Merge pull request #9710 from JosJuice/volatile-begone

Remove all remaining volatile qualifiers
This commit is contained in:
Mai M 2021-05-20 10:20:22 -04:00 committed by GitHub
commit 8b81481920
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 229 additions and 178 deletions

View File

@ -32,11 +32,6 @@
#include "Common/Inline.h" #include "Common/Inline.h"
#include "Common/Logging/Log.h" #include "Common/Logging/Log.h"
// XXX: Replace this with std::is_trivially_copyable<T> once we stop using volatile
// on things that are put in savestates, as volatile types are not trivially copyable.
template <typename T>
constexpr bool IsTriviallyCopyable = std::is_trivially_copyable<std::remove_volatile_t<T>>::value;
// Wrapper class // Wrapper class
class PointerWrap class PointerWrap
{ {
@ -181,13 +176,13 @@ public:
DoArray(x.data(), static_cast<u32>(x.size())); DoArray(x.data(), static_cast<u32>(x.size()));
} }
template <typename T, typename std::enable_if_t<IsTriviallyCopyable<T>, int> = 0> template <typename T, typename std::enable_if_t<std::is_trivially_copyable_v<T>, int> = 0>
void DoArray(T* x, u32 count) void DoArray(T* x, u32 count)
{ {
DoVoid(x, count * sizeof(T)); DoVoid(x, count * sizeof(T));
} }
template <typename T, typename std::enable_if_t<!IsTriviallyCopyable<T>, int> = 0> template <typename T, typename std::enable_if_t<!std::is_trivially_copyable_v<T>, int> = 0>
void DoArray(T* x, u32 count) void DoArray(T* x, u32 count)
{ {
for (u32 i = 0; i < count; ++i) for (u32 i = 0; i < count; ++i)
@ -230,7 +225,7 @@ public:
template <typename T> template <typename T>
void Do(T& x) void Do(T& x)
{ {
static_assert(IsTriviallyCopyable<T>, "Only sane for trivially copyable types"); static_assert(std::is_trivially_copyable_v<T>, "Only sane for trivially copyable types");
// Note: // Note:
// Usually we can just use x = **ptr, etc. However, this doesn't work // Usually we can just use x = **ptr, etc. However, this doesn't work
// for unions containing BitFields (long story, stupid language rules) // for unions containing BitFields (long story, stupid language rules)

View File

@ -101,20 +101,10 @@ ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask)
return new DirectHandlingMethod<T>(const_cast<T*>(addr), mask); return new DirectHandlingMethod<T>(const_cast<T*>(addr), mask);
} }
template <typename T> template <typename T>
ReadHandlingMethod<T>* DirectRead(volatile const T* addr, u32 mask)
{
return new DirectHandlingMethod<T>((T*)addr, mask);
}
template <typename T>
WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask) WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask)
{ {
return new DirectHandlingMethod<T>(addr, mask); return new DirectHandlingMethod<T>(addr, mask);
} }
template <typename T>
WriteHandlingMethod<T>* DirectWrite(volatile T* addr, u32 mask)
{
return new DirectHandlingMethod<T>((T*)addr, mask);
}
// Complex: holds a lambda that is called when a read or a write is executed. // Complex: holds a lambda that is called when a read or a write is executed.
// This gives complete control to the user as to what is going to happen during // This gives complete control to the user as to what is going to happen during

View File

@ -46,11 +46,7 @@ WriteHandlingMethod<T>* Nop();
template <typename T> template <typename T>
ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask = 0xFFFFFFFF); ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask = 0xFFFFFFFF);
template <typename T> template <typename T>
ReadHandlingMethod<T>* DirectRead(volatile const T* addr, u32 mask = 0xFFFFFFFF);
template <typename T>
WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask = 0xFFFFFFFF); WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask = 0xFFFFFFFF);
template <typename T>
WriteHandlingMethod<T>* DirectWrite(volatile T* addr, u32 mask = 0xFFFFFFFF);
// Complex: use when no other handling method fits your needs. These allow you // Complex: use when no other handling method fits your needs. These allow you
// to directly provide a function that will be called when a read/write needs // to directly provide a function that will be called when a read/write needs
@ -204,9 +200,7 @@ private:
MaybeExtern template ReadHandlingMethod<T>* Constant<T>(T value); \ MaybeExtern template ReadHandlingMethod<T>* Constant<T>(T value); \
MaybeExtern template WriteHandlingMethod<T>* Nop<T>(); \ MaybeExtern template WriteHandlingMethod<T>* Nop<T>(); \
MaybeExtern template ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask); \ MaybeExtern template ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask); \
MaybeExtern template ReadHandlingMethod<T>* DirectRead(volatile const T* addr, u32 mask); \
MaybeExtern template WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask); \ MaybeExtern template WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask); \
MaybeExtern template WriteHandlingMethod<T>* DirectWrite(volatile T* addr, u32 mask); \
MaybeExtern template ReadHandlingMethod<T>* ComplexRead<T>(std::function<T(u32)>); \ MaybeExtern template ReadHandlingMethod<T>* ComplexRead<T>(std::function<T(u32)>); \
MaybeExtern template WriteHandlingMethod<T>* ComplexWrite<T>(std::function<void(u32, T)>); \ MaybeExtern template WriteHandlingMethod<T>* ComplexWrite<T>(std::function<void(u32, T)>); \
MaybeExtern template ReadHandlingMethod<T>* InvalidRead<T>(); \ MaybeExtern template ReadHandlingMethod<T>* InvalidRead<T>(); \

View File

@ -27,11 +27,13 @@ PerfQuery::~PerfQuery() = default;
void PerfQuery::EnableQuery(PerfQueryGroup type) void PerfQuery::EnableQuery(PerfQueryGroup type)
{ {
const u32 query_count = m_query_count.load(std::memory_order_relaxed);
// Is this sane? // Is this sane?
if (m_query_count > m_query_buffer.size() / 2) if (query_count > m_query_buffer.size() / 2)
WeakFlush(); WeakFlush();
if (m_query_buffer.size() == m_query_count) if (m_query_buffer.size() == query_count)
{ {
// TODO // TODO
FlushOne(); FlushOne();
@ -41,12 +43,12 @@ void PerfQuery::EnableQuery(PerfQueryGroup type)
// start query // start query
if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP) if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP)
{ {
auto& entry = m_query_buffer[(m_query_read_pos + m_query_count) % m_query_buffer.size()]; auto& entry = m_query_buffer[(m_query_read_pos + query_count) % m_query_buffer.size()];
D3D::context->Begin(entry.query.Get()); D3D::context->Begin(entry.query.Get());
entry.query_type = type; entry.query_type = type;
++m_query_count; m_query_count.fetch_add(1, std::memory_order_relaxed);
} }
} }
@ -55,7 +57,8 @@ void PerfQuery::DisableQuery(PerfQueryGroup type)
// stop query // stop query
if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP) if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP)
{ {
auto& entry = m_query_buffer[(m_query_read_pos + m_query_count + m_query_buffer.size() - 1) % auto& entry = m_query_buffer[(m_query_read_pos + m_query_count.load(std::memory_order_relaxed) +
m_query_buffer.size() - 1) %
m_query_buffer.size()]; m_query_buffer.size()];
D3D::context->End(entry.query.Get()); D3D::context->End(entry.query.Get());
} }
@ -63,8 +66,9 @@ void PerfQuery::DisableQuery(PerfQueryGroup type)
void PerfQuery::ResetQuery() void PerfQuery::ResetQuery()
{ {
m_query_count = 0; m_query_count.store(0, std::memory_order_relaxed);
std::fill(std::begin(m_results), std::end(m_results), 0); for (size_t i = 0; i < m_results.size(); ++i)
m_results[i].store(0, std::memory_order_relaxed);
} }
u32 PerfQuery::GetQueryResult(PerfQueryType type) u32 PerfQuery::GetQueryResult(PerfQueryType type)
@ -72,13 +76,22 @@ u32 PerfQuery::GetQueryResult(PerfQueryType type)
u32 result = 0; u32 result = 0;
if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC) if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC)
result = m_results[PQG_ZCOMP_ZCOMPLOC]; {
result = m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
}
else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT) else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT)
result = m_results[PQG_ZCOMP]; {
result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed);
}
else if (type == PQ_BLEND_INPUT) else if (type == PQ_BLEND_INPUT)
result = m_results[PQG_ZCOMP] + m_results[PQG_ZCOMP_ZCOMPLOC]; {
result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed) +
m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
}
else if (type == PQ_EFB_COPY_CLOCKS) else if (type == PQ_EFB_COPY_CLOCKS)
result = m_results[PQG_EFB_COPY_CLOCKS]; {
result = m_results[PQG_EFB_COPY_CLOCKS].load(std::memory_order_relaxed);
}
return result; return result;
} }
@ -98,11 +111,13 @@ void PerfQuery::FlushOne()
// NOTE: Reported pixel metrics should be referenced to native resolution // NOTE: Reported pixel metrics should be referenced to native resolution
// TODO: Dropping the lower 2 bits from this count should be closer to actual // TODO: Dropping the lower 2 bits from this count should be closer to actual
// hardware behavior when drawing triangles. // hardware behavior when drawing triangles.
m_results[entry.query_type] += (u32)(result * EFB_WIDTH / g_renderer->GetTargetWidth() * const u64 native_res_result = result * EFB_WIDTH / g_renderer->GetTargetWidth() * EFB_HEIGHT /
EFB_HEIGHT / g_renderer->GetTargetHeight()); g_renderer->GetTargetHeight();
m_results[entry.query_type].fetch_add(static_cast<u32>(native_res_result),
std::memory_order_relaxed);
m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size(); m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size();
--m_query_count; m_query_count.fetch_sub(1, std::memory_order_relaxed);
} }
// TODO: could selectively flush things, but I don't think that will do much // TODO: could selectively flush things, but I don't think that will do much
@ -125,11 +140,13 @@ void PerfQuery::WeakFlush()
if (hr == S_OK) if (hr == S_OK)
{ {
// NOTE: Reported pixel metrics should be referenced to native resolution // NOTE: Reported pixel metrics should be referenced to native resolution
m_results[entry.query_type] += (u32)(result * EFB_WIDTH / g_renderer->GetTargetWidth() * const u64 native_res_result = result * EFB_WIDTH / g_renderer->GetTargetWidth() * EFB_HEIGHT /
EFB_HEIGHT / g_renderer->GetTargetHeight()); g_renderer->GetTargetHeight();
m_results[entry.query_type].store(static_cast<u32>(native_res_result),
std::memory_order_relaxed);
m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size(); m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size();
--m_query_count; m_query_count.fetch_sub(1, std::memory_order_relaxed);
} }
else else
{ {
@ -140,7 +157,7 @@ void PerfQuery::WeakFlush()
bool PerfQuery::IsFlushed() const bool PerfQuery::IsFlushed() const
{ {
return 0 == m_query_count; return m_query_count.load(std::memory_order_relaxed) == 0;
} }
} // namespace DX11 } // namespace DX11

View File

@ -52,10 +52,11 @@ void PerfQuery::EnableQuery(PerfQueryGroup type)
{ {
// Block if there are no free slots. // Block if there are no free slots.
// Otherwise, try to keep half of them available. // Otherwise, try to keep half of them available.
if (m_query_count > m_query_buffer.size() / 2) const u32 query_count = m_query_count.load(std::memory_order_relaxed);
if (query_count > m_query_buffer.size() / 2)
{ {
const bool do_resolve = m_unresolved_queries > m_query_buffer.size() / 2; const bool do_resolve = m_unresolved_queries > m_query_buffer.size() / 2;
const bool blocking = m_query_count == PERF_QUERY_BUFFER_SIZE; const bool blocking = query_count == PERF_QUERY_BUFFER_SIZE;
PartialFlush(do_resolve, blocking); PartialFlush(do_resolve, blocking);
} }
@ -83,19 +84,20 @@ void PerfQuery::DisableQuery(PerfQueryGroup type)
g_dx_context->GetCommandList()->EndQuery(m_query_heap.Get(), D3D12_QUERY_TYPE_OCCLUSION, g_dx_context->GetCommandList()->EndQuery(m_query_heap.Get(), D3D12_QUERY_TYPE_OCCLUSION,
m_query_next_pos); m_query_next_pos);
m_query_next_pos = (m_query_next_pos + 1) % PERF_QUERY_BUFFER_SIZE; m_query_next_pos = (m_query_next_pos + 1) % PERF_QUERY_BUFFER_SIZE;
m_query_count++; m_query_count.fetch_add(1, std::memory_order_relaxed);
m_unresolved_queries++; m_unresolved_queries++;
} }
} }
void PerfQuery::ResetQuery() void PerfQuery::ResetQuery()
{ {
m_query_count = 0; m_query_count.store(0, std::memory_order_relaxed);
m_unresolved_queries = 0; m_unresolved_queries = 0;
m_query_resolve_pos = 0; m_query_resolve_pos = 0;
m_query_readback_pos = 0; m_query_readback_pos = 0;
m_query_next_pos = 0; m_query_next_pos = 0;
std::fill(std::begin(m_results), std::end(m_results), 0); for (size_t i = 0; i < m_results.size(); ++i)
m_results[i].store(0, std::memory_order_relaxed);
for (auto& entry : m_query_buffer) for (auto& entry : m_query_buffer)
{ {
entry.fence_value = 0; entry.fence_value = 0;
@ -108,13 +110,22 @@ u32 PerfQuery::GetQueryResult(PerfQueryType type)
{ {
u32 result = 0; u32 result = 0;
if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC) if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC)
result = m_results[PQG_ZCOMP_ZCOMPLOC]; {
result = m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
}
else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT) else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT)
result = m_results[PQG_ZCOMP]; {
result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed);
}
else if (type == PQ_BLEND_INPUT) else if (type == PQ_BLEND_INPUT)
result = m_results[PQG_ZCOMP] + m_results[PQG_ZCOMP_ZCOMPLOC]; {
result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed) +
m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
}
else if (type == PQ_EFB_COPY_CLOCKS) else if (type == PQ_EFB_COPY_CLOCKS)
result = m_results[PQG_EFB_COPY_CLOCKS]; {
result = m_results[PQG_EFB_COPY_CLOCKS].load(std::memory_order_relaxed);
}
return result / 4; return result / 4;
} }
@ -127,7 +138,7 @@ void PerfQuery::FlushResults()
bool PerfQuery::IsFlushed() const bool PerfQuery::IsFlushed() const
{ {
return m_query_count == 0; return m_query_count.load(std::memory_order_relaxed) == 0;
} }
void PerfQuery::ResolveQueries() void PerfQuery::ResolveQueries()
@ -165,7 +176,7 @@ void PerfQuery::ReadbackQueries(bool blocking)
u64 completed_fence_counter = g_dx_context->GetCompletedFenceValue(); u64 completed_fence_counter = g_dx_context->GetCompletedFenceValue();
// Need to save these since ProcessResults will modify them. // Need to save these since ProcessResults will modify them.
const u32 outstanding_queries = m_query_count; const u32 outstanding_queries = m_query_count.load(std::memory_order_relaxed);
u32 readback_count = 0; u32 readback_count = 0;
for (u32 i = 0; i < outstanding_queries; i++) for (u32 i = 0; i < outstanding_queries; i++)
{ {
@ -203,7 +214,7 @@ void PerfQuery::ReadbackQueries(bool blocking)
void PerfQuery::AccumulateQueriesFromBuffer(u32 query_count) void PerfQuery::AccumulateQueriesFromBuffer(u32 query_count)
{ {
// Should be at maximum query_count queries pending. // Should be at maximum query_count queries pending.
ASSERT(query_count <= m_query_count && ASSERT(query_count <= m_query_count.load(std::memory_order_relaxed) &&
(m_query_readback_pos + query_count) <= PERF_QUERY_BUFFER_SIZE); (m_query_readback_pos + query_count) <= PERF_QUERY_BUFFER_SIZE);
const D3D12_RANGE read_range = {m_query_readback_pos * sizeof(PerfQueryDataType), const D3D12_RANGE read_range = {m_query_readback_pos * sizeof(PerfQueryDataType),
@ -231,16 +242,18 @@ void PerfQuery::AccumulateQueriesFromBuffer(u32 query_count)
std::memcpy(&result, mapped_ptr + (index * sizeof(PerfQueryDataType)), sizeof(result)); std::memcpy(&result, mapped_ptr + (index * sizeof(PerfQueryDataType)), sizeof(result));
// NOTE: Reported pixel metrics should be referenced to native resolution // NOTE: Reported pixel metrics should be referenced to native resolution
m_results[entry.query_type] += const u64 native_res_result = static_cast<u64>(result) * EFB_WIDTH /
static_cast<u32>(static_cast<u64>(result) * EFB_WIDTH / g_renderer->GetTargetWidth() * g_renderer->GetTargetWidth() * EFB_HEIGHT /
EFB_HEIGHT / g_renderer->GetTargetHeight()); g_renderer->GetTargetHeight();
m_results[entry.query_type].fetch_add(static_cast<u32>(native_res_result),
std::memory_order_relaxed);
} }
constexpr D3D12_RANGE write_range = {0, 0}; constexpr D3D12_RANGE write_range = {0, 0};
m_query_readback_buffer->Unmap(0, &write_range); m_query_readback_buffer->Unmap(0, &write_range);
m_query_readback_pos = (m_query_readback_pos + query_count) % PERF_QUERY_BUFFER_SIZE; m_query_readback_pos = (m_query_readback_pos + query_count) % PERF_QUERY_BUFFER_SIZE;
m_query_count -= query_count; m_query_count.fetch_sub(query_count, std::memory_order_relaxed);
} }
void PerfQuery::PartialFlush(bool resolve, bool blocking) void PerfQuery::PartialFlush(bool resolve, bool blocking)

View File

@ -43,7 +43,7 @@ void PerfQuery::DisableQuery(PerfQueryGroup type)
bool PerfQuery::IsFlushed() const bool PerfQuery::IsFlushed() const
{ {
return 0 == m_query_count; return m_query_count.load(std::memory_order_relaxed) == 0;
} }
// TODO: could selectively flush things, but I don't think that will do much // TODO: could selectively flush things, but I don't think that will do much
@ -54,8 +54,9 @@ void PerfQuery::FlushResults()
void PerfQuery::ResetQuery() void PerfQuery::ResetQuery()
{ {
m_query_count = 0; m_query_count.store(0, std::memory_order_relaxed);
std::fill(std::begin(m_results), std::end(m_results), 0); for (size_t i = 0; i < m_results.size(); ++i)
m_results[i].store(0, std::memory_order_relaxed);
} }
u32 PerfQuery::GetQueryResult(PerfQueryType type) u32 PerfQuery::GetQueryResult(PerfQueryType type)
@ -64,19 +65,20 @@ u32 PerfQuery::GetQueryResult(PerfQueryType type)
if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC) if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC)
{ {
result = m_results[PQG_ZCOMP_ZCOMPLOC]; result = m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
} }
else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT) else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT)
{ {
result = m_results[PQG_ZCOMP]; result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed);
} }
else if (type == PQ_BLEND_INPUT) else if (type == PQ_BLEND_INPUT)
{ {
result = m_results[PQG_ZCOMP] + m_results[PQG_ZCOMP_ZCOMPLOC]; result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed) +
m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
} }
else if (type == PQ_EFB_COPY_CLOCKS) else if (type == PQ_EFB_COPY_CLOCKS)
{ {
result = m_results[PQG_EFB_COPY_CLOCKS]; result = m_results[PQG_EFB_COPY_CLOCKS].load(std::memory_order_relaxed);
} }
return result; return result;
@ -97,11 +99,13 @@ PerfQueryGL::~PerfQueryGL()
void PerfQueryGL::EnableQuery(PerfQueryGroup type) void PerfQueryGL::EnableQuery(PerfQueryGroup type)
{ {
const u32 query_count = m_query_count.load(std::memory_order_relaxed);
// Is this sane? // Is this sane?
if (m_query_count > m_query_buffer.size() / 2) if (query_count > m_query_buffer.size() / 2)
WeakFlush(); WeakFlush();
if (m_query_buffer.size() == m_query_count) if (m_query_buffer.size() == query_count)
{ {
FlushOne(); FlushOne();
// ERROR_LOG_FMT(VIDEO, "Flushed query buffer early!"); // ERROR_LOG_FMT(VIDEO, "Flushed query buffer early!");
@ -110,12 +114,12 @@ void PerfQueryGL::EnableQuery(PerfQueryGroup type)
// start query // start query
if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP) if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP)
{ {
auto& entry = m_query_buffer[(m_query_read_pos + m_query_count) % m_query_buffer.size()]; auto& entry = m_query_buffer[(m_query_read_pos + query_count) % m_query_buffer.size()];
glBeginQuery(m_query_type, entry.query_id); glBeginQuery(m_query_type, entry.query_id);
entry.query_type = type; entry.query_type = type;
++m_query_count; m_query_count.fetch_add(1, std::memory_order_relaxed);
} }
} }
void PerfQueryGL::DisableQuery(PerfQueryGroup type) void PerfQueryGL::DisableQuery(PerfQueryGroup type)
@ -164,10 +168,10 @@ void PerfQueryGL::FlushOne()
if (g_ActiveConfig.iMultisamples > 1) if (g_ActiveConfig.iMultisamples > 1)
result /= g_ActiveConfig.iMultisamples; result /= g_ActiveConfig.iMultisamples;
m_results[entry.query_type] += result; m_results[entry.query_type].fetch_add(result, std::memory_order_relaxed);
m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size(); m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size();
--m_query_count; m_query_count.fetch_sub(1, std::memory_order_relaxed);
} }
// TODO: could selectively flush things, but I don't think that will do much // TODO: could selectively flush things, but I don't think that will do much
@ -191,11 +195,12 @@ PerfQueryGLESNV::~PerfQueryGLESNV()
void PerfQueryGLESNV::EnableQuery(PerfQueryGroup type) void PerfQueryGLESNV::EnableQuery(PerfQueryGroup type)
{ {
const u32 query_count = m_query_count.load(std::memory_order_relaxed);
// Is this sane? // Is this sane?
if (m_query_count > m_query_buffer.size() / 2) if (query_count > m_query_buffer.size() / 2)
WeakFlush(); WeakFlush();
if (m_query_buffer.size() == m_query_count) if (m_query_buffer.size() == query_count)
{ {
FlushOne(); FlushOne();
// ERROR_LOG_FMT(VIDEO, "Flushed query buffer early!"); // ERROR_LOG_FMT(VIDEO, "Flushed query buffer early!");
@ -204,12 +209,12 @@ void PerfQueryGLESNV::EnableQuery(PerfQueryGroup type)
// start query // start query
if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP) if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP)
{ {
auto& entry = m_query_buffer[(m_query_read_pos + m_query_count) % m_query_buffer.size()]; auto& entry = m_query_buffer[(m_query_read_pos + query_count) % m_query_buffer.size()];
glBeginOcclusionQueryNV(entry.query_id); glBeginOcclusionQueryNV(entry.query_id);
entry.query_type = type; entry.query_type = type;
++m_query_count; m_query_count.fetch_add(1, std::memory_order_relaxed);
} }
} }
void PerfQueryGLESNV::DisableQuery(PerfQueryGroup type) void PerfQueryGLESNV::DisableQuery(PerfQueryGroup type)
@ -251,11 +256,13 @@ void PerfQueryGLESNV::FlushOne()
// NOTE: Reported pixel metrics should be referenced to native resolution // NOTE: Reported pixel metrics should be referenced to native resolution
// TODO: Dropping the lower 2 bits from this count should be closer to actual // TODO: Dropping the lower 2 bits from this count should be closer to actual
// hardware behavior when drawing triangles. // hardware behavior when drawing triangles.
m_results[entry.query_type] += static_cast<u64>(result) * EFB_WIDTH * EFB_HEIGHT / const u64 native_res_result = static_cast<u64>(result) * EFB_WIDTH * EFB_HEIGHT /
(g_renderer->GetTargetWidth() * g_renderer->GetTargetHeight()); (g_renderer->GetTargetWidth() * g_renderer->GetTargetHeight());
m_results[entry.query_type].fetch_add(static_cast<u32>(native_res_result),
std::memory_order_relaxed);
m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size(); m_query_read_pos = (m_query_read_pos + 1) % m_query_buffer.size();
--m_query_count; m_query_count.fetch_sub(1, std::memory_order_relaxed);
} }
// TODO: could selectively flush things, but I don't think that will do much // TODO: could selectively flush things, but I don't think that will do much

View File

@ -43,8 +43,9 @@ void PerfQuery::EnableQuery(PerfQueryGroup type)
{ {
// Block if there are no free slots. // Block if there are no free slots.
// Otherwise, try to keep half of them available. // Otherwise, try to keep half of them available.
if (m_query_count > m_query_buffer.size() / 2) const u32 query_count = m_query_count.load(std::memory_order_relaxed);
PartialFlush(m_query_count == PERF_QUERY_BUFFER_SIZE); if (query_count > m_query_buffer.size() / 2)
PartialFlush(query_count == PERF_QUERY_BUFFER_SIZE);
// Ensure command buffer is ready to go before beginning the query, that way we don't submit // Ensure command buffer is ready to go before beginning the query, that way we don't submit
// a buffer with open queries. // a buffer with open queries.
@ -73,16 +74,17 @@ void PerfQuery::DisableQuery(PerfQueryGroup type)
{ {
vkCmdEndQuery(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, m_query_next_pos); vkCmdEndQuery(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, m_query_next_pos);
m_query_next_pos = (m_query_next_pos + 1) % PERF_QUERY_BUFFER_SIZE; m_query_next_pos = (m_query_next_pos + 1) % PERF_QUERY_BUFFER_SIZE;
m_query_count++; m_query_count.fetch_add(1, std::memory_order_relaxed);
} }
} }
void PerfQuery::ResetQuery() void PerfQuery::ResetQuery()
{ {
m_query_count = 0; m_query_count.store(0, std::memory_order_relaxed);
m_query_readback_pos = 0; m_query_readback_pos = 0;
m_query_next_pos = 0; m_query_next_pos = 0;
std::fill(std::begin(m_results), std::end(m_results), 0); for (size_t i = 0; i < m_results.size(); ++i)
m_results[i].store(0, std::memory_order_relaxed);
// Reset entire query pool, ensuring all queries are ready to write to. // Reset entire query pool, ensuring all queries are ready to write to.
StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->EndRenderPass();
@ -96,13 +98,22 @@ u32 PerfQuery::GetQueryResult(PerfQueryType type)
{ {
u32 result = 0; u32 result = 0;
if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC) if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC)
result = m_results[PQG_ZCOMP_ZCOMPLOC]; {
result = m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
}
else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT) else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT)
result = m_results[PQG_ZCOMP]; {
result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed);
}
else if (type == PQ_BLEND_INPUT) else if (type == PQ_BLEND_INPUT)
result = m_results[PQG_ZCOMP] + m_results[PQG_ZCOMP_ZCOMPLOC]; {
result = m_results[PQG_ZCOMP].load(std::memory_order_relaxed) +
m_results[PQG_ZCOMP_ZCOMPLOC].load(std::memory_order_relaxed);
}
else if (type == PQ_EFB_COPY_CLOCKS) else if (type == PQ_EFB_COPY_CLOCKS)
result = m_results[PQG_EFB_COPY_CLOCKS]; {
result = m_results[PQG_EFB_COPY_CLOCKS].load(std::memory_order_relaxed);
}
return result / 4; return result / 4;
} }
@ -115,7 +126,7 @@ void PerfQuery::FlushResults()
bool PerfQuery::IsFlushed() const bool PerfQuery::IsFlushed() const
{ {
return m_query_count == 0; return m_query_count.load(std::memory_order_relaxed) == 0;
} }
bool PerfQuery::CreateQueryPool() bool PerfQuery::CreateQueryPool()
@ -144,7 +155,7 @@ void PerfQuery::ReadbackQueries()
const u64 completed_fence_counter = g_command_buffer_mgr->GetCompletedFenceCounter(); const u64 completed_fence_counter = g_command_buffer_mgr->GetCompletedFenceCounter();
// Need to save these since ProcessResults will modify them. // Need to save these since ProcessResults will modify them.
const u32 outstanding_queries = m_query_count; const u32 outstanding_queries = m_query_count.load(std::memory_order_relaxed);
u32 readback_count = 0; u32 readback_count = 0;
for (u32 i = 0; i < outstanding_queries; i++) for (u32 i = 0; i < outstanding_queries; i++)
{ {
@ -171,7 +182,7 @@ void PerfQuery::ReadbackQueries()
void PerfQuery::ReadbackQueries(u32 query_count) void PerfQuery::ReadbackQueries(u32 query_count)
{ {
// Should be at maximum query_count queries pending. // Should be at maximum query_count queries pending.
ASSERT(query_count <= m_query_count && ASSERT(query_count <= m_query_count.load(std::memory_order_relaxed) &&
(m_query_readback_pos + query_count) <= PERF_QUERY_BUFFER_SIZE); (m_query_readback_pos + query_count) <= PERF_QUERY_BUFFER_SIZE);
// Read back from the GPU. // Read back from the GPU.
@ -194,13 +205,15 @@ void PerfQuery::ReadbackQueries(u32 query_count)
entry.has_value = false; entry.has_value = false;
// NOTE: Reported pixel metrics should be referenced to native resolution // NOTE: Reported pixel metrics should be referenced to native resolution
m_results[entry.query_type] += const u64 native_res_result = static_cast<u64>(m_query_result_buffer[i]) * EFB_WIDTH /
static_cast<u32>(static_cast<u64>(m_query_result_buffer[i]) * EFB_WIDTH / g_renderer->GetTargetWidth() * EFB_HEIGHT /
g_renderer->GetTargetWidth() * EFB_HEIGHT / g_renderer->GetTargetHeight()); g_renderer->GetTargetHeight();
m_results[entry.query_type].fetch_add(static_cast<u32>(native_res_result),
std::memory_order_relaxed);
} }
m_query_readback_pos = (m_query_readback_pos + query_count) % PERF_QUERY_BUFFER_SIZE; m_query_readback_pos = (m_query_readback_pos + query_count) % PERF_QUERY_BUFFER_SIZE;
m_query_count -= query_count; m_query_count.fetch_sub(query_count, std::memory_order_relaxed);
} }
void PerfQuery::PartialFlush(bool blocking) void PerfQuery::PartialFlush(bool blocking)

View File

@ -119,11 +119,11 @@ void Init()
m_tokenReg = 0; m_tokenReg = 0;
memset(&fifo, 0, sizeof(fifo)); memset(&fifo, 0, sizeof(fifo));
fifo.bFF_Breakpoint = 0; fifo.bFF_Breakpoint.store(0, std::memory_order_relaxed);
fifo.bFF_HiWatermark = 0; fifo.bFF_HiWatermark.store(0, std::memory_order_relaxed);
fifo.bFF_HiWatermarkInt = 0; fifo.bFF_HiWatermarkInt.store(0, std::memory_order_relaxed);
fifo.bFF_LoWatermark = 0; fifo.bFF_LoWatermark.store(0, std::memory_order_relaxed);
fifo.bFF_LoWatermarkInt = 0; fifo.bFF_LoWatermarkInt.store(0, std::memory_order_relaxed);
s_interrupt_set.Clear(); s_interrupt_set.Clear();
s_interrupt_waiting.Clear(); s_interrupt_waiting.Clear();
@ -368,7 +368,7 @@ void GatherPipeBursted()
} }
// If the game is running close to overflowing, make the exception checking more frequent. // If the game is running close to overflowing, make the exception checking more frequent.
if (fifo.bFF_HiWatermark) if (fifo.bFF_HiWatermark.load(std::memory_order_relaxed) != 0)
CoreTiming::ForceExceptionCheck(0); CoreTiming::ForceExceptionCheck(0);
fifo.CPReadWriteDistance.fetch_add(GATHER_PIPE_SIZE, std::memory_order_seq_cst); fifo.CPReadWriteDistance.fetch_add(GATHER_PIPE_SIZE, std::memory_order_seq_cst);
@ -427,47 +427,53 @@ bool IsInterruptWaiting()
void SetCPStatusFromGPU() void SetCPStatusFromGPU()
{ {
// breakpoint // breakpoint
if (fifo.bFF_BPEnable) const bool breakpoint = fifo.bFF_Breakpoint.load(std::memory_order_relaxed);
if (fifo.bFF_BPEnable.load(std::memory_order_relaxed) != 0)
{ {
if (fifo.CPBreakpoint.load(std::memory_order_relaxed) == if (fifo.CPBreakpoint.load(std::memory_order_relaxed) ==
fifo.CPReadPointer.load(std::memory_order_relaxed)) fifo.CPReadPointer.load(std::memory_order_relaxed))
{ {
if (!fifo.bFF_Breakpoint) if (!breakpoint)
{ {
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Hit breakpoint at {}", DEBUG_LOG_FMT(COMMANDPROCESSOR, "Hit breakpoint at {}",
fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.CPReadPointer.load(std::memory_order_relaxed));
fifo.bFF_Breakpoint = true; fifo.bFF_Breakpoint.store(1, std::memory_order_relaxed);
} }
} }
else else
{ {
if (fifo.bFF_Breakpoint) if (breakpoint)
{ {
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}", DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}",
fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.CPReadPointer.load(std::memory_order_relaxed));
fifo.bFF_Breakpoint.store(0, std::memory_order_relaxed);
} }
fifo.bFF_Breakpoint = false;
} }
} }
else else
{ {
if (fifo.bFF_Breakpoint) if (breakpoint)
{ {
DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}", DEBUG_LOG_FMT(COMMANDPROCESSOR, "Cleared breakpoint at {}",
fifo.CPReadPointer.load(std::memory_order_relaxed)); fifo.CPReadPointer.load(std::memory_order_relaxed));
fifo.bFF_Breakpoint = false;
} }
fifo.bFF_Breakpoint = false;
} }
// overflow & underflow check // overflow & underflow check
fifo.bFF_HiWatermark = fifo.bFF_HiWatermark.store(
(fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark); (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark),
fifo.bFF_LoWatermark = std::memory_order_relaxed);
(fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark); fifo.bFF_LoWatermark.store(
(fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark),
std::memory_order_relaxed);
bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt; bool bpInt = fifo.bFF_Breakpoint.load(std::memory_order_relaxed) &&
bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt; fifo.bFF_BPInt.load(std::memory_order_relaxed);
bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt; bool ovfInt = fifo.bFF_HiWatermark.load(std::memory_order_relaxed) &&
fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed);
bool undfInt = fifo.bFF_LoWatermark.load(std::memory_order_relaxed) &&
fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed);
bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable;
@ -493,14 +499,19 @@ void SetCPStatusFromGPU()
void SetCPStatusFromCPU() void SetCPStatusFromCPU()
{ {
// overflow & underflow check // overflow & underflow check
fifo.bFF_HiWatermark = fifo.bFF_HiWatermark.store(
(fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark); (fifo.CPReadWriteDistance.load(std::memory_order_relaxed) > fifo.CPHiWatermark),
fifo.bFF_LoWatermark = std::memory_order_relaxed);
(fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark); fifo.bFF_LoWatermark.store(
(fifo.CPReadWriteDistance.load(std::memory_order_relaxed) < fifo.CPLoWatermark),
std::memory_order_relaxed);
bool bpInt = fifo.bFF_Breakpoint && fifo.bFF_BPInt; bool bpInt = fifo.bFF_Breakpoint.load(std::memory_order_relaxed) &&
bool ovfInt = fifo.bFF_HiWatermark && fifo.bFF_HiWatermarkInt; fifo.bFF_BPInt.load(std::memory_order_relaxed);
bool undfInt = fifo.bFF_LoWatermark && fifo.bFF_LoWatermarkInt; bool ovfInt = fifo.bFF_HiWatermark.load(std::memory_order_relaxed) &&
fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed);
bool undfInt = fifo.bFF_LoWatermark.load(std::memory_order_relaxed) &&
fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed);
bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable; bool interrupt = (bpInt || ovfInt || undfInt) && m_CPCtrlReg.GPReadEnable;
@ -526,14 +537,15 @@ void SetCPStatusFromCPU()
void SetCpStatusRegister() void SetCpStatusRegister()
{ {
// Here always there is one fifo attached to the GPU // Here always there is one fifo attached to the GPU
m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint; m_CPStatusReg.Breakpoint = fifo.bFF_Breakpoint.load(std::memory_order_relaxed);
m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) || m_CPStatusReg.ReadIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) ||
(fifo.CPReadPointer.load(std::memory_order_relaxed) == (fifo.CPReadPointer.load(std::memory_order_relaxed) ==
fifo.CPWritePointer.load(std::memory_order_relaxed)); fifo.CPWritePointer.load(std::memory_order_relaxed));
m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) || m_CPStatusReg.CommandIdle = !fifo.CPReadWriteDistance.load(std::memory_order_relaxed) ||
Fifo::AtBreakpoint() || !fifo.bFF_GPReadEnable; Fifo::AtBreakpoint() ||
m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark; !fifo.bFF_GPReadEnable.load(std::memory_order_relaxed);
m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark; m_CPStatusReg.UnderflowLoWatermark = fifo.bFF_LoWatermark.load(std::memory_order_relaxed);
m_CPStatusReg.OverflowHiWatermark = fifo.bFF_HiWatermark.load(std::memory_order_relaxed);
DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t Read from STATUS_REGISTER : {:04x}", m_CPStatusReg.Hex); DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t Read from STATUS_REGISTER : {:04x}", m_CPStatusReg.Hex);
DEBUG_LOG_FMT( DEBUG_LOG_FMT(
@ -545,15 +557,15 @@ void SetCpStatusRegister()
void SetCpControlRegister() void SetCpControlRegister()
{ {
fifo.bFF_BPInt = m_CPCtrlReg.BPInt; fifo.bFF_BPInt.store(m_CPCtrlReg.BPInt, std::memory_order_relaxed);
fifo.bFF_BPEnable = m_CPCtrlReg.BPEnable; fifo.bFF_BPEnable.store(m_CPCtrlReg.BPEnable, std::memory_order_relaxed);
fifo.bFF_HiWatermarkInt = m_CPCtrlReg.FifoOverflowIntEnable; fifo.bFF_HiWatermarkInt.store(m_CPCtrlReg.FifoOverflowIntEnable, std::memory_order_relaxed);
fifo.bFF_LoWatermarkInt = m_CPCtrlReg.FifoUnderflowIntEnable; fifo.bFF_LoWatermarkInt.store(m_CPCtrlReg.FifoUnderflowIntEnable, std::memory_order_relaxed);
fifo.bFF_GPLinkEnable = m_CPCtrlReg.GPLinkEnable; fifo.bFF_GPLinkEnable.store(m_CPCtrlReg.GPLinkEnable, std::memory_order_relaxed);
if (fifo.bFF_GPReadEnable && !m_CPCtrlReg.GPReadEnable) if (fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) && !m_CPCtrlReg.GPReadEnable)
{ {
fifo.bFF_GPReadEnable = m_CPCtrlReg.GPReadEnable; fifo.bFF_GPReadEnable.store(m_CPCtrlReg.GPReadEnable, std::memory_order_relaxed);
Fifo::FlushGpu(); Fifo::FlushGpu();
} }
else else
@ -562,8 +574,10 @@ void SetCpControlRegister()
} }
DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t GPREAD {} | BP {} | Int {} | OvF {} | UndF {} | LINK {}", DEBUG_LOG_FMT(COMMANDPROCESSOR, "\t GPREAD {} | BP {} | Int {} | OvF {} | UndF {} | LINK {}",
fifo.bFF_GPReadEnable ? "ON" : "OFF", fifo.bFF_BPEnable ? "ON" : "OFF", fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "ON" : "OFF",
fifo.bFF_BPInt ? "ON" : "OFF", m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF", fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "ON" : "OFF",
fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "ON" : "OFF",
m_CPCtrlReg.FifoOverflowIntEnable ? "ON" : "OFF",
m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF", m_CPCtrlReg.FifoUnderflowIntEnable ? "ON" : "OFF",
m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF"); m_CPCtrlReg.GPLinkEnable ? "ON" : "OFF");
} }
@ -588,32 +602,35 @@ void HandleUnknownOpcode(u8 cmd_byte, void* buffer, bool preprocess)
cmd_byte, buffer, preprocess ? "preprocess=true" : "preprocess=false"); cmd_byte, buffer, preprocess ? "preprocess=true" : "preprocess=false");
{ {
PanicAlertFmt( PanicAlertFmt("Illegal command {:02x}\n"
"Illegal command {:02x}\n" "CPBase: {:#010x}\n"
"CPBase: {:#010x}\n" "CPEnd: {:#010x}\n"
"CPEnd: {:#010x}\n" "CPHiWatermark: {:#010x}\n"
"CPHiWatermark: {:#010x}\n" "CPLoWatermark: {:#010x}\n"
"CPLoWatermark: {:#010x}\n" "CPReadWriteDistance: {:#010x}\n"
"CPReadWriteDistance: {:#010x}\n" "CPWritePointer: {:#010x}\n"
"CPWritePointer: {:#010x}\n" "CPReadPointer: {:#010x}\n"
"CPReadPointer: {:#010x}\n" "CPBreakpoint: {:#010x}\n"
"CPBreakpoint: {:#010x}\n" "bFF_GPReadEnable: {}\n"
"bFF_GPReadEnable: {}\n" "bFF_BPEnable: {}\n"
"bFF_BPEnable: {}\n" "bFF_BPInt: {}\n"
"bFF_BPInt: {}\n" "bFF_Breakpoint: {}\n"
"bFF_Breakpoint: {}\n" "bFF_GPLinkEnable: {}\n"
"bFF_GPLinkEnable: {}\n" "bFF_HiWatermarkInt: {}\n"
"bFF_HiWatermarkInt: {}\n" "bFF_LoWatermarkInt: {}\n",
"bFF_LoWatermarkInt: {}\n", cmd_byte, fifo.CPBase.load(std::memory_order_relaxed),
cmd_byte, fifo.CPBase.load(std::memory_order_relaxed), fifo.CPEnd.load(std::memory_order_relaxed), fifo.CPHiWatermark,
fifo.CPEnd.load(std::memory_order_relaxed), fifo.CPHiWatermark, fifo.CPLoWatermark, fifo.CPLoWatermark, fifo.CPReadWriteDistance.load(std::memory_order_relaxed),
fifo.CPReadWriteDistance.load(std::memory_order_relaxed), fifo.CPWritePointer.load(std::memory_order_relaxed),
fifo.CPWritePointer.load(std::memory_order_relaxed), fifo.CPReadPointer.load(std::memory_order_relaxed),
fifo.CPReadPointer.load(std::memory_order_relaxed), fifo.CPBreakpoint.load(std::memory_order_relaxed),
fifo.CPBreakpoint.load(std::memory_order_relaxed), fifo.bFF_GPReadEnable ? "true" : "false", fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) ? "true" : "false",
fifo.bFF_BPEnable ? "true" : "false", fifo.bFF_BPInt ? "true" : "false", fifo.bFF_BPEnable.load(std::memory_order_relaxed) ? "true" : "false",
fifo.bFF_Breakpoint ? "true" : "false", fifo.bFF_GPLinkEnable ? "true" : "false", fifo.bFF_BPInt.load(std::memory_order_relaxed) ? "true" : "false",
fifo.bFF_HiWatermarkInt ? "true" : "false", fifo.bFF_LoWatermarkInt ? "true" : "false"); fifo.bFF_Breakpoint.load(std::memory_order_relaxed) ? "true" : "false",
fifo.bFF_GPLinkEnable.load(std::memory_order_relaxed) ? "true" : "false",
fifo.bFF_HiWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false",
fifo.bFF_LoWatermarkInt.load(std::memory_order_relaxed) ? "true" : "false");
} }
} }

View File

@ -29,17 +29,17 @@ struct SCPFifoStruct
std::atomic<u32> CPBreakpoint; std::atomic<u32> CPBreakpoint;
std::atomic<u32> SafeCPReadPointer; std::atomic<u32> SafeCPReadPointer;
volatile u32 bFF_GPLinkEnable; std::atomic<u32> bFF_GPLinkEnable;
volatile u32 bFF_GPReadEnable; std::atomic<u32> bFF_GPReadEnable;
volatile u32 bFF_BPEnable; std::atomic<u32> bFF_BPEnable;
volatile u32 bFF_BPInt; std::atomic<u32> bFF_BPInt;
volatile u32 bFF_Breakpoint; std::atomic<u32> bFF_Breakpoint;
volatile u32 bFF_LoWatermarkInt; std::atomic<u32> bFF_LoWatermarkInt;
volatile u32 bFF_HiWatermarkInt; std::atomic<u32> bFF_HiWatermarkInt;
volatile u32 bFF_LoWatermark; std::atomic<u32> bFF_LoWatermark;
volatile u32 bFF_HiWatermark; std::atomic<u32> bFF_HiWatermark;
void DoState(PointerWrap& p); void DoState(PointerWrap& p);
}; };

View File

@ -139,7 +139,7 @@ void Shutdown()
void ExitGpuLoop() void ExitGpuLoop()
{ {
// This should break the wait loop in CPU thread // This should break the wait loop in CPU thread
CommandProcessor::fifo.bFF_GPReadEnable = false; CommandProcessor::fifo.bFF_GPReadEnable.store(0, std::memory_order_relaxed);
FlushGpu(); FlushGpu();
// Terminate GPU thread loop // Terminate GPU thread loop
@ -327,7 +327,8 @@ void RunGpuLoop()
CommandProcessor::SetCPStatusFromGPU(); CommandProcessor::SetCPStatusFromGPU();
// check if we are able to run this buffer // check if we are able to run this buffer
while (!CommandProcessor::IsInterruptWaiting() && fifo.bFF_GPReadEnable && while (!CommandProcessor::IsInterruptWaiting() &&
fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) &&
fifo.CPReadWriteDistance.load(std::memory_order_relaxed) && !AtBreakpoint()) fifo.CPReadWriteDistance.load(std::memory_order_relaxed) && !AtBreakpoint())
{ {
if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance) if (param.bSyncGPU && s_sync_ticks.load() < param.iSyncGpuMinDistance)
@ -415,8 +416,9 @@ void GpuMaySleep()
bool AtBreakpoint() bool AtBreakpoint()
{ {
CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo; CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo;
return fifo.bFF_BPEnable && (fifo.CPReadPointer.load(std::memory_order_relaxed) == return fifo.bFF_BPEnable.load(std::memory_order_relaxed) &&
fifo.CPBreakpoint.load(std::memory_order_relaxed)); (fifo.CPReadPointer.load(std::memory_order_relaxed) ==
fifo.CPBreakpoint.load(std::memory_order_relaxed));
} }
void RunGpu() void RunGpu()
@ -446,8 +448,9 @@ static int RunGpuOnCpu(int ticks)
CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo; CommandProcessor::SCPFifoStruct& fifo = CommandProcessor::fifo;
bool reset_simd_state = false; bool reset_simd_state = false;
int available_ticks = int(ticks * SConfig::GetInstance().fSyncGpuOverclock) + s_sync_ticks.load(); int available_ticks = int(ticks * SConfig::GetInstance().fSyncGpuOverclock) + s_sync_ticks.load();
while (fifo.bFF_GPReadEnable && fifo.CPReadWriteDistance.load(std::memory_order_relaxed) && while (fifo.bFF_GPReadEnable.load(std::memory_order_relaxed) &&
!AtBreakpoint() && available_ticks >= 0) fifo.CPReadWriteDistance.load(std::memory_order_relaxed) && !AtBreakpoint() &&
available_ticks >= 0)
{ {
if (s_use_deterministic_gpu_thread) if (s_use_deterministic_gpu_thread)
{ {

View File

@ -4,7 +4,10 @@
#pragma once #pragma once
#include <array>
#include <atomic>
#include <memory> #include <memory>
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
enum PerfQueryType enum PerfQueryType
@ -61,9 +64,8 @@ public:
virtual bool IsFlushed() const { return true; } virtual bool IsFlushed() const { return true; }
protected: protected:
// TODO: sloppy std::atomic<u32> m_query_count;
volatile u32 m_query_count; std::array<std::atomic<u32>, PQG_NUM_MEMBERS> m_results;
volatile u32 m_results[PQG_NUM_MEMBERS];
}; };
extern std::unique_ptr<PerfQueryBase> g_perf_query; extern std::unique_ptr<PerfQueryBase> g_perf_query;