; } void Matrix44::LoadMatrix33(Matrix44 &mtx, const Matrix33 &m33) { for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { mtx.data[i * 4 + j] = m33.data[i * 3 + j]; } } for (int i = 0; i < 3; ++i) { mtx.data[i * 4 + 3] = 0; mtx.data[i + 12] = 0; } mtx.data[15] = 1.0f; } void Matrix44::Set(Matrix44 &mtx, const float mtxArray[16]) { for(int i = 0; i < 16; ++i) { mtx.data[i] = mtxArray[i]; } } void Matrix44::Translate(Matrix44 &mtx, const float vec[3]) { LoadIdentity(mtx); mtx.data[3] = vec[0]; mtx.data[7] = vec[1]; mtx.data[11] = vec[2]; } void Matrix44::Multiply(const Matrix44 &a, const Matrix44 &b, Matrix44 &result) { MatrixMul(4, a.data, b.data, result.data); }