On master, when polling the 1st in-game controller, Dolphin would poll all the 1st local controllers. With the 1st commit, each client waits its turn, which would dramatically increase the lag.
Now with this commit, it even polls all local controllers at once, so it should have even less latency than master in a few setups. Like one player with 3 controllers and the 2nd one with just one controller.
This fixes issues with setups like:
Player 1 uses port 1 and player 2 uses port 3, or
player 1 uses port 2 and player 2 uses port 3, so nobody uses port 1
EndPlayInput runs on the CPU thread so it can't directly call
UpdateWantDeterminism. PlayController also tries to ChangeDisc
from the CPU Thread which is also invalid. It now just pauses
execution and posts a request to the Host to fix it instead.
The Core itself also did dodgy things like PauseAndLock-ing
from the CPU Thread and SetState from EmuThread which have been
removed.
Fix Frame Advance and FifoPlayer pause/unpause/stop.
CPU::EnableStepping is not atomic but is called from multiple threads
which races and leaves the system in a random state; also instruction
stepping was unstable, m_StepEvent had an almost random value because
of the dual purpose it served which could cause races where CPU::Run
would SingleStep when it was supposed to be sleeping.
FifoPlayer never FinishStateMove()d which was causing it to deadlock.
Rather than partially reimplementing CPU::Run, just use CPUCoreBase
and then call CPU::Run(). More DRY and less likely to have weird bugs
specific to the player (i.e the previous freezing on pause/stop).
Refactor PowerPC::state into CPU since it manages the state of the
CPU Thread which is controlled by CPU, not PowerPC. This simplifies
the architecture somewhat and eliminates races that can be caused by
calling PowerPC state functions directly instead of using CPU's
(because they bypassed the EnableStepping lock).
Scheduling an event for zero cycles in the future actually means zero
cycles with new timing changes, but the code for IPC ACKs was depending on
it meaning "soon".
Fixes#9511.
I'm not at all confident this is actually right... but it seems to work.
Call the appropriate rumble function for each SI Device, Should fix#9331.
Ideally we wouldn’t have to do this, but since the way things are wired,
fixing the root cause it out of the picture for now.
If the game sent a command to a disconnected controller, the
wii u adapter code would return a diffrent response.
This simply deletes the speclized version of RunBuffer for the
wii-u adapter as the only diffrence was the code which detected
disconnected controllers and returned a error.
VideoInterface::Preset was not initializing all registers, this is a problem
because it leaks register settings across games. Xenoblade Chronicles does
not like m_DisplayControlRegister having random bit patterns in it.
During boot of Other M, there is momentarily a period when VICallback's
cycles late is larger than GetTicksPerHalfLine(). Because
GetTicksPerHalfLine() returns a u32 and c++'s weird type promotion rules,
cycleslate gets promoted from a s32 to a u32 and the result of the
substraction is a really large u32.
Before ScheduleEvent accuracy improvements, ScheduleEvent took a s32, so
the result got cast back to the small negitave we expect. But it now takes
a s64 and the u32 to s64 conversion gives us a really large number (around
two seconds) and Other M times out while waiting for something.
Now that the accuracy of ScheduleEvent has changed, 0 cycles will
schedule an event as soon as possible. But this breaks ATV 2.
So we schedule it 100 cycles out (unless it's a really short copy)
The NES games on the Zelda Collecters Edition disk use a XFB which is
only 256 pixels wide, but has a stide of 640 pixels.
This fits our definition of a interlaced xfb, as a second line of data
could fit in the extra space. The solution is to check that we are
actually in a interlaced video mode before activating the force
progressive hack.
Reading uninitalized memory is non-deterministic. We used to only
clear the memory when using EmulatedBS2_GC or FifoPlayer, but we
now do it during Memory::Init instead so it always gets done.
Previously the default queryed the controller 4500 times a second,
Wasn't really a problem for most games as they set it to a sane
value. But fifoplayer didn't, and so in my profile dolphin spends
12% of the cpu time reading the controllers.
This new default value (I just took what the gamecube bios set)
drops that to 1.2% of cpu time and increase the framerate of the
silent hill fifo by 10-12%
This is the only way to get Wiimotes working under Android now.
This, just like the Wii U Gamecube Controller Adapter, completely goes around Android's limitations and talks with the device directly through USBManager.
Couple notes.
Continuous scanning must be enabled otherwise the Wiimotes won't be seen.
The UI doesn't expose support for this yet. One must change the Wiimote source and continuous scanning settings manually.
Testing up to two wiimotes in Taiko No Tatsujin, no reason to believe all four won't work.
This also has the added benefit of not crashing under most circumstances.
Includes a few other changes, including replacing the atomic<bool> with a
Flag, as well as adding a flag for indicating read thread shutdown.
Remote devices would always enter an error path and get disconnected
from the gamecube, breaking netplay in the process.
Culprit is still InGamePadToLocalPad
if it was used in netplay, it would read memory out of bounds
(due to the mapping method returning 4 if the device was remote) which
was 0 more often than not, causing the device in this position to be a konga.
(which may or not be the gcadapter due to the swap between local and
ingame controllers)