Merge pull request #428 from Sonicadvance1/x86_32-removal

Remove x86_32 support from Dolphin.
This commit is contained in:
Pierre Bourdon 2014-08-03 21:17:28 -07:00
commit 4c42b38de1
39 changed files with 42 additions and 1469 deletions

View File

@ -148,14 +148,11 @@ inline u64 _rotr64(u64 x, unsigned int shift){
#define fstat64 _fstat64 #define fstat64 _fstat64
#define fileno _fileno #define fileno _fileno
#if _M_X86_32 extern "C"
#define Crash() {__asm int 3} {
#else
extern "C" {
__declspec(dllimport) void __stdcall DebugBreak(void); __declspec(dllimport) void __stdcall DebugBreak(void);
} }
#define Crash() {DebugBreak();} #define Crash() {DebugBreak();}
#endif // M_IX86
#endif // WIN32 ndef #endif // WIN32 ndef
// Generic function to get last error message. // Generic function to get last error message.

View File

@ -152,14 +152,8 @@ static BOOL GetFunctionInfoFromAddresses( ULONG fnAddress, ULONG stackAddress, L
_tcscpy( lpszSymbol, _T("?") ); _tcscpy( lpszSymbol, _T("?") );
// Get symbol info for IP // Get symbol info for IP
#if _M_X86_32
DWORD dwDisp = 0;
if ( SymGetSymFromAddr( GetCurrentProcess(), (ULONG)fnAddress, &dwDisp, pSym ) )
#else
//makes it compile but hell im not sure if this works...
DWORD64 dwDisp = 0; DWORD64 dwDisp = 0;
if ( SymGetSymFromAddr( GetCurrentProcess(), (ULONG)fnAddress, (PDWORD64)&dwDisp, pSym ) ) if ( SymGetSymFromAddr( GetCurrentProcess(), (ULONG)fnAddress, (PDWORD64)&dwDisp, pSym ) )
#endif
{ {
// Make the symbol readable for humans // Make the symbol readable for humans
UnDecorateSymbolName( pSym->Name, lpszNonUnicodeUnDSymbol, BUFFERSIZE, UnDecorateSymbolName( pSym->Name, lpszNonUnicodeUnDSymbol, BUFFERSIZE,
@ -313,15 +307,9 @@ void StackTrace( HANDLE hThread, const char* lpszMessage, FILE *file )
} }
::ZeroMemory( &callStack, sizeof(callStack) ); ::ZeroMemory( &callStack, sizeof(callStack) );
#if _M_X86_32
callStack.AddrPC.Offset = context.Eip;
callStack.AddrStack.Offset = context.Esp;
callStack.AddrFrame.Offset = context.Ebp;
#else
callStack.AddrPC.Offset = context.Rip; callStack.AddrPC.Offset = context.Rip;
callStack.AddrStack.Offset = context.Rsp; callStack.AddrStack.Offset = context.Rsp;
callStack.AddrFrame.Offset = context.Rbp; callStack.AddrFrame.Offset = context.Rbp;
#endif
callStack.AddrPC.Mode = AddrModeFlat; callStack.AddrPC.Mode = AddrModeFlat;
callStack.AddrStack.Mode = AddrModeFlat; callStack.AddrStack.Mode = AddrModeFlat;
callStack.AddrFrame.Mode = AddrModeFlat; callStack.AddrFrame.Mode = AddrModeFlat;

View File

@ -40,39 +40,25 @@
#define USE_RVALUE_REFERENCES #define USE_RVALUE_REFERENCES
#endif #endif
#if defined(_WIN32) && _M_X86_64
#define USE_CONDITION_VARIABLES
#elif defined(_WIN32)
#define USE_EVENTS
#endif
namespace std namespace std
{ {
class condition_variable class condition_variable
{ {
#if defined(_WIN32) && defined(USE_CONDITION_VARIABLES) #if defined(_WIN32)
typedef CONDITION_VARIABLE native_type; typedef CONDITION_VARIABLE native_type;
#elif defined(_WIN32)
typedef HANDLE native_type;
#else #else
typedef pthread_cond_t native_type; typedef pthread_cond_t native_type;
#endif #endif
public: public:
#ifdef USE_EVENTS
typedef native_type native_handle_type;
#else
typedef native_type* native_handle_type; typedef native_type* native_handle_type;
#endif
condition_variable() condition_variable()
{ {
#if defined(_WIN32) && defined(USE_CONDITION_VARIABLES) #if defined(_WIN32)
InitializeConditionVariable(&m_handle); InitializeConditionVariable(&m_handle);
#elif defined(_WIN32)
m_handle = CreateEvent(nullptr, false, false, nullptr);
#else #else
pthread_cond_init(&m_handle, nullptr); pthread_cond_init(&m_handle, nullptr);
#endif #endif
@ -80,9 +66,7 @@ public:
~condition_variable() ~condition_variable()
{ {
#if defined(_WIN32) && !defined(USE_CONDITION_VARIABLES) #ifndef _WIN32
CloseHandle(m_handle);
#elif !defined(_WIN32)
pthread_cond_destroy(&m_handle); pthread_cond_destroy(&m_handle);
#endif #endif
} }
@ -92,10 +76,8 @@ public:
void notify_one() void notify_one()
{ {
#if defined(_WIN32) && defined(USE_CONDITION_VARIABLES) #if defined(_WIN32)
WakeConditionVariable(&m_handle); WakeConditionVariable(&m_handle);
#elif defined(_WIN32)
SetEvent(m_handle);
#else #else
pthread_cond_signal(&m_handle); pthread_cond_signal(&m_handle);
#endif #endif
@ -103,11 +85,8 @@ public:
void notify_all() void notify_all()
{ {
#if defined(_WIN32) && defined(USE_CONDITION_VARIABLES) #if defined(_WIN32)
WakeAllConditionVariable(&m_handle); WakeAllConditionVariable(&m_handle);
#elif defined(_WIN32)
// TODO: broken
SetEvent(m_handle);
#else #else
pthread_cond_broadcast(&m_handle); pthread_cond_broadcast(&m_handle);
#endif #endif
@ -116,16 +95,7 @@ public:
void wait(unique_lock<mutex>& lock) void wait(unique_lock<mutex>& lock)
{ {
#ifdef _WIN32 #ifdef _WIN32
#ifdef USE_SRWLOCKS
SleepConditionVariableSRW(&m_handle, lock.mutex()->native_handle(), INFINITE, 0); SleepConditionVariableSRW(&m_handle, lock.mutex()->native_handle(), INFINITE, 0);
#elif defined(USE_CONDITION_VARIABLES)
SleepConditionVariableCS(&m_handle, lock.mutex()->native_handle(), INFINITE);
#else
// TODO: broken, the unlock and wait need to be atomic
lock.unlock();
WaitForSingleObject(m_handle, INFINITE);
lock.lock();
#endif
#else #else
pthread_cond_wait(&m_handle, lock.mutex()->native_handle()); pthread_cond_wait(&m_handle, lock.mutex()->native_handle());
#endif #endif
@ -158,11 +128,7 @@ public:
native_handle_type native_handle() native_handle_type native_handle()
{ {
#ifdef USE_EVENTS
return m_handle;
#else
return &m_handle; return &m_handle;
#endif
} }
private: private:

View File

@ -44,10 +44,6 @@
#define USE_RVALUE_REFERENCES #define USE_RVALUE_REFERENCES
#endif #endif
#if defined(_WIN32) && _M_X86_64
#define USE_SRWLOCKS
#endif
namespace std namespace std
{ {
@ -122,7 +118,6 @@ private:
native_type m_handle; native_type m_handle;
}; };
#if !defined(_WIN32) || defined(USE_SRWLOCKS)
class mutex class mutex
{ {
@ -193,11 +188,6 @@ private:
native_type m_handle; native_type m_handle;
}; };
#else
typedef recursive_mutex mutex; // just use CriticalSections
#endif
enum defer_lock_t { defer_lock }; enum defer_lock_t { defer_lock };
enum try_to_lock_t { try_to_lock }; enum try_to_lock_t { try_to_lock };
enum adopt_lock_t { adopt_lock }; enum adopt_lock_t { adopt_lock };

View File

@ -2,7 +2,7 @@
// Licensed under GPLv2 // Licensed under GPLv2
// Refer to the license.txt file included. // Refer to the license.txt file included.
#if defined(_WIN32) && defined(_M_X86_64) #if defined(_WIN32)
#include <math.h> #include <math.h>
#include <Windows.h> #include <Windows.h>

View File

@ -11,26 +11,7 @@ using namespace Gen;
// Shared code between Win64 and Unix64 // Shared code between Win64 and Unix64
unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize, bool noProlog) { unsigned int XEmitter::ABI_GetAlignedFrameSize(unsigned int frameSize, bool noProlog) {
// On platforms other than Windows 32-bit: At the beginning of a function,
// the stack pointer is 4/8 bytes less than a multiple of 16; however, the
// function prolog immediately subtracts an appropriate amount to align
// it, so no alignment is required around a call.
// In the functions generated by ThunkManager::ProtectFunction and some
// others, we add the necessary subtraction (and 0x20 bytes shadow space
// for Win64) into this rather than having a separate prolog.
// On Windows 32-bit, the required alignment is only 4 bytes, so we just
// ensure that the frame size isn't misaligned.
#if _M_X86_64
// expect frameSize == 0
frameSize = noProlog ? 0x28 : 0; frameSize = noProlog ? 0x28 : 0;
#elif defined(_WIN32)
frameSize = (frameSize + 3) & -4;
#else
unsigned int existingAlignment = noProlog ? 0xc : 0;
frameSize -= existingAlignment;
frameSize = (frameSize + 15) & -16;
frameSize += existingAlignment;
#endif
return frameSize; return frameSize;
} }
@ -38,35 +19,22 @@ void XEmitter::ABI_AlignStack(unsigned int frameSize, bool noProlog) {
unsigned int fillSize = unsigned int fillSize =
ABI_GetAlignedFrameSize(frameSize, noProlog) - frameSize; ABI_GetAlignedFrameSize(frameSize, noProlog) - frameSize;
if (fillSize != 0) { if (fillSize != 0) {
#if _M_X86_64
SUB(64, R(RSP), Imm8(fillSize)); SUB(64, R(RSP), Imm8(fillSize));
#else
SUB(32, R(ESP), Imm8(fillSize));
#endif
} }
} }
void XEmitter::ABI_RestoreStack(unsigned int frameSize, bool noProlog) { void XEmitter::ABI_RestoreStack(unsigned int frameSize, bool noProlog) {
unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize, noProlog); unsigned int alignedSize = ABI_GetAlignedFrameSize(frameSize, noProlog);
if (alignedSize != 0) { if (alignedSize != 0) {
#if _M_X86_64
ADD(64, R(RSP), Imm8(alignedSize)); ADD(64, R(RSP), Imm8(alignedSize));
#else
ADD(32, R(ESP), Imm8(alignedSize));
#endif
} }
} }
void XEmitter::ABI_PushRegistersAndAdjustStack(u32 mask, bool noProlog) void XEmitter::ABI_PushRegistersAndAdjustStack(u32 mask, bool noProlog)
{ {
int regSize = int regSize = 8;
#if _M_X86_64
8;
#else
4;
#endif
int shadow = 0; int shadow = 0;
#if defined(_WIN32) && _M_X86_64 #if defined(_WIN32)
shadow = 0x20; shadow = 0x20;
#endif #endif
int count = 0; int count = 0;
@ -100,14 +68,9 @@ void XEmitter::ABI_PushRegistersAndAdjustStack(u32 mask, bool noProlog)
void XEmitter::ABI_PopRegistersAndAdjustStack(u32 mask, bool noProlog) void XEmitter::ABI_PopRegistersAndAdjustStack(u32 mask, bool noProlog)
{ {
int regSize = int regSize = 8;
#if _M_X86_64
8;
#else
4;
#endif
int size = 0; int size = 0;
#if defined(_WIN32) && _M_X86_64 #if defined(_WIN32)
size += 0x20; size += 0x20;
#endif #endif
for (int x = 0; x < 16; x++) for (int x = 0; x < 16; x++)
@ -137,152 +100,6 @@ void XEmitter::ABI_PopRegistersAndAdjustStack(u32 mask, bool noProlog)
} }
} }
#if _M_X86_32 // All32
// Shared code between Win32 and Unix32
void XEmitter::ABI_CallFunction(void *func) {
ABI_AlignStack(0);
CALL(func);
ABI_RestoreStack(0);
}
void XEmitter::ABI_CallFunctionC16(void *func, u16 param1) {
ABI_AlignStack(1 * 2);
PUSH(16, Imm16(param1));
CALL(func);
ABI_RestoreStack(1 * 2);
}
void XEmitter::ABI_CallFunctionCC16(void *func, u32 param1, u16 param2) {
ABI_AlignStack(1 * 2 + 1 * 4);
PUSH(16, Imm16(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(1 * 2 + 1 * 4);
}
void XEmitter::ABI_CallFunctionC(void *func, u32 param1) {
ABI_AlignStack(1 * 4);
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_CallFunctionCC(void *func, u32 param1, u32 param2) {
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionCP(void *func, u32 param1, void *param2) {
ABI_AlignStack(2 * 4);
PUSH(32, Imm32((u32)param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionCCC(void *func, u32 param1, u32 param2, u32 param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionCCP(void *func, u32 param1, u32 param2, void *param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32((u32)param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
void XEmitter::ABI_CallFunctionCCCP(void *func, u32 param1, u32 param2,u32 param3, void *param4) {
ABI_AlignStack(4 * 4);
PUSH(32, Imm32((u32)param4));
PUSH(32, Imm32(param3));
PUSH(32, Imm32(param2));
PUSH(32, Imm32(param1));
CALL(func);
ABI_RestoreStack(4 * 4);
}
void XEmitter::ABI_CallFunctionPC(void *func, void *param1, u32 param2) {
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, Imm32((u32)param1));
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionPPC(void *func, void *param1, void *param2,u32 param3) {
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(param3));
PUSH(32, Imm32((u32)param2));
PUSH(32, Imm32((u32)param1));
CALL(func);
ABI_RestoreStack(3 * 4);
}
// Pass a register as a parameter.
void XEmitter::ABI_CallFunctionR(void *func, X64Reg reg1) {
ABI_AlignStack(1 * 4);
PUSH(32, R(reg1));
CALL(func);
ABI_RestoreStack(1 * 4);
}
// Pass two registers as parameters.
void XEmitter::ABI_CallFunctionRR(void *func, Gen::X64Reg reg1, Gen::X64Reg reg2, bool noProlog)
{
ABI_AlignStack(2 * 4, noProlog);
PUSH(32, R(reg2));
PUSH(32, R(reg1));
CALL(func);
ABI_RestoreStack(2 * 4, noProlog);
}
void XEmitter::ABI_CallFunctionAC(void *func, const Gen::OpArg &arg1, u32 param2)
{
ABI_AlignStack(2 * 4);
PUSH(32, Imm32(param2));
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(2 * 4);
}
void XEmitter::ABI_CallFunctionA(void *func, const Gen::OpArg &arg1)
{
ABI_AlignStack(1 * 4);
PUSH(32, arg1);
CALL(func);
ABI_RestoreStack(1 * 4);
}
void XEmitter::ABI_PushAllCalleeSavedRegsAndAdjustStack() {
PUSH(EBP);
MOV(32, R(EBP), R(ESP));
PUSH(EBX);
PUSH(ESI);
PUSH(EDI);
SUB(32, R(ESP), Imm8(0xc));
}
void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
ADD(32, R(ESP), Imm8(0xc));
POP(EDI);
POP(ESI);
POP(EBX);
POP(EBP);
}
#else //64bit
// Common functions // Common functions
void XEmitter::ABI_CallFunction(void *func) { void XEmitter::ABI_CallFunction(void *func) {
ABI_AlignStack(0); ABI_AlignStack(0);
@ -643,6 +460,3 @@ void XEmitter::ABI_PopAllCalleeSavedRegsAndAdjustStack() {
#endif // WIN32 #endif // WIN32
#endif // 32bit

View File

@ -6,17 +6,9 @@
#include "Common/x64Emitter.h" #include "Common/x64Emitter.h"
// x86/x64 ABI:s, and helpers to help follow them when JIT-ing code. // x64 ABI:s, and helpers to help follow them when JIT-ing code.
// All convensions return values in EAX (+ possibly EDX). // All convensions return values in EAX (+ possibly EDX).
// Linux 32-bit, Windows 32-bit (cdecl, System V):
// * Caller pushes left to right
// * Caller fixes stack after call
// * function subtract from stack for local storage only.
// Scratch: EAX ECX EDX
// Callee-save: EBX ESI EDI EBP
// Parameters: -
// Windows 64-bit // Windows 64-bit
// * 4-reg "fastcall" variant, very new-skool stack handling // * 4-reg "fastcall" variant, very new-skool stack handling
// * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_ // * Callee moves stack pointer, to make room for shadow regs for the biggest function _it itself calls_
@ -31,22 +23,6 @@
// Callee-save: RBX RBP R12 R13 R14 R15 // Callee-save: RBX RBP R12 R13 R14 R15
// Parameters: RDI RSI RDX RCX R8 R9 // Parameters: RDI RSI RDX RCX R8 R9
#if _M_X86_32 // 32 bit calling convention, shared by all
// 32-bit don't pass parameters in regs, but these are convenient to have anyway when we have to
// choose regs to put stuff in.
#define ABI_PARAM1 RCX
#define ABI_PARAM2 RDX
// There are no ABI_PARAM* here, since args are pushed.
// 32-bit bog standard cdecl, shared between linux and windows
// MacOSX 32-bit is same as System V with a few exceptions that we probably don't care much about.
#define ABI_ALL_CALLEE_SAVED ((1 << EAX) | (1 << ECX) | (1 << EDX) | \
0xff00 /* xmm0..7 */)
#else // 64 bit calling convention
#ifdef _WIN32 // 64-bit Windows - the really exotic calling convention #ifdef _WIN32 // 64-bit Windows - the really exotic calling convention
#define ABI_PARAM1 RCX #define ABI_PARAM1 RCX
@ -74,4 +50,3 @@
#endif // WIN32 #endif // WIN32
#endif // X86

View File

@ -90,22 +90,12 @@ CPUInfo::CPUInfo() {
void CPUInfo::Detect() void CPUInfo::Detect()
{ {
memset(this, 0, sizeof(*this)); memset(this, 0, sizeof(*this));
#if _M_X86_32 #ifdef _M_X86_64
Mode64bit = false;
#elif _M_X86_64
Mode64bit = true; Mode64bit = true;
OS64bit = true; OS64bit = true;
#endif #endif
num_cores = 1; num_cores = 1;
#ifdef _WIN32
#if _M_X86_32
BOOL f64 = false;
IsWow64Process(GetCurrentProcess(), &f64);
OS64bit = (f64 == TRUE) ? true : false;
#endif
#endif
// Set obvious defaults, for extra safety // Set obvious defaults, for extra safety
if (Mode64bit) { if (Mode64bit) {
bSSE = true; bSSE = true;

View File

@ -125,7 +125,6 @@ void XEmitter::WriteSIB(int scale, int index, int base)
void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
{ {
if (customOp == -1) customOp = operandReg; if (customOp == -1) customOp = operandReg;
#if _M_X86_64
u8 op = 0x40; u8 op = 0x40;
// REX.W (whether operation is a 64-bit operation) // REX.W (whether operation is a 64-bit operation)
if (opBits == 64) op |= 8; if (opBits == 64) op |= 8;
@ -145,17 +144,6 @@ void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0); _dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0);
_dbg_assert_(DYNA_REC, (customOp & 0x100) == 0); _dbg_assert_(DYNA_REC, (customOp & 0x100) == 0);
} }
#else
// Make sure we don't perform a 64-bit operation.
_dbg_assert_(DYNA_REC, opBits != 64);
// Make sure the operation doesn't access R8-R15 registers.
_dbg_assert_(DYNA_REC, (customOp & 8) == 0);
_dbg_assert_(DYNA_REC, (indexReg & 8) == 0);
_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 8) == 0);
// Make sure the operation doesn't access SIL, DIL, BPL, or SPL.
_dbg_assert_(DYNA_REC, opBits != 8 || (customOp & 0x10c) != 4);
_dbg_assert_(DYNA_REC, scale != SCALE_NONE || bits != 8 || (offsetOrBaseReg & 0x10c) != 4);
#endif
} }
void OpArg::WriteVex(XEmitter* emit, int size, int packed, Gen::X64Reg regOp1, Gen::X64Reg regOp2) const void OpArg::WriteVex(XEmitter* emit, int size, int packed, Gen::X64Reg regOp1, Gen::X64Reg regOp2) const
@ -208,7 +196,6 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
_offsetOrBaseReg = 5; _offsetOrBaseReg = 5;
emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
//TODO : add some checks //TODO : add some checks
#if _M_X86_64
u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
s64 distance = (s64)offset - (s64)ripAddr; s64 distance = (s64)offset - (s64)ripAddr;
_assert_msg_(DYNA_REC, _assert_msg_(DYNA_REC,
@ -219,9 +206,6 @@ void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
ripAddr, offset); ripAddr, offset);
s32 offs = (s32)distance; s32 offs = (s32)distance;
emit->Write32((u32)offs); emit->Write32((u32)offs);
#else
emit->Write32((u32)offset);
#endif
return; return;
} }
@ -1267,7 +1251,6 @@ void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x6E, tru
void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);} void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) { void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
#if _M_X86_64
// Alternate encoding // Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD // This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = dest; arg.operandReg = dest;
@ -1276,13 +1259,6 @@ void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
Write8(0x0f); Write8(0x0f);
Write8(0x6E); Write8(0x6E);
arg.WriteRest(this, 0); arg.WriteRest(this, 0);
#else
arg.operandReg = dest;
Write8(0xF3);
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
#endif
} }
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) { void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) {
@ -1626,8 +1602,6 @@ void XEmitter::RTDSC() { Write8(0x0F); Write8(0x31); }
void XEmitter::CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2) void XEmitter::CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
{ {
using namespace Gen; using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER #ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg1));
@ -1639,26 +1613,11 @@ void XEmitter::CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
MOV(32, R(RDX), Imm32(arg2)); MOV(32, R(RDX), Imm32(arg2));
CALL(fnptr); CALL(fnptr);
#endif #endif
#else
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(3 * 4);
#endif
#endif
} }
void XEmitter::CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) void XEmitter::CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
{ {
using namespace Gen; using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER #ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg1));
@ -1672,27 +1631,11 @@ void XEmitter::CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32
MOV(32, R(RCX), Imm32(arg3)); MOV(32, R(RCX), Imm32(arg3));
CALL(fnptr); CALL(fnptr);
#endif #endif
#else
ABI_AlignStack(4 * 4);
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(4 * 4);
#endif
#endif
} }
void XEmitter::CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) void XEmitter::CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
{ {
using namespace Gen; using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER #ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg1));
@ -1708,28 +1651,11 @@ void XEmitter::CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32
MOV(32, R(R8), Imm32(arg4)); MOV(32, R(R8), Imm32(arg4));
CALL(fnptr); CALL(fnptr);
#endif #endif
#else
ABI_AlignStack(5 * 4);
PUSH(32, Imm32(arg4));
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(5 * 4);
#endif
#endif
} }
void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{ {
using namespace Gen; using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER #ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1)); MOV(32, R(RDX), Imm32(arg1));
@ -1747,26 +1673,8 @@ void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32
MOV(32, R(R9), Imm32(arg5)); MOV(32, R(R9), Imm32(arg5));
CALL(fnptr); CALL(fnptr);
#endif #endif
#else
ABI_AlignStack(6 * 4);
PUSH(32, Imm32(arg5));
PUSH(32, Imm32(arg4));
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(6 * 4);
#endif
#endif
} }
#if _M_X86_64
// See header // See header
void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) { void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
MOV(32, R(RCX), Imm32(arg0)); MOV(32, R(RCX), Imm32(arg0));
@ -1799,6 +1707,4 @@ void XEmitter::___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u
CALLptr(M(impptr)); CALLptr(M(impptr));
} }
#endif
} }

View File

@ -702,11 +702,7 @@ public:
void ABI_AlignStack(unsigned int frameSize, bool noProlog = false); void ABI_AlignStack(unsigned int frameSize, bool noProlog = false);
void ABI_RestoreStack(unsigned int frameSize, bool noProlog = false); void ABI_RestoreStack(unsigned int frameSize, bool noProlog = false);
#if _M_X86_32
inline int ABI_GetNumXMMRegs() { return 8; }
#else
inline int ABI_GetNumXMMRegs() { return 16; } inline int ABI_GetNumXMMRegs() { return 16; }
#endif
// Strange call wrappers. // Strange call wrappers.
void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2); void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2);
@ -714,17 +710,6 @@ public:
void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4); void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4);
void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5); void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5);
#if _M_X86_32
#define CallCdeclFunction3_I(a,b,c,d) CallCdeclFunction3((void *)(a), (b), (c), (d))
#define CallCdeclFunction4_I(a,b,c,d,e) CallCdeclFunction4((void *)(a), (b), (c), (d), (e))
#define CallCdeclFunction5_I(a,b,c,d,e,f) CallCdeclFunction5((void *)(a), (b), (c), (d), (e), (f))
#define CallCdeclFunction6_I(a,b,c,d,e,f,g) CallCdeclFunction6((void *)(a), (b), (c), (d), (e), (f), (g))
#define DECLARE_IMPORT(x)
#else
// Comments from VertexLoader.cpp about these horrors: // Comments from VertexLoader.cpp about these horrors:
// This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit // This is a horrible hack that is necessary in 64-bit mode because Opengl32.dll is based way, way above the 32-bit
@ -743,8 +728,6 @@ public:
#define DECLARE_IMPORT(x) extern "C" void *__imp_##x #define DECLARE_IMPORT(x) extern "C" void *__imp_##x
#endif
// Utility to generate a call to a std::function object. // Utility to generate a call to a std::function object.
// //
// Unfortunately, calling operator() directly is undefined behavior in C++ // Unfortunately, calling operator() directly is undefined behavior in C++

View File

@ -32,30 +32,9 @@ namespace FPURoundMode
fesetround(rounding_mode_lut[mode]); fesetround(rounding_mode_lut[mode]);
} }
void SetPrecisionMode(PrecisionMode mode) void SetPrecisionMode(PrecisionMode /* mode */)
{ {
#ifdef _M_X86_32 //x64 doesn't need this - fpu is done with SSE
// sets the floating-point lib to 53-bit
// PowerPC has a 53bit floating pipeline only
// eg: sscanf is very sensitive
#ifdef _WIN32
_control87(_PC_53, MCW_PC);
#else
const unsigned short PRECISION_MASK = 3 << 8;
const unsigned short precision_table[] = {
0 << 8, // 24 bits
2 << 8, // 53 bits
3 << 8, // 64 bits
};
unsigned short _mode;
asm ("fstcw %0" : "=m" (_mode));
_mode = (_mode & ~PRECISION_MASK) | precision_table[mode];
asm ("fldcw %0" : : "m" (_mode));
#endif
#else
//x64 doesn't need this - fpu is done with SSE
//but still - set any useful sse options here
#endif
} }
void SetSIMDMode(int rounding_mode, bool non_ieee_mode) void SetSIMDMode(int rounding_mode, bool non_ieee_mode)

View File

@ -401,15 +401,9 @@ void DSPEmitter::CompileDispatcher()
// Execute block. Cycles executed returned in EAX. // Execute block. Cycles executed returned in EAX.
#if _M_X86_32 MOVZX(64, 16, ECX, M(&g_dsp.pc));
MOVZX(32, 16, ECX, M(&g_dsp.pc));
MOV(32, R(EBX), ImmPtr(blocks));
JMPptr(MComplex(EBX, ECX, SCALE_4, 0));
#else
MOVZX(64, 16, ECX, M(&g_dsp.pc));//for clarity, use 64 here.
MOV(64, R(RBX), ImmPtr(blocks)); MOV(64, R(RBX), ImmPtr(blocks));
JMPptr(MComplex(RBX, RCX, SCALE_8, 0)); JMPptr(MComplex(RBX, RCX, SCALE_8, 0));
#endif
returnDispatcher = GetCodePtr(); returnDispatcher = GetCodePtr();

View File

@ -18,7 +18,6 @@ using namespace Gen;
// flags out: --10 0100 // flags out: --10 0100
void DSPEmitter::clr(const UDSPInstruction opc) void DSPEmitter::clr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 reg = (opc >> 11) & 0x1; u8 reg = (opc >> 11) & 0x1;
// dsp_set_long_acc(reg, 0); // dsp_set_long_acc(reg, 0);
MOV(64, R(RAX), Imm64(0)); MOV(64, R(RAX), Imm64(0));
@ -28,9 +27,6 @@ void DSPEmitter::clr(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// CLRL $acR.l // CLRL $acR.l
@ -40,7 +36,6 @@ void DSPEmitter::clr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::clrl(const UDSPInstruction opc) void DSPEmitter::clrl(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
// s64 acc = dsp_round_long_acc(dsp_get_long_acc(reg)); // s64 acc = dsp_round_long_acc(dsp_get_long_acc(reg));
get_long_acc(reg); get_long_acc(reg);
@ -52,9 +47,6 @@ void DSPEmitter::clrl(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -68,7 +60,6 @@ void DSPEmitter::clrl(const UDSPInstruction opc)
// flags out: -x-- ---- // flags out: -x-- ----
void DSPEmitter::andcf(const UDSPInstruction opc) void DSPEmitter::andcf(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
@ -93,9 +84,6 @@ void DSPEmitter::andcf(const UDSPInstruction opc)
SetJumpTarget(exit); SetJumpTarget(exit);
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
} }
#else
Default(opc);
#endif
} }
// ANDF $acD.m, #I // ANDF $acD.m, #I
@ -108,7 +96,6 @@ void DSPEmitter::andcf(const UDSPInstruction opc)
// flags out: -x-- ---- // flags out: -x-- ----
void DSPEmitter::andf(const UDSPInstruction opc) void DSPEmitter::andf(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
@ -132,9 +119,6 @@ void DSPEmitter::andf(const UDSPInstruction opc)
SetJumpTarget(exit); SetJumpTarget(exit);
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -146,7 +130,6 @@ void DSPEmitter::andf(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::tst(const UDSPInstruction opc) void DSPEmitter::tst(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 reg = (opc >> 11) & 0x1; u8 reg = (opc >> 11) & 0x1;
@ -155,9 +138,6 @@ void DSPEmitter::tst(const UDSPInstruction opc)
// Update_SR_Register64(acc); // Update_SR_Register64(acc);
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// TSTAXH $axR.h // TSTAXH $axR.h
@ -167,7 +147,6 @@ void DSPEmitter::tst(const UDSPInstruction opc)
// flags out: --x0 xx00 // flags out: --x0 xx00
void DSPEmitter::tstaxh(const UDSPInstruction opc) void DSPEmitter::tstaxh(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
@ -176,9 +155,6 @@ void DSPEmitter::tstaxh(const UDSPInstruction opc)
// Update_SR_Register16(val); // Update_SR_Register16(val);
Update_SR_Register16(); Update_SR_Register16();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -190,7 +166,6 @@ void DSPEmitter::tstaxh(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::cmp(const UDSPInstruction opc) void DSPEmitter::cmp(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
X64Reg tmp1; X64Reg tmp1;
@ -207,9 +182,6 @@ void DSPEmitter::cmp(const UDSPInstruction opc)
Update_SR_Register64_Carry2(EAX, tmp1); Update_SR_Register64_Carry2(EAX, tmp1);
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
} }
#else
Default(opc);
#endif
} }
// CMPAR $acS axR.h // CMPAR $acS axR.h
@ -220,7 +192,6 @@ void DSPEmitter::cmp(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::cmpar(const UDSPInstruction opc) void DSPEmitter::cmpar(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 rreg = ((opc >> 12) & 0x1); u8 rreg = ((opc >> 12) & 0x1);
@ -242,9 +213,6 @@ void DSPEmitter::cmpar(const UDSPInstruction opc)
Update_SR_Register64_Carry2(EAX, tmp1); Update_SR_Register64_Carry2(EAX, tmp1);
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
} }
#else
Default(opc);
#endif
} }
// CMPI $amD, #I // CMPI $amD, #I
@ -256,7 +224,6 @@ void DSPEmitter::cmpar(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::cmpi(const UDSPInstruction opc) void DSPEmitter::cmpi(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
@ -275,9 +242,6 @@ void DSPEmitter::cmpi(const UDSPInstruction opc)
Update_SR_Register64_Carry2(EAX, tmp1); Update_SR_Register64_Carry2(EAX, tmp1);
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
} }
#else
Default(opc);
#endif
} }
// CMPIS $acD, #I // CMPIS $acD, #I
@ -289,7 +253,6 @@ void DSPEmitter::cmpi(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::cmpis(const UDSPInstruction opc) void DSPEmitter::cmpis(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
u8 areg = (opc >> 8) & 0x1; u8 areg = (opc >> 8) & 0x1;
@ -308,9 +271,6 @@ void DSPEmitter::cmpis(const UDSPInstruction opc)
Update_SR_Register64_Carry2(EAX, tmp1); Update_SR_Register64_Carry2(EAX, tmp1);
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -324,7 +284,6 @@ void DSPEmitter::cmpis(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::xorr(const UDSPInstruction opc) void DSPEmitter::xorr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] ^ g_dsp.r.axh[sreg]; // u16 accm = g_dsp.r.acm[dreg] ^ g_dsp.r.axh[sreg];
@ -339,9 +298,6 @@ void DSPEmitter::xorr(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// ANDR $acD.m, $axS.h // ANDR $acD.m, $axS.h
@ -353,7 +309,6 @@ void DSPEmitter::xorr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::andr(const UDSPInstruction opc) void DSPEmitter::andr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] & g_dsp.r.axh[sreg]; // u16 accm = g_dsp.r.acm[dreg] & g_dsp.r.axh[sreg];
@ -368,9 +323,6 @@ void DSPEmitter::andr(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// ORR $acD.m, $axS.h // ORR $acD.m, $axS.h
@ -382,7 +334,6 @@ void DSPEmitter::andr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::orr(const UDSPInstruction opc) void DSPEmitter::orr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] | g_dsp.r.axh[sreg]; // u16 accm = g_dsp.r.acm[dreg] | g_dsp.r.axh[sreg];
@ -397,9 +348,6 @@ void DSPEmitter::orr(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// ANDC $acD.m, $ac(1-D).m // ANDC $acD.m, $ac(1-D).m
@ -411,7 +359,6 @@ void DSPEmitter::orr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::andc(const UDSPInstruction opc) void DSPEmitter::andc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] & g_dsp.r.acm[1 - dreg]; // u16 accm = g_dsp.r.acm[dreg] & g_dsp.r.acm[1 - dreg];
get_acc_m(dreg, RAX); get_acc_m(dreg, RAX);
@ -425,9 +372,6 @@ void DSPEmitter::andc(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// ORC $acD.m, $ac(1-D).m // ORC $acD.m, $ac(1-D).m
@ -439,7 +383,6 @@ void DSPEmitter::andc(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::orc(const UDSPInstruction opc) void DSPEmitter::orc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] | g_dsp.r.acm[1 - dreg]; // u16 accm = g_dsp.r.acm[dreg] | g_dsp.r.acm[1 - dreg];
get_acc_m(dreg, RAX); get_acc_m(dreg, RAX);
@ -453,9 +396,6 @@ void DSPEmitter::orc(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// XORC $acD.m // XORC $acD.m
@ -466,7 +406,6 @@ void DSPEmitter::orc(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::xorc(const UDSPInstruction opc) void DSPEmitter::xorc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] ^ g_dsp.r.acm[1 - dreg]; // u16 accm = g_dsp.r.acm[dreg] ^ g_dsp.r.acm[1 - dreg];
get_acc_m(dreg, RAX); get_acc_m(dreg, RAX);
@ -480,9 +419,6 @@ void DSPEmitter::xorc(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// NOT $acD.m // NOT $acD.m
@ -493,7 +429,6 @@ void DSPEmitter::xorc(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::notc(const UDSPInstruction opc) void DSPEmitter::notc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// u16 accm = g_dsp.r.acm[dreg] ^ 0xffff; // u16 accm = g_dsp.r.acm[dreg] ^ 0xffff;
get_acc_m(dreg, RAX); get_acc_m(dreg, RAX);
@ -506,9 +441,6 @@ void DSPEmitter::notc(const UDSPInstruction opc)
get_long_acc(dreg, RCX); get_long_acc(dreg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// XORI $acD.m, #I // XORI $acD.m, #I
@ -520,7 +452,6 @@ void DSPEmitter::notc(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::xori(const UDSPInstruction opc) void DSPEmitter::xori(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
// u16 imm = dsp_fetch_code(); // u16 imm = dsp_fetch_code();
u16 imm = dsp_imem_read(compilePC+1); u16 imm = dsp_imem_read(compilePC+1);
@ -534,9 +465,6 @@ void DSPEmitter::xori(const UDSPInstruction opc)
get_long_acc(reg, RCX); get_long_acc(reg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// ANDI $acD.m, #I // ANDI $acD.m, #I
@ -547,7 +475,6 @@ void DSPEmitter::xori(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::andi(const UDSPInstruction opc) void DSPEmitter::andi(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
// u16 imm = dsp_fetch_code(); // u16 imm = dsp_fetch_code();
u16 imm = dsp_imem_read(compilePC+1); u16 imm = dsp_imem_read(compilePC+1);
@ -561,9 +488,6 @@ void DSPEmitter::andi(const UDSPInstruction opc)
get_long_acc(reg, RCX); get_long_acc(reg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
// ORI $acD.m, #I // ORI $acD.m, #I
@ -574,7 +498,6 @@ void DSPEmitter::andi(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::ori(const UDSPInstruction opc) void DSPEmitter::ori(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 reg = (opc >> 8) & 0x1; u8 reg = (opc >> 8) & 0x1;
// u16 imm = dsp_fetch_code(); // u16 imm = dsp_fetch_code();
u16 imm = dsp_imem_read(compilePC+1); u16 imm = dsp_imem_read(compilePC+1);
@ -588,9 +511,6 @@ void DSPEmitter::ori(const UDSPInstruction opc)
get_long_acc(reg, RCX); get_long_acc(reg, RCX);
Update_SR_Register16_OverS32(); Update_SR_Register16_OverS32();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -602,7 +522,6 @@ void DSPEmitter::ori(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::addr(const UDSPInstruction opc) void DSPEmitter::addr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = ((opc >> 9) & 0x3) + DSP_REG_AXL0; u8 sreg = ((opc >> 9) & 0x3) + DSP_REG_AXL0;
@ -630,9 +549,6 @@ void DSPEmitter::addr(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// ADDAX $acD, $axS // ADDAX $acD, $axS
@ -642,7 +558,6 @@ void DSPEmitter::addr(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::addax(const UDSPInstruction opc) void DSPEmitter::addax(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -669,9 +584,6 @@ void DSPEmitter::addax(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// ADD $acD, $ac(1-D) // ADD $acD, $ac(1-D)
@ -681,7 +593,6 @@ void DSPEmitter::addax(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::add(const UDSPInstruction opc) void DSPEmitter::add(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
@ -707,9 +618,6 @@ void DSPEmitter::add(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// ADDP $acD // ADDP $acD
@ -719,7 +627,6 @@ void DSPEmitter::add(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::addp(const UDSPInstruction opc) void DSPEmitter::addp(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
@ -745,9 +652,6 @@ void DSPEmitter::addp(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// ADDAXL $acD, $axS.l // ADDAXL $acD, $axS.l
@ -758,7 +662,6 @@ void DSPEmitter::addp(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::addaxl(const UDSPInstruction opc) void DSPEmitter::addaxl(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
@ -786,9 +689,6 @@ void DSPEmitter::addaxl(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// ADDI $amR, #I // ADDI $amR, #I
@ -799,7 +699,6 @@ void DSPEmitter::addaxl(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::addi(const UDSPInstruction opc) void DSPEmitter::addi(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 areg = (opc >> 8) & 0x1; u8 areg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
@ -828,9 +727,6 @@ void DSPEmitter::addi(const UDSPInstruction opc)
set_long_acc(areg, RAX); set_long_acc(areg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// ADDIS $acD, #I // ADDIS $acD, #I
@ -840,7 +736,6 @@ void DSPEmitter::addi(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::addis(const UDSPInstruction opc) void DSPEmitter::addis(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
@ -869,9 +764,6 @@ void DSPEmitter::addis(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// INCM $acsD // INCM $acsD
@ -881,7 +773,6 @@ void DSPEmitter::addis(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::incm(const UDSPInstruction opc) void DSPEmitter::incm(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
s64 subtract = 0x10000; s64 subtract = 0x10000;
X64Reg tmp1; X64Reg tmp1;
@ -906,9 +797,6 @@ void DSPEmitter::incm(const UDSPInstruction opc)
set_long_acc(dreg); set_long_acc(dreg);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// INC $acD // INC $acD
@ -918,7 +806,6 @@ void DSPEmitter::incm(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::inc(const UDSPInstruction opc) void DSPEmitter::inc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
@ -942,9 +829,6 @@ void DSPEmitter::inc(const UDSPInstruction opc)
set_long_acc(dreg); set_long_acc(dreg);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
//---- //----
@ -956,7 +840,6 @@ void DSPEmitter::inc(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::subr(const UDSPInstruction opc) void DSPEmitter::subr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = ((opc >> 9) & 0x3) + DSP_REG_AXL0; u8 sreg = ((opc >> 9) & 0x3) + DSP_REG_AXL0;
@ -986,9 +869,6 @@ void DSPEmitter::subr(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// SUBAX $acD, $axS // SUBAX $acD, $axS
@ -998,7 +878,6 @@ void DSPEmitter::subr(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::subax(const UDSPInstruction opc) void DSPEmitter::subax(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -1026,9 +905,6 @@ void DSPEmitter::subax(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// SUB $acD, $ac(1-D) // SUB $acD, $ac(1-D)
@ -1038,7 +914,6 @@ void DSPEmitter::subax(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::sub(const UDSPInstruction opc) void DSPEmitter::sub(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
@ -1064,9 +939,6 @@ void DSPEmitter::sub(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// SUBP $acD // SUBP $acD
@ -1076,7 +948,6 @@ void DSPEmitter::sub(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::subp(const UDSPInstruction opc) void DSPEmitter::subp(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
X64Reg tmp1; X64Reg tmp1;
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
@ -1102,9 +973,6 @@ void DSPEmitter::subp(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// DECM $acsD // DECM $acsD
@ -1114,7 +982,6 @@ void DSPEmitter::subp(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::decm(const UDSPInstruction opc) void DSPEmitter::decm(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x01; u8 dreg = (opc >> 8) & 0x01;
s64 subtract = 0x10000; s64 subtract = 0x10000;
X64Reg tmp1; X64Reg tmp1;
@ -1139,9 +1006,6 @@ void DSPEmitter::decm(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// DEC $acD // DEC $acD
@ -1151,7 +1015,6 @@ void DSPEmitter::decm(const UDSPInstruction opc)
// flags out: x-xx xxxx // flags out: x-xx xxxx
void DSPEmitter::dec(const UDSPInstruction opc) void DSPEmitter::dec(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x01; u8 dreg = (opc >> 8) & 0x01;
X64Reg tmp1; X64Reg tmp1;
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
@ -1175,9 +1038,6 @@ void DSPEmitter::dec(const UDSPInstruction opc)
set_long_acc(dreg); set_long_acc(dreg);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
//---- //----
@ -1189,7 +1049,6 @@ void DSPEmitter::dec(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::neg(const UDSPInstruction opc) void DSPEmitter::neg(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// s64 acc = dsp_get_long_acc(dreg); // s64 acc = dsp_get_long_acc(dreg);
get_long_acc(dreg); get_long_acc(dreg);
@ -1202,9 +1061,6 @@ void DSPEmitter::neg(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// ABS $acD // ABS $acD
@ -1214,7 +1070,6 @@ void DSPEmitter::neg(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::abs(const UDSPInstruction opc) void DSPEmitter::abs(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 11) & 0x1; u8 dreg = (opc >> 11) & 0x1;
// s64 acc = dsp_get_long_acc(dreg); // s64 acc = dsp_get_long_acc(dreg);
@ -1230,9 +1085,6 @@ void DSPEmitter::abs(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -1245,7 +1097,6 @@ void DSPEmitter::abs(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::movr(const UDSPInstruction opc) void DSPEmitter::movr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 areg = (opc >> 8) & 0x1; u8 areg = (opc >> 8) & 0x1;
u8 sreg = ((opc >> 9) & 0x3) + DSP_REG_AXL0; u8 sreg = ((opc >> 9) & 0x3) + DSP_REG_AXL0;
@ -1260,9 +1111,6 @@ void DSPEmitter::movr(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MOVAX $acD, $axS // MOVAX $acD, $axS
@ -1272,7 +1120,6 @@ void DSPEmitter::movr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::movax(const UDSPInstruction opc) void DSPEmitter::movax(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -1285,9 +1132,6 @@ void DSPEmitter::movax(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MOV $acD, $ac(1-D) // MOV $acD, $ac(1-D)
@ -1297,7 +1141,6 @@ void DSPEmitter::movax(const UDSPInstruction opc)
// flags out: --x0 xx00 // flags out: --x0 xx00
void DSPEmitter::mov(const UDSPInstruction opc) void DSPEmitter::mov(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// u64 acc = dsp_get_long_acc(1 - dreg); // u64 acc = dsp_get_long_acc(1 - dreg);
get_long_acc(1 - dreg); get_long_acc(1 - dreg);
@ -1308,9 +1151,6 @@ void DSPEmitter::mov(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -1322,7 +1162,6 @@ void DSPEmitter::mov(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsl16(const UDSPInstruction opc) void DSPEmitter::lsl16(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 areg = (opc >> 8) & 0x1; u8 areg = (opc >> 8) & 0x1;
// s64 acc = dsp_get_long_acc(areg); // s64 acc = dsp_get_long_acc(areg);
get_long_acc(areg); get_long_acc(areg);
@ -1335,9 +1174,6 @@ void DSPEmitter::lsl16(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// LSR16 $acR // LSR16 $acR
@ -1347,7 +1183,6 @@ void DSPEmitter::lsl16(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsr16(const UDSPInstruction opc) void DSPEmitter::lsr16(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 areg = (opc >> 8) & 0x1; u8 areg = (opc >> 8) & 0x1;
// u64 acc = dsp_get_long_acc(areg); // u64 acc = dsp_get_long_acc(areg);
@ -1363,9 +1198,6 @@ void DSPEmitter::lsr16(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// ASR16 $acR // ASR16 $acR
@ -1375,7 +1207,6 @@ void DSPEmitter::lsr16(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::asr16(const UDSPInstruction opc) void DSPEmitter::asr16(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 areg = (opc >> 11) & 0x1; u8 areg = (opc >> 11) & 0x1;
// s64 acc = dsp_get_long_acc(areg); // s64 acc = dsp_get_long_acc(areg);
@ -1389,9 +1220,6 @@ void DSPEmitter::asr16(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// LSL $acR, #I // LSL $acR, #I
@ -1401,7 +1229,6 @@ void DSPEmitter::asr16(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsl(const UDSPInstruction opc) void DSPEmitter::lsl(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x01; u8 rreg = (opc >> 8) & 0x01;
u16 shift = opc & 0x3f; u16 shift = opc & 0x3f;
// u64 acc = dsp_get_long_acc(rreg); // u64 acc = dsp_get_long_acc(rreg);
@ -1417,9 +1244,6 @@ void DSPEmitter::lsl(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// LSR $acR, #I // LSR $acR, #I
@ -1430,7 +1254,6 @@ void DSPEmitter::lsl(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsr(const UDSPInstruction opc) void DSPEmitter::lsr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x01; u8 rreg = (opc >> 8) & 0x01;
u16 shift; u16 shift;
// u64 acc = dsp_get_long_acc(rreg); // u64 acc = dsp_get_long_acc(rreg);
@ -1456,9 +1279,6 @@ void DSPEmitter::lsr(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// ASL $acR, #I // ASL $acR, #I
@ -1468,7 +1288,6 @@ void DSPEmitter::lsr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::asl(const UDSPInstruction opc) void DSPEmitter::asl(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x01; u8 rreg = (opc >> 8) & 0x01;
u16 shift = opc & 0x3f; u16 shift = opc & 0x3f;
// u64 acc = dsp_get_long_acc(rreg); // u64 acc = dsp_get_long_acc(rreg);
@ -1482,9 +1301,6 @@ void DSPEmitter::asl(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// ASR $acR, #I // ASR $acR, #I
@ -1495,7 +1311,6 @@ void DSPEmitter::asl(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::asr(const UDSPInstruction opc) void DSPEmitter::asr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x01; u8 dreg = (opc >> 8) & 0x01;
u16 shift; u16 shift;
@ -1517,9 +1332,6 @@ void DSPEmitter::asr(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// LSRN (fixed parameters) // LSRN (fixed parameters)
@ -1530,7 +1342,6 @@ void DSPEmitter::asr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsrn(const UDSPInstruction opc) void DSPEmitter::lsrn(const UDSPInstruction opc)
{ {
#if _M_X86_64
// s16 shift; // s16 shift;
// u16 accm = (u16)dsp_get_acc_m(1); // u16 accm = (u16)dsp_get_acc_m(1);
get_acc_m(1); get_acc_m(1);
@ -1580,9 +1391,6 @@ void DSPEmitter::lsrn(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }
// ASRN (fixed parameters) // ASRN (fixed parameters)
@ -1593,7 +1401,6 @@ void DSPEmitter::lsrn(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::asrn(const UDSPInstruction opc) void DSPEmitter::asrn(const UDSPInstruction opc)
{ {
#if _M_X86_64
// s16 shift; // s16 shift;
// u16 accm = (u16)dsp_get_acc_m(1); // u16 accm = (u16)dsp_get_acc_m(1);
get_acc_m(1); get_acc_m(1);
@ -1638,9 +1445,6 @@ void DSPEmitter::asrn(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }
// LSRNRX $acD, $axS.h // LSRNRX $acD, $axS.h
@ -1651,7 +1455,6 @@ void DSPEmitter::asrn(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsrnrx(const UDSPInstruction opc) void DSPEmitter::lsrnrx(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -1702,9 +1505,6 @@ void DSPEmitter::lsrnrx(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }
// ASRNRX $acD, $axS.h // ASRNRX $acD, $axS.h
@ -1715,7 +1515,6 @@ void DSPEmitter::lsrnrx(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::asrnrx(const UDSPInstruction opc) void DSPEmitter::asrnrx(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -1763,9 +1562,6 @@ void DSPEmitter::asrnrx(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }
// LSRNR $acD // LSRNR $acD
@ -1776,7 +1572,6 @@ void DSPEmitter::asrnrx(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::lsrnr(const UDSPInstruction opc) void DSPEmitter::lsrnr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// s16 shift; // s16 shift;
@ -1825,9 +1620,6 @@ void DSPEmitter::lsrnr(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }
// ASRNR $acD // ASRNR $acD
@ -1838,7 +1630,6 @@ void DSPEmitter::lsrnr(const UDSPInstruction opc)
// flags out: --xx xx00 // flags out: --xx xx00
void DSPEmitter::asrnr(const UDSPInstruction opc) void DSPEmitter::asrnr(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// s16 shift; // s16 shift;
@ -1884,9 +1675,6 @@ void DSPEmitter::asrnr(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }

View File

@ -13,7 +13,6 @@ using namespace Gen;
// Clobbers RDX // Clobbers RDX
void DSPEmitter::Update_SR_Register(Gen::X64Reg val) void DSPEmitter::Update_SR_Register(Gen::X64Reg val)
{ {
#if _M_X86_64
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
// // 0x04 // // 0x04
@ -50,21 +49,18 @@ void DSPEmitter::Update_SR_Register(Gen::X64Reg val)
OR(16, sr_reg, Imm16(SR_TOP2BITS)); OR(16, sr_reg, Imm16(SR_TOP2BITS));
SetJumpTarget(cC); SetJumpTarget(cC);
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
#endif
} }
// In: RAX: s64 _Value // In: RAX: s64 _Value
// Clobbers RDX // Clobbers RDX
void DSPEmitter::Update_SR_Register64(Gen::X64Reg val) void DSPEmitter::Update_SR_Register64(Gen::X64Reg val)
{ {
#if _M_X86_64
// g_dsp.r[DSP_REG_SR] &= ~SR_CMP_MASK; // g_dsp.r[DSP_REG_SR] &= ~SR_CMP_MASK;
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
AND(16, sr_reg, Imm16(~SR_CMP_MASK)); AND(16, sr_reg, Imm16(~SR_CMP_MASK));
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
Update_SR_Register(val); Update_SR_Register(val);
#endif
} }
// In: (val): s64 _Value // In: (val): s64 _Value
@ -72,7 +68,6 @@ void DSPEmitter::Update_SR_Register64(Gen::X64Reg val)
// Clobbers RDX // Clobbers RDX
void DSPEmitter::Update_SR_Register64_Carry(X64Reg val, X64Reg carry_ovfl) void DSPEmitter::Update_SR_Register64_Carry(X64Reg val, X64Reg carry_ovfl)
{ {
#if _M_X86_64
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
// g_dsp.r[DSP_REG_SR] &= ~SR_CMP_MASK; // g_dsp.r[DSP_REG_SR] &= ~SR_CMP_MASK;
@ -101,7 +96,6 @@ void DSPEmitter::Update_SR_Register64_Carry(X64Reg val, X64Reg carry_ovfl)
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
Update_SR_Register(val); Update_SR_Register(val);
#endif
} }
// In: (val): s64 _Value // In: (val): s64 _Value
@ -109,7 +103,6 @@ void DSPEmitter::Update_SR_Register64_Carry(X64Reg val, X64Reg carry_ovfl)
// Clobbers RDX // Clobbers RDX
void DSPEmitter::Update_SR_Register64_Carry2(X64Reg val, X64Reg carry_ovfl) void DSPEmitter::Update_SR_Register64_Carry2(X64Reg val, X64Reg carry_ovfl)
{ {
#if _M_X86_64
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
// g_dsp.r[DSP_REG_SR] &= ~SR_CMP_MASK; // g_dsp.r[DSP_REG_SR] &= ~SR_CMP_MASK;
@ -138,7 +131,6 @@ void DSPEmitter::Update_SR_Register64_Carry2(X64Reg val, X64Reg carry_ovfl)
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
Update_SR_Register(); Update_SR_Register();
#endif
} }
//void DSPEmitter::Update_SR_Register16(s16 _Value, bool carry, bool overflow, bool overS32) //void DSPEmitter::Update_SR_Register16(s16 _Value, bool carry, bool overflow, bool overS32)
@ -155,7 +147,6 @@ void DSPEmitter::Update_SR_Register64_Carry2(X64Reg val, X64Reg carry_ovfl)
// Clobbers RDX // Clobbers RDX
void DSPEmitter::Update_SR_Register16(X64Reg val) void DSPEmitter::Update_SR_Register16(X64Reg val)
{ {
#if _M_X86_64
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
AND(16, sr_reg, Imm16(~SR_CMP_MASK)); AND(16, sr_reg, Imm16(~SR_CMP_MASK));
@ -190,14 +181,12 @@ void DSPEmitter::Update_SR_Register16(X64Reg val)
SetJumpTarget(notThree); SetJumpTarget(notThree);
SetJumpTarget(cC); SetJumpTarget(cC);
gpr.putReg(DSP_REG_SR); gpr.putReg(DSP_REG_SR);
#endif
} }
// In: RAX: s64 _Value // In: RAX: s64 _Value
// Clobbers RDX // Clobbers RDX
void DSPEmitter::Update_SR_Register16_OverS32(Gen::X64Reg val) void DSPEmitter::Update_SR_Register16_OverS32(Gen::X64Reg val)
{ {
#if _M_X86_64
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
AND(16, sr_reg, Imm16(~SR_CMP_MASK)); AND(16, sr_reg, Imm16(~SR_CMP_MASK));
@ -215,7 +204,6 @@ void DSPEmitter::Update_SR_Register16_OverS32(Gen::X64Reg val)
// if ((((u16)_Value >> 14) == 0) || (((u16)_Value >> 14) == 3)) // if ((((u16)_Value >> 14) == 0) || (((u16)_Value >> 14) == 3))
//AND(32, R(val), Imm32(0xc0000000)); //AND(32, R(val), Imm32(0xc0000000));
Update_SR_Register16(val); Update_SR_Register16(val);
#endif
} }
//void DSPEmitter::Update_SR_LZ(bool value) { //void DSPEmitter::Update_SR_LZ(bool value) {

View File

@ -17,7 +17,6 @@ using namespace Gen;
// In: RCX = s16 a, RAX = s16 b // In: RCX = s16 a, RAX = s16 b
void DSPEmitter::multiply() void DSPEmitter::multiply()
{ {
#if _M_X86_64
// prod = (s16)a * (s16)b; //signed // prod = (s16)a * (s16)b; //signed
IMUL(64, R(ECX)); IMUL(64, R(ECX));
@ -32,35 +31,30 @@ void DSPEmitter::multiply()
SetJumpTarget(noMult2); SetJumpTarget(noMult2);
gpr.putReg(DSP_REG_SR, false); gpr.putReg(DSP_REG_SR, false);
// return prod; // return prod;
#endif
} }
// Returns s64 in RAX // Returns s64 in RAX
// Clobbers RDX // Clobbers RDX
void DSPEmitter::multiply_add() void DSPEmitter::multiply_add()
{ {
#if _M_X86_64
// s64 prod = dsp_get_long_prod() + dsp_get_multiply_prod(a, b, sign); // s64 prod = dsp_get_long_prod() + dsp_get_multiply_prod(a, b, sign);
multiply(); multiply();
MOV(64, R(RDX), R(RAX)); MOV(64, R(RDX), R(RAX));
get_long_prod(); get_long_prod();
ADD(64, R(RAX), R(RDX)); ADD(64, R(RAX), R(RDX));
// return prod; // return prod;
#endif
} }
// Returns s64 in RAX // Returns s64 in RAX
// Clobbers RDX // Clobbers RDX
void DSPEmitter::multiply_sub() void DSPEmitter::multiply_sub()
{ {
#if _M_X86_64
// s64 prod = dsp_get_long_prod() - dsp_get_multiply_prod(a, b, sign); // s64 prod = dsp_get_long_prod() - dsp_get_multiply_prod(a, b, sign);
multiply(); multiply();
MOV(64, R(RDX), R(RAX)); MOV(64, R(RDX), R(RAX));
get_long_prod(); get_long_prod();
SUB(64, R(RAX), R(RDX)); SUB(64, R(RAX), R(RDX));
// return prod; // return prod;
#endif
} }
// Only MULX family instructions have unsigned/mixed support. // Only MULX family instructions have unsigned/mixed support.
@ -69,7 +63,6 @@ void DSPEmitter::multiply_sub()
// Returns s64 in RAX // Returns s64 in RAX
void DSPEmitter::multiply_mulx(u8 axh0, u8 axh1) void DSPEmitter::multiply_mulx(u8 axh0, u8 axh1)
{ {
#if _M_X86_64
// s64 result; // s64 result;
// if ((axh0==0) && (axh1==0)) // if ((axh0==0) && (axh1==0))
@ -141,7 +134,6 @@ void DSPEmitter::multiply_mulx(u8 axh0, u8 axh1)
SetJumpTarget(noMult2); SetJumpTarget(noMult2);
gpr.putReg(DSP_REG_SR, false); gpr.putReg(DSP_REG_SR, false);
// return prod; // return prod;
#endif
} }
//---- //----
@ -169,7 +161,6 @@ void DSPEmitter::clrp(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::tstprod(const UDSPInstruction opc) void DSPEmitter::tstprod(const UDSPInstruction opc)
{ {
#if _M_X86_64
if (FlagsNeeded()) if (FlagsNeeded())
{ {
// s64 prod = dsp_get_long_prod(); // s64 prod = dsp_get_long_prod();
@ -177,9 +168,6 @@ void DSPEmitter::tstprod(const UDSPInstruction opc)
// Update_SR_Register64(prod); // Update_SR_Register64(prod);
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -191,7 +179,6 @@ void DSPEmitter::tstprod(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::movp(const UDSPInstruction opc) void DSPEmitter::movp(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// s64 acc = dsp_get_long_prod(); // s64 acc = dsp_get_long_prod();
@ -203,9 +190,6 @@ void DSPEmitter::movp(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MOVNP $acD // MOVNP $acD
@ -216,7 +200,6 @@ void DSPEmitter::movp(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::movnp(const UDSPInstruction opc) void DSPEmitter::movnp(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
// s64 acc = -dsp_get_long_prod(); // s64 acc = -dsp_get_long_prod();
@ -229,9 +212,6 @@ void DSPEmitter::movnp(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MOVPZ $acD // MOVPZ $acD
@ -242,7 +222,6 @@ void DSPEmitter::movnp(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::movpz(const UDSPInstruction opc) void DSPEmitter::movpz(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x01; u8 dreg = (opc >> 8) & 0x01;
// s64 acc = dsp_get_long_prod_round_prodl(); // s64 acc = dsp_get_long_prod_round_prodl();
@ -254,9 +233,6 @@ void DSPEmitter::movpz(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// ADDPAXZ $acD, $axS // ADDPAXZ $acD, $axS
@ -267,7 +243,6 @@ void DSPEmitter::movpz(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::addpaxz(const UDSPInstruction opc) void DSPEmitter::addpaxz(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 dreg = (opc >> 8) & 0x1; u8 dreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -299,9 +274,6 @@ void DSPEmitter::addpaxz(const UDSPInstruction opc)
set_long_acc(dreg, RAX); set_long_acc(dreg, RAX);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
//---- //----
@ -311,16 +283,12 @@ void DSPEmitter::addpaxz(const UDSPInstruction opc)
// Multiply $ax0.h by $ax0.h // Multiply $ax0.h by $ax0.h
void DSPEmitter::mulaxh(const UDSPInstruction opc) void DSPEmitter::mulaxh(const UDSPInstruction opc)
{ {
#if _M_X86_64
// s64 prod = dsp_multiply(dsp_get_ax_h(0), dsp_get_ax_h(0)); // s64 prod = dsp_multiply(dsp_get_ax_h(0), dsp_get_ax_h(0));
dsp_op_read_reg(DSP_REG_AXH0, RCX, SIGN); dsp_op_read_reg(DSP_REG_AXH0, RCX, SIGN);
MOV(64, R(RAX), R(RCX)); MOV(64, R(RAX), R(RCX));
multiply(); multiply();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
//---- //----
@ -331,7 +299,6 @@ void DSPEmitter::mulaxh(const UDSPInstruction opc)
// $axS.h of secondary accumulator $axS (treat them both as signed). // $axS.h of secondary accumulator $axS (treat them both as signed).
void DSPEmitter::mul(const UDSPInstruction opc) void DSPEmitter::mul(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 sreg = (opc >> 11) & 0x1; u8 sreg = (opc >> 11) & 0x1;
// u16 axl = dsp_get_ax_l(sreg); // u16 axl = dsp_get_ax_l(sreg);
@ -342,9 +309,6 @@ void DSPEmitter::mul(const UDSPInstruction opc)
multiply(); multiply();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MULAC $axS.l, $axS.h, $acR // MULAC $axS.l, $axS.h, $acR
@ -356,7 +320,6 @@ void DSPEmitter::mul(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulac(const UDSPInstruction opc) void DSPEmitter::mulac(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 11) & 0x1; u8 sreg = (opc >> 11) & 0x1;
@ -382,9 +345,6 @@ void DSPEmitter::mulac(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MULMV $axS.l, $axS.h, $acR // MULMV $axS.l, $axS.h, $acR
@ -396,7 +356,6 @@ void DSPEmitter::mulac(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulmv(const UDSPInstruction opc) void DSPEmitter::mulmv(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
// s64 acc = dsp_get_long_prod(); // s64 acc = dsp_get_long_prod();
@ -411,9 +370,6 @@ void DSPEmitter::mulmv(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MULMVZ $axS.l, $axS.h, $acR // MULMVZ $axS.l, $axS.h, $acR
@ -426,7 +382,6 @@ void DSPEmitter::mulmv(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulmvz(const UDSPInstruction opc) void DSPEmitter::mulmvz(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
// s64 acc = dsp_get_long_prod_round_prodl(); // s64 acc = dsp_get_long_prod_round_prodl();
@ -439,9 +394,6 @@ void DSPEmitter::mulmvz(const UDSPInstruction opc)
{ {
Update_SR_Register64(RDX); Update_SR_Register64(RDX);
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -452,7 +404,6 @@ void DSPEmitter::mulmvz(const UDSPInstruction opc)
// Part is selected by S and T bits. Zero selects low part, one selects high part. // Part is selected by S and T bits. Zero selects low part, one selects high part.
void DSPEmitter::mulx(const UDSPInstruction opc) void DSPEmitter::mulx(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 treg = ((opc >> 11) & 0x1); u8 treg = ((opc >> 11) & 0x1);
u8 sreg = ((opc >> 12) & 0x1); u8 sreg = ((opc >> 12) & 0x1);
@ -464,9 +415,6 @@ void DSPEmitter::mulx(const UDSPInstruction opc)
multiply_mulx(sreg, treg); multiply_mulx(sreg, treg);
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MULXAC $ax0.S, $ax1.T, $acR // MULXAC $ax0.S, $ax1.T, $acR
@ -478,7 +426,6 @@ void DSPEmitter::mulx(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulxac(const UDSPInstruction opc) void DSPEmitter::mulxac(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -506,9 +453,6 @@ void DSPEmitter::mulxac(const UDSPInstruction opc)
Update_SR_Register64(tmp1); Update_SR_Register64(tmp1);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// MULXMV $ax0.S, $ax1.T, $acR // MULXMV $ax0.S, $ax1.T, $acR
@ -520,7 +464,6 @@ void DSPEmitter::mulxac(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulxmv(const UDSPInstruction opc) void DSPEmitter::mulxmv(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = ((opc >> 8) & 0x1); u8 rreg = ((opc >> 8) & 0x1);
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -546,9 +489,6 @@ void DSPEmitter::mulxmv(const UDSPInstruction opc)
Update_SR_Register64(tmp1); Update_SR_Register64(tmp1);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
// MULXMV $ax0.S, $ax1.T, $acR // MULXMV $ax0.S, $ax1.T, $acR
@ -561,7 +501,6 @@ void DSPEmitter::mulxmv(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulxmvz(const UDSPInstruction opc) void DSPEmitter::mulxmvz(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -587,9 +526,6 @@ void DSPEmitter::mulxmvz(const UDSPInstruction opc)
Update_SR_Register64(tmp1); Update_SR_Register64(tmp1);
} }
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
#else
Default(opc);
#endif
} }
//---- //----
@ -600,7 +536,6 @@ void DSPEmitter::mulxmvz(const UDSPInstruction opc)
// secondary accumulator $axS (treat them both as signed). // secondary accumulator $axS (treat them both as signed).
void DSPEmitter::mulc(const UDSPInstruction opc) void DSPEmitter::mulc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -612,9 +547,6 @@ void DSPEmitter::mulc(const UDSPInstruction opc)
multiply(); multiply();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MULCAC $acS.m, $axT.h, $acR // MULCAC $acS.m, $axT.h, $acR
@ -626,7 +558,6 @@ void DSPEmitter::mulc(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulcac(const UDSPInstruction opc) void DSPEmitter::mulcac(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -653,9 +584,6 @@ void DSPEmitter::mulcac(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MULCMV $acS.m, $axT.h, $acR // MULCMV $acS.m, $axT.h, $acR
@ -668,7 +596,6 @@ void DSPEmitter::mulcac(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulcmv(const UDSPInstruction opc) void DSPEmitter::mulcmv(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -692,9 +619,6 @@ void DSPEmitter::mulcmv(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
// MULCMVZ $acS.m, $axT.h, $acR // MULCMVZ $acS.m, $axT.h, $acR
@ -708,7 +632,6 @@ void DSPEmitter::mulcmv(const UDSPInstruction opc)
// flags out: --xx xx0x // flags out: --xx xx0x
void DSPEmitter::mulcmvz(const UDSPInstruction opc) void DSPEmitter::mulcmvz(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 rreg = (opc >> 8) & 0x1; u8 rreg = (opc >> 8) & 0x1;
u8 treg = (opc >> 11) & 0x1; u8 treg = (opc >> 11) & 0x1;
u8 sreg = (opc >> 12) & 0x1; u8 sreg = (opc >> 12) & 0x1;
@ -732,9 +655,6 @@ void DSPEmitter::mulcmvz(const UDSPInstruction opc)
{ {
Update_SR_Register64(); Update_SR_Register64();
} }
#else
Default(opc);
#endif
} }
//---- //----
@ -746,7 +666,6 @@ void DSPEmitter::mulcmvz(const UDSPInstruction opc)
// signed) and add result to product register. // signed) and add result to product register.
void DSPEmitter::maddx(const UDSPInstruction opc) void DSPEmitter::maddx(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 treg = (opc >> 8) & 0x1; u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -758,9 +677,6 @@ void DSPEmitter::maddx(const UDSPInstruction opc)
multiply_add(); multiply_add();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MSUBX $(0x18+S*2), $(0x19+T*2) // MSUBX $(0x18+S*2), $(0x19+T*2)
@ -770,7 +686,6 @@ void DSPEmitter::maddx(const UDSPInstruction opc)
// signed) and subtract result from product register. // signed) and subtract result from product register.
void DSPEmitter::msubx(const UDSPInstruction opc) void DSPEmitter::msubx(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 treg = (opc >> 8) & 0x1; u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -782,9 +697,6 @@ void DSPEmitter::msubx(const UDSPInstruction opc)
multiply_sub(); multiply_sub();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MADDC $acS.m, $axT.h // MADDC $acS.m, $axT.h
@ -794,7 +706,6 @@ void DSPEmitter::msubx(const UDSPInstruction opc)
// register. // register.
void DSPEmitter::maddc(const UDSPInstruction opc) void DSPEmitter::maddc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 treg = (opc >> 8) & 0x1; u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -806,9 +717,6 @@ void DSPEmitter::maddc(const UDSPInstruction opc)
multiply_add(); multiply_add();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MSUBC $acS.m, $axT.h // MSUBC $acS.m, $axT.h
@ -818,7 +726,6 @@ void DSPEmitter::maddc(const UDSPInstruction opc)
// product register. // product register.
void DSPEmitter::msubc(const UDSPInstruction opc) void DSPEmitter::msubc(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 treg = (opc >> 8) & 0x1; u8 treg = (opc >> 8) & 0x1;
u8 sreg = (opc >> 9) & 0x1; u8 sreg = (opc >> 9) & 0x1;
@ -830,9 +737,6 @@ void DSPEmitter::msubc(const UDSPInstruction opc)
multiply_sub(); multiply_sub();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MADD $axS.l, $axS.h // MADD $axS.l, $axS.h
@ -842,7 +746,6 @@ void DSPEmitter::msubc(const UDSPInstruction opc)
// result to product register. // result to product register.
void DSPEmitter::madd(const UDSPInstruction opc) void DSPEmitter::madd(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 sreg = (opc >> 8) & 0x1; u8 sreg = (opc >> 8) & 0x1;
// u16 axl = dsp_get_ax_l(sreg); // u16 axl = dsp_get_ax_l(sreg);
@ -853,9 +756,6 @@ void DSPEmitter::madd(const UDSPInstruction opc)
multiply_add(); multiply_add();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }
// MSUB $axS.l, $axS.h // MSUB $axS.l, $axS.h
@ -865,7 +765,6 @@ void DSPEmitter::madd(const UDSPInstruction opc)
// subtract result from product register. // subtract result from product register.
void DSPEmitter::msub(const UDSPInstruction opc) void DSPEmitter::msub(const UDSPInstruction opc)
{ {
#if _M_X86_64
u8 sreg = (opc >> 8) & 0x1; u8 sreg = (opc >> 8) & 0x1;
// u16 axl = dsp_get_ax_l(sreg); // u16 axl = dsp_get_ax_l(sreg);
@ -876,7 +775,4 @@ void DSPEmitter::msub(const UDSPInstruction opc)
multiply_sub(); multiply_sub();
// dsp_set_long_prod(prod); // dsp_set_long_prod(prod);
set_long_prod(); set_long_prod();
#else
Default(opc);
#endif
} }

View File

@ -62,13 +62,11 @@ static void *reg_ptr(int reg)
case DSP_REG_AX0_32: case DSP_REG_AX0_32:
case DSP_REG_AX1_32: case DSP_REG_AX1_32:
return &g_dsp.r.ax[reg - DSP_REG_AX0_32].val; return &g_dsp.r.ax[reg - DSP_REG_AX0_32].val;
#if _M_X86_64
case DSP_REG_ACC0_64: case DSP_REG_ACC0_64:
case DSP_REG_ACC1_64: case DSP_REG_ACC1_64:
return &g_dsp.r.ac[reg - DSP_REG_ACC0_64].val; return &g_dsp.r.ac[reg - DSP_REG_ACC0_64].val;
case DSP_REG_PROD_64: case DSP_REG_PROD_64:
return &g_dsp.r.prod.val; return &g_dsp.r.prod.val;
#endif
default: default:
_assert_msg_(DSPLLE, 0, "cannot happen"); _assert_msg_(DSPLLE, 0, "cannot happen");
return nullptr; return nullptr;
@ -101,7 +99,6 @@ DSPJitRegCache::DSPJitRegCache(DSPEmitter &_emitter)
xregs[RSI].guest_reg = DSP_REG_NONE; xregs[RSI].guest_reg = DSP_REG_NONE;
xregs[RDI].guest_reg = DSP_REG_NONE; xregs[RDI].guest_reg = DSP_REG_NONE;
#if _M_X86_64
#ifdef STATIC_REG_ACCS #ifdef STATIC_REG_ACCS
xregs[R8].guest_reg = DSP_REG_STATIC; //acc0 xregs[R8].guest_reg = DSP_REG_STATIC; //acc0
xregs[R9].guest_reg = DSP_REG_STATIC; //acc1 xregs[R9].guest_reg = DSP_REG_STATIC; //acc1
@ -115,7 +112,6 @@ DSPJitRegCache::DSPJitRegCache(DSPEmitter &_emitter)
xregs[R13].guest_reg = DSP_REG_NONE; xregs[R13].guest_reg = DSP_REG_NONE;
xregs[R14].guest_reg = DSP_REG_NONE; xregs[R14].guest_reg = DSP_REG_NONE;
xregs[R15].guest_reg = DSP_REG_NONE; xregs[R15].guest_reg = DSP_REG_NONE;
#endif
for (unsigned int i = 0; i <= DSP_REG_MAX_MEM_BACKED; i++) for (unsigned int i = 0; i <= DSP_REG_MAX_MEM_BACKED; i++)
{ {
@ -135,7 +131,6 @@ DSPJitRegCache::DSPJitRegCache(DSPEmitter &_emitter)
regs[i].size = 2; regs[i].size = 2;
} }
//special composite registers //special composite registers
#if _M_X86_64
#ifdef STATIC_REG_ACCS #ifdef STATIC_REG_ACCS
regs[DSP_REG_ACC0_64].host_reg = R8; regs[DSP_REG_ACC0_64].host_reg = R8;
regs[DSP_REG_ACC1_64].host_reg = R9; regs[DSP_REG_ACC1_64].host_reg = R9;
@ -160,7 +155,6 @@ DSPJitRegCache::DSPJitRegCache(DSPEmitter &_emitter)
regs[DSP_REG_PRODM].shift = 16; regs[DSP_REG_PRODM].shift = 16;
regs[DSP_REG_PRODH].shift = 32; regs[DSP_REG_PRODH].shift = 32;
regs[DSP_REG_PRODM2].shift = 48; regs[DSP_REG_PRODM2].shift = 48;
#endif
for (unsigned int i = 0; i < 2; i++) for (unsigned int i = 0; i < 2; i++)
{ {
@ -375,7 +369,6 @@ void DSPJitRegCache::flushRegs()
_assert_msg_(DSPLLE, _assert_msg_(DSPLLE,
xregs[RDI].guest_reg == DSP_REG_NONE, xregs[RDI].guest_reg == DSP_REG_NONE,
"wrong xreg state for %d", RDI); "wrong xreg state for %d", RDI);
#if _M_X86_64
#ifdef STATIC_REG_ACCS #ifdef STATIC_REG_ACCS
_assert_msg_(DSPLLE, _assert_msg_(DSPLLE,
xregs[R8].guest_reg == DSP_REG_STATIC, xregs[R8].guest_reg == DSP_REG_STATIC,
@ -409,7 +402,6 @@ void DSPJitRegCache::flushRegs()
_assert_msg_(DSPLLE, _assert_msg_(DSPLLE,
xregs[R15].guest_reg == DSP_REG_NONE, xregs[R15].guest_reg == DSP_REG_NONE,
"wrong xreg state for %d", R15); "wrong xreg state for %d", R15);
#endif
use_ctr = 0; use_ctr = 0;
} }
@ -428,11 +420,7 @@ void DSPJitRegCache::loadRegs(bool emit)
if (emit) if (emit)
{ {
#if _M_X86_64
emitter.MOV(64, M(&ebp_store), R(RBP)); emitter.MOV(64, M(&ebp_store), R(RBP));
#else
emitter.MOV(32, M(&ebp_store), R(EBP));
#endif
} }
} }
@ -455,11 +443,7 @@ void DSPJitRegCache::saveRegs()
"register %x is still a simple reg", i); "register %x is still a simple reg", i);
} }
#if _M_X86_64
emitter.MOV(64, R(RBP), M(&ebp_store)); emitter.MOV(64, R(RBP), M(&ebp_store));
#else
emitter.MOV(32, R(EBP), M(&ebp_store));
#endif
} }
void DSPJitRegCache::pushRegs() void DSPJitRegCache::pushRegs()
@ -482,17 +466,10 @@ void DSPJitRegCache::pushRegs()
} }
//hardcoding alignment to 16 bytes //hardcoding alignment to 16 bytes
#if _M_X86_64
if (push_count & 1) if (push_count & 1)
{ {
emitter.SUB(64,R(RSP),Imm32(8)); emitter.SUB(64,R(RSP),Imm32(8));
} }
#else
if (push_count & 3)
{
emitter.SUB(32,R(ESP),Imm32(16 - 4 * (push_count & 3)));
}
#endif
for (unsigned int i = 0; i < NUMXREGS; i++) for (unsigned int i = 0; i < NUMXREGS; i++)
{ {
@ -519,19 +496,11 @@ void DSPJitRegCache::pushRegs()
"register %x is still used", i); "register %x is still used", i);
} }
#if _M_X86_64
emitter.MOV(64, R(RBP), M(&ebp_store)); emitter.MOV(64, R(RBP), M(&ebp_store));
#else
emitter.MOV(32, R(EBP), M(&ebp_store));
#endif
} }
void DSPJitRegCache::popRegs() { void DSPJitRegCache::popRegs() {
#if _M_X86_64
emitter.MOV(64, M(&ebp_store), R(RBP)); emitter.MOV(64, M(&ebp_store), R(RBP));
#else
emitter.MOV(32, M(&ebp_store), R(EBP));
#endif
int push_count = 0; int push_count = 0;
for (X64CachedReg& xreg : xregs) for (X64CachedReg& xreg : xregs)
{ {
@ -552,17 +521,10 @@ void DSPJitRegCache::popRegs() {
} }
//hardcoding alignment to 16 bytes //hardcoding alignment to 16 bytes
#if _M_X86_64
if (push_count & 1) if (push_count & 1)
{ {
emitter.ADD(64,R(RSP),Imm32(8)); emitter.ADD(64,R(RSP),Imm32(8));
} }
#else
if (push_count & 3)
{
emitter.ADD(32,R(ESP),Imm32(16 - 4 * (push_count & 3)));
}
#endif
for (unsigned int i = 0; i <= DSP_REG_MAX_MEM_BACKED; i++) for (unsigned int i = 0; i <= DSP_REG_MAX_MEM_BACKED; i++)
{ {
@ -589,11 +551,7 @@ X64Reg DSPJitRegCache::makeABICallSafe(X64Reg reg)
emitter.INT3(); emitter.INT3();
} }
xregs[RBP].guest_reg = rbp_guest; xregs[RBP].guest_reg = rbp_guest;
#if _M_X86_64
emitter.MOV(64,R(safe),R(reg)); emitter.MOV(64,R(safe),R(reg));
#else
emitter.MOV(32,R(safe),R(reg));
#endif
return safe; return safe;
} }
@ -626,11 +584,9 @@ void DSPJitRegCache::movToHostReg(size_t reg, X64Reg host_reg, bool load)
case 4: case 4:
emitter.MOV(32, R(host_reg), regs[reg].loc); emitter.MOV(32, R(host_reg), regs[reg].loc);
break; break;
#if _M_X86_64
case 8: case 8:
emitter.MOV(64, R(host_reg), regs[reg].loc); emitter.MOV(64, R(host_reg), regs[reg].loc);
break; break;
#endif
default: default:
_assert_msg_(DSPLLE, 0, "unsupported memory size"); _assert_msg_(DSPLLE, 0, "unsupported memory size");
break; break;
@ -698,11 +654,9 @@ void DSPJitRegCache::rotateHostReg(size_t reg, int shift, bool emit)
case 4: case 4:
emitter.ROR(32, regs[reg].loc, Imm8(shift - regs[reg].shift)); emitter.ROR(32, regs[reg].loc, Imm8(shift - regs[reg].shift));
break; break;
#if _M_X86_64
case 8: case 8:
emitter.ROR(64, regs[reg].loc, Imm8(shift - regs[reg].shift)); emitter.ROR(64, regs[reg].loc, Imm8(shift - regs[reg].shift));
break; break;
#endif
} }
} }
else if (shift < regs[reg].shift && emit) else if (shift < regs[reg].shift && emit)
@ -715,11 +669,9 @@ void DSPJitRegCache::rotateHostReg(size_t reg, int shift, bool emit)
case 4: case 4:
emitter.ROL(32, regs[reg].loc, Imm8(regs[reg].shift - shift)); emitter.ROL(32, regs[reg].loc, Imm8(regs[reg].shift - shift));
break; break;
#if _M_X86_64
case 8: case 8:
emitter.ROL(64, regs[reg].loc, Imm8(regs[reg].shift - shift)); emitter.ROL(64, regs[reg].loc, Imm8(regs[reg].shift - shift));
break; break;
#endif
} }
} }
regs[reg].shift = shift; regs[reg].shift = shift;
@ -770,11 +722,9 @@ void DSPJitRegCache::movToMemory(size_t reg)
case 4: case 4:
emitter.MOV(32, tmp, regs[reg].loc); emitter.MOV(32, tmp, regs[reg].loc);
break; break;
#if _M_X86_64
case 8: case 8:
emitter.MOV(64, tmp, regs[reg].loc); emitter.MOV(64, tmp, regs[reg].loc);
break; break;
#endif
default: default:
_assert_msg_(DSPLLE, 0, "unsupported memory size"); _assert_msg_(DSPLLE, 0, "unsupported memory size");
break; break;
@ -837,7 +787,6 @@ void DSPJitRegCache::getReg(int reg, OpArg &oparg, bool load)
//do some register specific fixup //do some register specific fixup
switch (reg) switch (reg)
{ {
#if _M_X86_64
case DSP_REG_ACC0_64: case DSP_REG_ACC0_64:
case DSP_REG_ACC1_64: case DSP_REG_ACC1_64:
if (load) if (load)
@ -848,7 +797,6 @@ void DSPJitRegCache::getReg(int reg, OpArg &oparg, bool load)
emitter.SAR(64, oparg, Imm8(64-40)); emitter.SAR(64, oparg, Imm8(64-40));
} }
break; break;
#endif
default: default:
break; break;
} }
@ -876,22 +824,7 @@ void DSPJitRegCache::putReg(int reg, bool dirty)
// (if at all) // (if at all)
// sign extend from the bottom 8 bits. // sign extend from the bottom 8 bits.
#if _M_X86_32 emitter.MOVSX(16, 8, oparg.GetSimpleReg(), oparg);
// cannot use movsx with SPL, BPL, SIL or DIL
// on 32 bit
if (oparg.GetSimpleReg() == RSP ||
oparg.GetSimpleReg() == RBP ||
oparg.GetSimpleReg() == RSI ||
oparg.GetSimpleReg() == RDI)
{
emitter.SHL(16,oparg,Imm8(8));
emitter.SAR(16,oparg,Imm8(8));
}
else
#endif
{
emitter.MOVSX(16, 8, oparg.GetSimpleReg(), oparg);
}
} }
else if (oparg.IsImm()) else if (oparg.IsImm())
{ {
@ -910,7 +843,6 @@ void DSPJitRegCache::putReg(int reg, bool dirty)
} }
} }
break; break;
#if _M_X86_64
case DSP_REG_ACC0_64: case DSP_REG_ACC0_64:
case DSP_REG_ACC1_64: case DSP_REG_ACC1_64:
if (dirty) if (dirty)
@ -919,7 +851,6 @@ void DSPJitRegCache::putReg(int reg, bool dirty)
emitter.SAR(64, oparg, Imm8(64-40)); emitter.SAR(64, oparg, Imm8(64-40));
} }
break; break;
#endif
default: default:
break; break;
} }
@ -944,28 +875,18 @@ void DSPJitRegCache::readReg(int sreg, X64Reg host_dreg, DSPJitSignExtend extend
case 2: case 2:
switch (extend) switch (extend)
{ {
#if _M_X86_64
case SIGN: case SIGN:
emitter.MOVSX(64, 16, host_dreg, reg); emitter.MOVSX(64, 16, host_dreg, reg);
break; break;
case ZERO: case ZERO:
emitter.MOVZX(64, 16, host_dreg, reg); emitter.MOVZX(64, 16, host_dreg, reg);
break; break;
#else
case SIGN:
emitter.MOVSX(32, 16, host_dreg, reg);
break;
case ZERO:
emitter.MOVZX(32, 16, host_dreg, reg);
break;
#endif
case NONE: case NONE:
emitter.MOV(16, R(host_dreg), reg); emitter.MOV(16, R(host_dreg), reg);
break; break;
} }
break; break;
case 4: case 4:
#if _M_X86_64
switch (extend) switch (extend)
{ {
case SIGN: case SIGN:
@ -978,15 +899,10 @@ void DSPJitRegCache::readReg(int sreg, X64Reg host_dreg, DSPJitSignExtend extend
emitter.MOV(32, R(host_dreg), reg); emitter.MOV(32, R(host_dreg), reg);
break; break;
} }
#else
emitter.MOV(32, R(host_dreg), reg);
#endif
break; break;
#if _M_X86_64
case 8: case 8:
emitter.MOV(64, R(host_dreg), reg); emitter.MOV(64, R(host_dreg), reg);
break; break;
#endif
default: default:
_assert_msg_(DSPLLE, 0, "unsupported memory size"); _assert_msg_(DSPLLE, 0, "unsupported memory size");
break; break;
@ -1008,7 +924,6 @@ void DSPJitRegCache::writeReg(int dreg, OpArg arg)
case 4: case 4:
emitter.MOV(32, reg, Imm32((u32) arg.offset)); emitter.MOV(32, reg, Imm32((u32) arg.offset));
break; break;
#if _M_X86_64
case 8: case 8:
if ((u32) arg.offset == arg.offset) if ((u32) arg.offset == arg.offset)
{ {
@ -1019,7 +934,6 @@ void DSPJitRegCache::writeReg(int dreg, OpArg arg)
emitter.MOV(64, reg, Imm64(arg.offset)); emitter.MOV(64, reg, Imm64(arg.offset));
} }
break; break;
#endif
default: default:
_assert_msg_(DSPLLE, 0, "unsupported memory size"); _assert_msg_(DSPLLE, 0, "unsupported memory size");
break; break;
@ -1035,11 +949,9 @@ void DSPJitRegCache::writeReg(int dreg, OpArg arg)
case 4: case 4:
emitter.MOV(32, reg, arg); emitter.MOV(32, reg, arg);
break; break;
#if _M_X86_64
case 8: case 8:
emitter.MOV(64, reg, arg); emitter.MOV(64, reg, arg);
break; break;
#endif
default: default:
_assert_msg_(DSPLLE, 0, "unsupported memory size"); _assert_msg_(DSPLLE, 0, "unsupported memory size");
break; break;
@ -1051,11 +963,7 @@ void DSPJitRegCache::writeReg(int dreg, OpArg arg)
//ordered in order of prefered use //ordered in order of prefered use
//not all of these are actually available //not all of these are actually available
static X64Reg alloc_order[] = { static X64Reg alloc_order[] = {
#if _M_X86_64
R8,R9,R10,R11,R12,R13,R14,R15,RSI,RDI,RBX,RCX,RDX,RAX,RBP R8,R9,R10,R11,R12,R13,R14,R15,RSI,RDI,RBX,RCX,RDX,RAX,RBP
#else
ESI,EDI,EBX,ECX,EDX,EAX,EBP
#endif
}; };
X64Reg DSPJitRegCache::spillXReg() X64Reg DSPJitRegCache::spillXReg()

View File

@ -12,14 +12,10 @@ enum DSPJitRegSpecial
{ {
DSP_REG_AX0_32 =32, DSP_REG_AX0_32 =32,
DSP_REG_AX1_32 =33, DSP_REG_AX1_32 =33,
#if _M_X86_64
DSP_REG_ACC0_64 =34, DSP_REG_ACC0_64 =34,
DSP_REG_ACC1_64 =35, DSP_REG_ACC1_64 =35,
DSP_REG_PROD_64 =36, DSP_REG_PROD_64 =36,
DSP_REG_MAX_MEM_BACKED = 36, DSP_REG_MAX_MEM_BACKED = 36,
#else
DSP_REG_MAX_MEM_BACKED = 33,
#endif
DSP_REG_USED =253, DSP_REG_USED =253,
DSP_REG_STATIC =254, DSP_REG_STATIC =254,
@ -33,11 +29,7 @@ enum DSPJitSignExtend
NONE NONE
}; };
#if _M_X86_64
#define NUMXREGS 16 #define NUMXREGS 16
#else
#define NUMXREGS 8
#endif
class DSPJitRegCache class DSPJitRegCache
{ {

View File

@ -25,11 +25,7 @@ void DSPEmitter::dsp_reg_stack_push(int stack_reg)
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
//g_dsp.reg_stack[stack_reg][g_dsp.reg_stack_ptr[stack_reg]] = g_dsp.r[DSP_REG_ST0 + stack_reg]; //g_dsp.reg_stack[stack_reg][g_dsp.reg_stack_ptr[stack_reg]] = g_dsp.r[DSP_REG_ST0 + stack_reg];
MOV(16, R(tmp1), M(&g_dsp.r.st[stack_reg])); MOV(16, R(tmp1), M(&g_dsp.r.st[stack_reg]));
#if _M_X86_64
MOVZX(64, 8, RAX, R(AL)); MOVZX(64, 8, RAX, R(AL));
#else
MOVZX(32, 8, EAX, R(AL));
#endif
MOV(16, MComplex(EAX, EAX, 1, MOV(16, MComplex(EAX, EAX, 1,
PtrOffset(&g_dsp.reg_stack[stack_reg][0],nullptr)), R(tmp1)); PtrOffset(&g_dsp.reg_stack[stack_reg][0],nullptr)), R(tmp1));
gpr.putXReg(tmp1); gpr.putXReg(tmp1);
@ -44,11 +40,7 @@ void DSPEmitter::dsp_reg_stack_pop(int stack_reg)
MOV(8, R(AL), M(&g_dsp.reg_stack_ptr[stack_reg])); MOV(8, R(AL), M(&g_dsp.reg_stack_ptr[stack_reg]));
X64Reg tmp1; X64Reg tmp1;
gpr.getFreeXReg(tmp1); gpr.getFreeXReg(tmp1);
#if _M_X86_64
MOVZX(64, 8, RAX, R(AL)); MOVZX(64, 8, RAX, R(AL));
#else
MOVZX(32, 8, EAX, R(AL));
#endif
MOV(16, R(tmp1), MComplex(EAX, EAX, 1, MOV(16, R(tmp1), MComplex(EAX, EAX, 1,
PtrOffset(&g_dsp.reg_stack[stack_reg][0],nullptr))); PtrOffset(&g_dsp.reg_stack[stack_reg][0],nullptr)));
MOV(16, M(&g_dsp.r.st[stack_reg]), R(tmp1)); MOV(16, M(&g_dsp.r.st[stack_reg]), R(tmp1));
@ -207,18 +199,10 @@ void DSPEmitter::dsp_op_read_reg_dont_saturate(int reg, Gen::X64Reg host_dreg, D
switch (extend) switch (extend)
{ {
case SIGN: case SIGN:
#if _M_X86_64
MOVSX(64, 16, host_dreg, R(host_dreg)); MOVSX(64, 16, host_dreg, R(host_dreg));
#else
MOVSX(32, 16, host_dreg, R(host_dreg));
#endif
break; break;
case ZERO: case ZERO:
#if _M_X86_64
MOVZX(64, 16, host_dreg, R(host_dreg)); MOVZX(64, 16, host_dreg, R(host_dreg));
#else
MOVZX(32, 16, host_dreg, R(host_dreg));
#endif
break; break;
case NONE: case NONE:
default: default:
@ -243,18 +227,10 @@ void DSPEmitter::dsp_op_read_reg(int reg, Gen::X64Reg host_dreg, DSPJitSignExten
switch (extend) switch (extend)
{ {
case SIGN: case SIGN:
#if _M_X86_64
MOVSX(64, 16, host_dreg, R(host_dreg)); MOVSX(64, 16, host_dreg, R(host_dreg));
#else
MOVSX(32, 16, host_dreg, R(host_dreg));
#endif
break; break;
case ZERO: case ZERO:
#if _M_X86_64
MOVZX(64, 16, host_dreg, R(host_dreg)); MOVZX(64, 16, host_dreg, R(host_dreg));
#else
MOVZX(32, 16, host_dreg, R(host_dreg));
#endif
break; break;
case NONE: case NONE:
default: default:
@ -265,12 +241,8 @@ void DSPEmitter::dsp_op_read_reg(int reg, Gen::X64Reg host_dreg, DSPJitSignExten
case DSP_REG_ACM1: case DSP_REG_ACM1:
{ {
//we already know this is ACCM0 or ACCM1 //we already know this is ACCM0 or ACCM1
#if _M_X86_64
OpArg acc_reg; OpArg acc_reg;
gpr.getReg(reg-DSP_REG_ACM0+DSP_REG_ACC0_64, acc_reg); gpr.getReg(reg-DSP_REG_ACM0+DSP_REG_ACC0_64, acc_reg);
#else
gpr.readReg(reg, host_dreg, extend);
#endif
OpArg sr_reg; OpArg sr_reg;
gpr.getReg(DSP_REG_SR,sr_reg); gpr.getReg(DSP_REG_SR,sr_reg);
@ -278,8 +250,6 @@ void DSPEmitter::dsp_op_read_reg(int reg, Gen::X64Reg host_dreg, DSPJitSignExten
TEST(16, sr_reg, Imm16(SR_40_MODE_BIT)); TEST(16, sr_reg, Imm16(SR_40_MODE_BIT));
FixupBranch not_40bit = J_CC(CC_Z, true); FixupBranch not_40bit = J_CC(CC_Z, true);
#if _M_X86_64
MOVSX(64,32,host_dreg,acc_reg); MOVSX(64,32,host_dreg,acc_reg);
CMP(64,R(host_dreg),acc_reg); CMP(64,R(host_dreg),acc_reg);
FixupBranch no_saturate = J_CC(CC_Z); FixupBranch no_saturate = J_CC(CC_Z);
@ -309,42 +279,6 @@ void DSPEmitter::dsp_op_read_reg(int reg, Gen::X64Reg host_dreg, DSPJitSignExten
SetJumpTarget(done_negative); SetJumpTarget(done_negative);
gpr.flushRegs(c); gpr.flushRegs(c);
gpr.putReg(reg-DSP_REG_ACM0+DSP_REG_ACC0_64, false); gpr.putReg(reg-DSP_REG_ACM0+DSP_REG_ACC0_64, false);
#else
DSPJitRegCache c2(gpr);
gpr.putReg(DSP_REG_SR, false);
X64Reg tmp1;
gpr.getFreeXReg(tmp1);
gpr.readReg(reg-DSP_REG_ACM0+DSP_REG_ACH0, tmp1, NONE);
MOVSX(32,16,host_dreg,R(host_dreg));
SHL(32, R(tmp1), Imm8(16));
MOV(16,R(tmp1),R(host_dreg));
CMP(32,R(host_dreg), R(tmp1));
FixupBranch no_saturate = J_CC(CC_Z);
CMP(32,R(tmp1),Imm32(0));
FixupBranch negative = J_CC(CC_LE);
MOV(32,R(host_dreg),Imm32(0x7fff));//this works for all extend modes
FixupBranch done_positive = J();
SetJumpTarget(negative);
if (extend == NONE || extend == ZERO)
MOV(32,R(host_dreg),Imm32(0x00008000));
else
MOV(32,R(host_dreg),Imm32(0xffff8000));
FixupBranch done_negative = J();
SetJumpTarget(no_saturate);
if (extend == ZERO)
MOVZX(32,16,host_dreg,R(host_dreg));
SetJumpTarget(done_positive);
SetJumpTarget(done_negative);
gpr.putXReg(tmp1);
gpr.flushRegs(c2);
SetJumpTarget(not_40bit);
gpr.flushRegs(c);
#endif
gpr.putReg(DSP_REG_SR, false); gpr.putReg(DSP_REG_SR, false);
} }
@ -585,11 +519,7 @@ void DSPEmitter::dmem_write(X64Reg value)
// g_dsp.dram[addr & DSP_DRAM_MASK] = val; // g_dsp.dram[addr & DSP_DRAM_MASK] = val;
AND(16, R(EAX), Imm16(DSP_DRAM_MASK)); AND(16, R(EAX), Imm16(DSP_DRAM_MASK));
#if _M_X86_64
MOV(64, R(ECX), ImmPtr(g_dsp.dram)); MOV(64, R(ECX), ImmPtr(g_dsp.dram));
#else
MOV(32, R(ECX), ImmPtr(g_dsp.dram));
#endif
MOV(16, MComplex(ECX, EAX, 2, 0), R(value)); MOV(16, MComplex(ECX, EAX, 2, 0), R(value));
FixupBranch end = J(true); FixupBranch end = J(true);
@ -610,12 +540,8 @@ void DSPEmitter::dmem_write_imm(u16 address, X64Reg value)
switch (address >> 12) switch (address >> 12)
{ {
case 0x0: // 0xxx DRAM case 0x0: // 0xxx DRAM
#if _M_X86_64
MOV(64, R(RDX), ImmPtr(g_dsp.dram)); MOV(64, R(RDX), ImmPtr(g_dsp.dram));
MOV(16, MDisp(RDX, (address & DSP_DRAM_MASK)*2), R(value)); MOV(16, MDisp(RDX, (address & DSP_DRAM_MASK)*2), R(value));
#else
MOV(16, M(&g_dsp.dram[address & DSP_DRAM_MASK]), R(value));
#endif
break; break;
case 0xf: // Fxxx HW regs case 0xf: // Fxxx HW regs
@ -644,11 +570,7 @@ void DSPEmitter::imem_read(X64Reg address)
FixupBranch irom = J_CC(CC_A); FixupBranch irom = J_CC(CC_A);
// return g_dsp.iram[addr & DSP_IRAM_MASK]; // return g_dsp.iram[addr & DSP_IRAM_MASK];
AND(16, R(address), Imm16(DSP_IRAM_MASK)); AND(16, R(address), Imm16(DSP_IRAM_MASK));
#if _M_X86_64
MOV(64, R(ECX), ImmPtr(g_dsp.iram)); MOV(64, R(ECX), ImmPtr(g_dsp.iram));
#else
MOV(32, R(ECX), ImmPtr(g_dsp.iram));
#endif
MOV(16, R(EAX), MComplex(ECX, address, 2, 0)); MOV(16, R(EAX), MComplex(ECX, address, 2, 0));
FixupBranch end = J(); FixupBranch end = J();
@ -656,11 +578,7 @@ void DSPEmitter::imem_read(X64Reg address)
// else if (addr == 0x8) // else if (addr == 0x8)
// return g_dsp.irom[addr & DSP_IROM_MASK]; // return g_dsp.irom[addr & DSP_IROM_MASK];
AND(16, R(address), Imm16(DSP_IROM_MASK)); AND(16, R(address), Imm16(DSP_IROM_MASK));
#if _M_X86_64
MOV(64, R(ECX), ImmPtr(g_dsp.irom)); MOV(64, R(ECX), ImmPtr(g_dsp.irom));
#else
MOV(32, R(ECX), ImmPtr(g_dsp.irom));
#endif
MOV(16, R(EAX), MComplex(ECX, address, 2, 0)); MOV(16, R(EAX), MComplex(ECX, address, 2, 0));
SetJumpTarget(end); SetJumpTarget(end);
@ -676,12 +594,8 @@ void DSPEmitter::dmem_read(X64Reg address)
FixupBranch dram = J_CC(CC_A); FixupBranch dram = J_CC(CC_A);
// return g_dsp.dram[addr & DSP_DRAM_MASK]; // return g_dsp.dram[addr & DSP_DRAM_MASK];
AND(32, R(address), Imm32(DSP_DRAM_MASK)); AND(32, R(address), Imm32(DSP_DRAM_MASK));
#if _M_X86_64
MOVZX(64, 16, address, R(address)); MOVZX(64, 16, address, R(address));
MOV(64, R(ECX), ImmPtr(g_dsp.dram)); MOV(64, R(ECX), ImmPtr(g_dsp.dram));
#else
MOV(32, R(ECX), ImmPtr(g_dsp.dram));
#endif
MOV(16, R(EAX), MComplex(ECX, address, 2, 0)); MOV(16, R(EAX), MComplex(ECX, address, 2, 0));
FixupBranch end = J(true); FixupBranch end = J(true);
@ -691,12 +605,8 @@ void DSPEmitter::dmem_read(X64Reg address)
FixupBranch ifx = J_CC(CC_A); FixupBranch ifx = J_CC(CC_A);
// return g_dsp.coef[addr & DSP_COEF_MASK]; // return g_dsp.coef[addr & DSP_COEF_MASK];
AND(32, R(address), Imm32(DSP_COEF_MASK)); AND(32, R(address), Imm32(DSP_COEF_MASK));
#if _M_X86_64
MOVZX(64, 16, address, R(address)); MOVZX(64, 16, address, R(address));
MOV(64, R(ECX), ImmPtr(g_dsp.coef)); MOV(64, R(ECX), ImmPtr(g_dsp.coef));
#else
MOV(32, R(ECX), ImmPtr(g_dsp.coef));
#endif
MOV(16, R(EAX), MComplex(ECX, address, 2, 0)); MOV(16, R(EAX), MComplex(ECX, address, 2, 0));
FixupBranch end2 = J(true); FixupBranch end2 = J(true);
@ -718,21 +628,13 @@ void DSPEmitter::dmem_read_imm(u16 address)
switch (address >> 12) switch (address >> 12)
{ {
case 0x0: // 0xxx DRAM case 0x0: // 0xxx DRAM
#if _M_X86_64
MOV(64, R(RDX), ImmPtr(g_dsp.dram)); MOV(64, R(RDX), ImmPtr(g_dsp.dram));
MOV(16, R(EAX), MDisp(RDX, (address & DSP_DRAM_MASK)*2)); MOV(16, R(EAX), MDisp(RDX, (address & DSP_DRAM_MASK)*2));
#else
MOV(16, R(EAX), M(&g_dsp.dram[address & DSP_DRAM_MASK]));
#endif
break; break;
case 0x1: // 1xxx COEF case 0x1: // 1xxx COEF
#if _M_X86_64
MOV(64, R(RDX), ImmPtr(g_dsp.coef)); MOV(64, R(RDX), ImmPtr(g_dsp.coef));
MOV(16, R(EAX), MDisp(RDX, (address & DSP_COEF_MASK)*2)); MOV(16, R(EAX), MDisp(RDX, (address & DSP_COEF_MASK)*2));
#else
MOV(16, R(EAX), Imm16(g_dsp.coef[address & DSP_COEF_MASK]));
#endif
break; break;
case 0xf: // Fxxx HW regs case 0xf: // Fxxx HW regs
@ -751,7 +653,6 @@ void DSPEmitter::dmem_read_imm(u16 address)
// Returns s64 in RAX // Returns s64 in RAX
void DSPEmitter::get_long_prod(X64Reg long_prod) void DSPEmitter::get_long_prod(X64Reg long_prod)
{ {
#if _M_X86_64
//s64 val = (s8)(u8)g_dsp.r[DSP_REG_PRODH]; //s64 val = (s8)(u8)g_dsp.r[DSP_REG_PRODH];
OpArg prod_reg; OpArg prod_reg;
gpr.getReg(DSP_REG_PROD_64, prod_reg); gpr.getReg(DSP_REG_PROD_64, prod_reg);
@ -767,15 +668,12 @@ void DSPEmitter::get_long_prod(X64Reg long_prod)
SHL(64, R(tmp), Imm8(16)); SHL(64, R(tmp), Imm8(16));
ADD(64, R(long_prod), R(tmp)); ADD(64, R(long_prod), R(tmp));
gpr.putXReg(tmp); gpr.putXReg(tmp);
#endif
} }
// Returns s64 in RAX // Returns s64 in RAX
// Clobbers RCX // Clobbers RCX
void DSPEmitter::get_long_prod_round_prodl(X64Reg long_prod) void DSPEmitter::get_long_prod_round_prodl(X64Reg long_prod)
{ {
#if _M_X86_64
//s64 prod = dsp_get_long_prod(); //s64 prod = dsp_get_long_prod();
get_long_prod(long_prod); get_long_prod(long_prod);
@ -796,7 +694,6 @@ void DSPEmitter::get_long_prod_round_prodl(X64Reg long_prod)
SetJumpTarget(_ret); SetJumpTarget(_ret);
//return prod; //return prod;
gpr.putXReg(tmp); gpr.putXReg(tmp);
#endif
} }
// For accurate emulation, this is wrong - but the real prod registers behave // For accurate emulation, this is wrong - but the real prod registers behave
@ -804,7 +701,6 @@ void DSPEmitter::get_long_prod_round_prodl(X64Reg long_prod)
// In: RAX = s64 val // In: RAX = s64 val
void DSPEmitter::set_long_prod() void DSPEmitter::set_long_prod()
{ {
#if _M_X86_64
X64Reg tmp; X64Reg tmp;
gpr.getFreeXReg(tmp); gpr.getFreeXReg(tmp);
@ -817,14 +713,12 @@ void DSPEmitter::set_long_prod()
MOV(64, prod_reg, R(RAX)); MOV(64, prod_reg, R(RAX));
gpr.putReg(DSP_REG_PROD_64, true); gpr.putReg(DSP_REG_PROD_64, true);
#endif
} }
// Returns s64 in RAX // Returns s64 in RAX
// Clobbers RCX // Clobbers RCX
void DSPEmitter::round_long_acc(X64Reg long_acc) void DSPEmitter::round_long_acc(X64Reg long_acc)
{ {
#if _M_X86_64
//if (prod & 0x10000) prod = (prod + 0x8000) & ~0xffff; //if (prod & 0x10000) prod = (prod + 0x8000) & ~0xffff;
TEST(32, R(long_acc), Imm32(0x10000)); TEST(32, R(long_acc), Imm32(0x10000));
FixupBranch jump = J_CC(CC_Z); FixupBranch jump = J_CC(CC_Z);
@ -839,29 +733,24 @@ void DSPEmitter::round_long_acc(X64Reg long_acc)
AND(64, R(long_acc), R(RCX)); AND(64, R(long_acc), R(RCX));
SetJumpTarget(_ret); SetJumpTarget(_ret);
//return prod; //return prod;
#endif
} }
// Returns s64 in acc // Returns s64 in acc
void DSPEmitter::get_long_acc(int _reg, X64Reg acc) void DSPEmitter::get_long_acc(int _reg, X64Reg acc)
{ {
#if _M_X86_64
OpArg reg; OpArg reg;
gpr.getReg(DSP_REG_ACC0_64+_reg, reg); gpr.getReg(DSP_REG_ACC0_64+_reg, reg);
MOV(64, R(acc), reg); MOV(64, R(acc), reg);
gpr.putReg(DSP_REG_ACC0_64+_reg, false); gpr.putReg(DSP_REG_ACC0_64+_reg, false);
#endif
} }
// In: acc = s64 val // In: acc = s64 val
void DSPEmitter::set_long_acc(int _reg, X64Reg acc) void DSPEmitter::set_long_acc(int _reg, X64Reg acc)
{ {
#if _M_X86_64
OpArg reg; OpArg reg;
gpr.getReg(DSP_REG_ACC0_64+_reg, reg, false); gpr.getReg(DSP_REG_ACC0_64+_reg, reg, false);
MOV(64, reg, R(acc)); MOV(64, reg, R(acc));
gpr.putReg(DSP_REG_ACC0_64+_reg); gpr.putReg(DSP_REG_ACC0_64+_reg);
#endif
} }
// Returns s16 in AX // Returns s16 in AX

View File

@ -247,13 +247,8 @@ static void ImHere()
if (ImHereLog) if (ImHereLog)
{ {
if (!f) if (!f)
{
#if _M_X86_64
f.Open("log64.txt", "w"); f.Open("log64.txt", "w");
#else
f.Open("log32.txt", "w");
#endif
}
fprintf(f.GetHandle(), "%08x\n", PC); fprintf(f.GetHandle(), "%08x\n", PC);
} }
if (been_here.find(PC) != been_here.end()) if (been_here.find(PC) != been_here.end())
@ -651,12 +646,8 @@ const u8* Jit64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBloc
OR(32, M((void *)&PowerPC::ppcState.Exceptions), Imm32(EXCEPTION_ISI)); OR(32, M((void *)&PowerPC::ppcState.Exceptions), Imm32(EXCEPTION_ISI));
// Remove the invalid instruction from the icache, forcing a recompile // Remove the invalid instruction from the icache, forcing a recompile
#if _M_X86_32
MOV(32, M(jit->GetBlockCache()->GetICachePtr(js.compilerPC)), Imm32(JIT_ICACHE_INVALID_WORD));
#else
MOV(64, R(RAX), ImmPtr(jit->GetBlockCache()->GetICachePtr(js.compilerPC))); MOV(64, R(RAX), ImmPtr(jit->GetBlockCache()->GetICachePtr(js.compilerPC)));
MOV(32,MatR(RAX),Imm32(JIT_ICACHE_INVALID_WORD)); MOV(32,MatR(RAX),Imm32(JIT_ICACHE_INVALID_WORD));
#endif
WriteExceptionExit(); WriteExceptionExit();
} }

View File

@ -76,11 +76,7 @@ public:
} }
const char *GetName() override { const char *GetName() override {
#if _M_X86_64
return "JIT64"; return "JIT64";
#else
return "JIT32";
#endif
} }
// Run! // Run!

View File

@ -37,11 +37,10 @@ void Jit64AsmRoutineManager::Generate()
{ {
enterCode = AlignCode16(); enterCode = AlignCode16();
ABI_PushAllCalleeSavedRegsAndAdjustStack(); ABI_PushAllCalleeSavedRegsAndAdjustStack();
#if _M_X86_64
// Two statically allocated registers. // Two statically allocated registers.
MOV(64, R(RBX), Imm64((u64)Memory::base)); MOV(64, R(RBX), Imm64((u64)Memory::base));
MOV(64, R(R15), Imm64((u64)jit->GetBlockCache()->GetCodePointers())); //It's below 2GB so 32 bits are good enough MOV(64, R(R15), Imm64((u64)jit->GetBlockCache()->GetCodePointers())); //It's below 2GB so 32 bits are good enough
#endif
const u8* outerLoop = GetCodePtr(); const u8* outerLoop = GetCodePtr();
ABI_CallFunction(reinterpret_cast<void *>(&CoreTiming::Advance)); ABI_CallFunction(reinterpret_cast<void *>(&CoreTiming::Advance));
@ -85,12 +84,9 @@ void Jit64AsmRoutineManager::Generate()
no_mem = J_CC(CC_NZ); no_mem = J_CC(CC_NZ);
} }
AND(32, R(EAX), Imm32(JIT_ICACHE_MASK)); AND(32, R(EAX), Imm32(JIT_ICACHE_MASK));
#if _M_X86_32
MOV(32, R(EAX), MDisp(EAX, (u32)jit->GetBlockCache()->iCache));
#else
MOV(64, R(RSI), Imm64((u64)jit->GetBlockCache()->iCache)); MOV(64, R(RSI), Imm64((u64)jit->GetBlockCache()->iCache));
MOV(32, R(EAX), MComplex(RSI, EAX, SCALE_1, 0)); MOV(32, R(EAX), MComplex(RSI, EAX, SCALE_1, 0));
#endif
if (Core::g_CoreStartupParameter.bWii || Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.bTLBHack) if (Core::g_CoreStartupParameter.bWii || Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.bTLBHack)
{ {
exit_mem = J(); exit_mem = J();
@ -101,12 +97,9 @@ void Jit64AsmRoutineManager::Generate()
TEST(32, R(EAX), Imm32(JIT_ICACHE_VMEM_BIT)); TEST(32, R(EAX), Imm32(JIT_ICACHE_VMEM_BIT));
FixupBranch no_vmem = J_CC(CC_Z); FixupBranch no_vmem = J_CC(CC_Z);
AND(32, R(EAX), Imm32(JIT_ICACHE_MASK)); AND(32, R(EAX), Imm32(JIT_ICACHE_MASK));
#if _M_X86_32
MOV(32, R(EAX), MDisp(EAX, (u32)jit->GetBlockCache()->iCacheVMEM));
#else
MOV(64, R(RSI), Imm64((u64)jit->GetBlockCache()->iCacheVMEM)); MOV(64, R(RSI), Imm64((u64)jit->GetBlockCache()->iCacheVMEM));
MOV(32, R(EAX), MComplex(RSI, EAX, SCALE_1, 0)); MOV(32, R(EAX), MComplex(RSI, EAX, SCALE_1, 0));
#endif
if (Core::g_CoreStartupParameter.bWii) exit_vmem = J(); if (Core::g_CoreStartupParameter.bWii) exit_vmem = J();
SetJumpTarget(no_vmem); SetJumpTarget(no_vmem);
} }
@ -115,12 +108,9 @@ void Jit64AsmRoutineManager::Generate()
TEST(32, R(EAX), Imm32(JIT_ICACHE_EXRAM_BIT)); TEST(32, R(EAX), Imm32(JIT_ICACHE_EXRAM_BIT));
FixupBranch no_exram = J_CC(CC_Z); FixupBranch no_exram = J_CC(CC_Z);
AND(32, R(EAX), Imm32(JIT_ICACHEEX_MASK)); AND(32, R(EAX), Imm32(JIT_ICACHEEX_MASK));
#if _M_X86_32
MOV(32, R(EAX), MDisp(EAX, (u32)jit->GetBlockCache()->iCacheEx));
#else
MOV(64, R(RSI), Imm64((u64)jit->GetBlockCache()->iCacheEx)); MOV(64, R(RSI), Imm64((u64)jit->GetBlockCache()->iCacheEx));
MOV(32, R(EAX), MComplex(RSI, EAX, SCALE_1, 0)); MOV(32, R(EAX), MComplex(RSI, EAX, SCALE_1, 0));
#endif
SetJumpTarget(no_exram); SetJumpTarget(no_exram);
} }
if (Core::g_CoreStartupParameter.bWii || Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.bTLBHack) if (Core::g_CoreStartupParameter.bWii || Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.bTLBHack)
@ -136,24 +126,13 @@ void Jit64AsmRoutineManager::Generate()
ADD(32, M(&PowerPC::ppcState.DebugCount), Imm8(1)); ADD(32, M(&PowerPC::ppcState.DebugCount), Imm8(1));
} }
//grab from list and jump to it //grab from list and jump to it
#if _M_X86_32
MOV(32, R(EDX), ImmPtr(jit->GetBlockCache()->GetCodePointers()));
JMPptr(MComplex(EDX, EAX, 4, 0));
#else
JMPptr(MComplex(R15, RAX, 8, 0)); JMPptr(MComplex(R15, RAX, 8, 0));
#endif
SetJumpTarget(notfound); SetJumpTarget(notfound);
//Ok, no block, let's jit //Ok, no block, let's jit
#if _M_X86_32
ABI_AlignStack(4);
PUSH(32, M(&PowerPC::ppcState.pc));
CALL(reinterpret_cast<void *>(&Jit));
ABI_RestoreStack(4);
#else
MOV(32, R(ABI_PARAM1), M(&PowerPC::ppcState.pc)); MOV(32, R(ABI_PARAM1), M(&PowerPC::ppcState.pc));
CALL((void *)&Jit); CALL((void *)&Jit);
#endif
JMP(dispatcherNoCheck); // no point in special casing this JMP(dispatcherNoCheck); // no point in special casing this
SetJumpTarget(bail); SetJumpTarget(bail);

View File

@ -172,14 +172,10 @@ const int* GPRRegCache::GetAllocationOrder(size_t& count)
static const int allocationOrder[] = static const int allocationOrder[] =
{ {
// R12, when used as base register, for example in a LEA, can generate bad code! Need to look into this. // R12, when used as base register, for example in a LEA, can generate bad code! Need to look into this.
#if _M_X86_64
#ifdef _WIN32 #ifdef _WIN32
RSI, RDI, R13, R14, R8, R9, R10, R11, R12, //, RCX RSI, RDI, R13, R14, R8, R9, R10, R11, R12, //, RCX
#else #else
RBP, R13, R14, R8, R9, R10, R11, R12, //, RCX RBP, R13, R14, R8, R9, R10, R11, R12, //, RCX
#endif
#elif _M_X86_32
ESI, EDI, EBX, EBP, EDX, ECX,
#endif #endif
}; };
count = sizeof(allocationOrder) / sizeof(const int); count = sizeof(allocationOrder) / sizeof(const int);
@ -190,11 +186,7 @@ const int* FPURegCache::GetAllocationOrder(size_t& count)
{ {
static const int allocationOrder[] = static const int allocationOrder[] =
{ {
#if _M_X86_64
XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5 XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5
#elif _M_X86_32
XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
#endif
}; };
count = sizeof(allocationOrder) / sizeof(int); count = sizeof(allocationOrder) / sizeof(int);
return allocationOrder; return allocationOrder;

View File

@ -33,11 +33,7 @@ struct X64CachedReg
typedef int XReg; typedef int XReg;
typedef int PReg; typedef int PReg;
#if _M_X86_64
#define NUMXREGS 16 #define NUMXREGS 16
#elif _M_X86_32
#define NUMXREGS 8
#endif
class RegCache class RegCache
{ {

View File

@ -1171,7 +1171,6 @@ void Jit64::divwux(UGeckoInstruction inst)
if (((u64)(magic+1) * (max_quotient*divisor-1)) >> (shift + 32) != max_quotient-1) if (((u64)(magic+1) * (max_quotient*divisor-1)) >> (shift + 32) != max_quotient-1)
{ {
// If failed, use slower round-down method // If failed, use slower round-down method
#if _M_X86_64
gpr.Lock(a, b, d); gpr.Lock(a, b, d);
gpr.BindToRegister(d, d == a, true); gpr.BindToRegister(d, d == a, true);
MOV(32, R(EAX), Imm32(magic)); MOV(32, R(EAX), Imm32(magic));
@ -1180,24 +1179,10 @@ void Jit64::divwux(UGeckoInstruction inst)
IMUL(64, gpr.RX(d), R(RAX)); IMUL(64, gpr.RX(d), R(RAX));
ADD(64, gpr.R(d), R(RAX)); ADD(64, gpr.R(d), R(RAX));
SHR(64, gpr.R(d), Imm8(shift+32)); SHR(64, gpr.R(d), Imm8(shift+32));
#else
gpr.FlushLockX(EDX);
gpr.Lock(a, b, d);
gpr.BindToRegister(d, d == a, true);
MOV(32, R(EAX), Imm32(magic));
MUL(32, gpr.R(a));
XOR(32, gpr.R(d), gpr.R(d));
ADD(32, R(EAX), Imm32(magic));
ADC(32, gpr.R(d), R(EDX));
if (shift)
SHR(32, gpr.R(d), Imm8(shift));
gpr.UnlockAllX();
#endif
} }
else else
{ {
// If success, use faster round-up method // If success, use faster round-up method
#if _M_X86_64
gpr.Lock(a, b, d); gpr.Lock(a, b, d);
gpr.BindToRegister(a, true, false); gpr.BindToRegister(a, true, false);
gpr.BindToRegister(d, false, true); gpr.BindToRegister(d, false, true);
@ -1212,17 +1197,6 @@ void Jit64::divwux(UGeckoInstruction inst)
IMUL(64, gpr.RX(d), gpr.R(a)); IMUL(64, gpr.RX(d), gpr.R(a));
} }
SHR(64, gpr.R(d), Imm8(shift+32)); SHR(64, gpr.R(d), Imm8(shift+32));
#else
gpr.FlushLockX(EDX);
gpr.Lock(a, b, d);
gpr.BindToRegister(d, d == a, true);
MOV(32, R(EAX), Imm32(magic+1));
MUL(32, gpr.R(a));
MOV(32, gpr.R(d), R(EDX));
if (shift)
SHR(32, gpr.R(d), Imm8(shift));
gpr.UnlockAllX();
#endif
} }
} }
if (inst.OE) if (inst.OE)
@ -1753,7 +1727,6 @@ void Jit64::srwx(UGeckoInstruction inst)
} }
else else
{ {
#if _M_X86_64
gpr.FlushLockX(ECX); gpr.FlushLockX(ECX);
gpr.Lock(a, b, s); gpr.Lock(a, b, s);
gpr.BindToRegister(a, (a == b || a == s), true); gpr.BindToRegister(a, (a == b || a == s), true);
@ -1765,23 +1738,6 @@ void Jit64::srwx(UGeckoInstruction inst)
SHR(64, gpr.R(a), R(ECX)); SHR(64, gpr.R(a), R(ECX));
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
#else
gpr.FlushLockX(ECX);
gpr.Lock(a, b, s);
gpr.BindToRegister(a, (a == b || a == s), true);
MOV(32, R(ECX), gpr.R(b));
TEST(32, R(ECX), Imm32(32));
if (a != s)
{
MOV(32, gpr.R(a), gpr.R(s));
}
FixupBranch branch = J_CC(CC_Z);
XOR(32, gpr.R(a), gpr.R(a));
SetJumpTarget(branch);
SHR(32, gpr.R(a), R(ECX));
gpr.UnlockAll();
gpr.UnlockAllX();
#endif
} }
// Shift of 0 doesn't update flags, so compare manually just in case // Shift of 0 doesn't update flags, so compare manually just in case
if (inst.Rc) if (inst.Rc)
@ -1809,7 +1765,6 @@ void Jit64::slwx(UGeckoInstruction inst)
} }
else else
{ {
#if _M_X86_64
gpr.FlushLockX(ECX); gpr.FlushLockX(ECX);
gpr.Lock(a, b, s); gpr.Lock(a, b, s);
gpr.BindToRegister(a, (a == b || a == s), true); gpr.BindToRegister(a, (a == b || a == s), true);
@ -1830,28 +1785,6 @@ void Jit64::slwx(UGeckoInstruction inst)
} }
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
#else
gpr.FlushLockX(ECX);
gpr.Lock(a, b, s);
gpr.BindToRegister(a, (a == b || a == s), true);
MOV(32, R(ECX), gpr.R(b));
TEST(32, R(ECX), Imm32(32));
if (a != s)
{
MOV(32, gpr.R(a), gpr.R(s));
}
FixupBranch branch = J_CC(CC_Z);
XOR(32, gpr.R(a), gpr.R(a));
SetJumpTarget(branch);
SHL(32, gpr.R(a), R(ECX));
gpr.UnlockAll();
gpr.UnlockAllX();
// Shift of 0 doesn't update flags, so compare manually just in case
if (inst.Rc)
{
ComputeRC(gpr.R(a));
}
#endif
} }
} }
@ -1863,7 +1796,6 @@ void Jit64::srawx(UGeckoInstruction inst)
int a = inst.RA; int a = inst.RA;
int b = inst.RB; int b = inst.RB;
int s = inst.RS; int s = inst.RS;
#if _M_X86_64
gpr.Lock(a, s, b); gpr.Lock(a, s, b);
gpr.FlushLockX(ECX); gpr.FlushLockX(ECX);
gpr.BindToRegister(a, (a == s || a == b), true); gpr.BindToRegister(a, (a == s || a == b), true);
@ -1881,33 +1813,6 @@ void Jit64::srawx(UGeckoInstruction inst)
SetJumpTarget(nocarry); SetJumpTarget(nocarry);
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
#else
gpr.Lock(a, s, b);
gpr.FlushLockX(ECX);
gpr.BindToRegister(a, (a == s || a == b), true);
JitClearCA();
MOV(32, R(ECX), gpr.R(b));
if (a != s)
MOV(32, gpr.R(a), gpr.R(s));
TEST(32, R(ECX), Imm32(32));
FixupBranch topBitSet = J_CC(CC_NZ);
XOR(32, R(EAX), R(EAX));
SHRD(32, R(EAX), gpr.R(a), R(ECX));
SAR(32, gpr.R(a), R(ECX));
TEST(32, R(EAX), gpr.R(a));
FixupBranch nocarry1 = J_CC(CC_Z);
JitSetCA();
FixupBranch end = J();
SetJumpTarget(topBitSet);
SAR(32, gpr.R(a), Imm8(31));
FixupBranch nocarry2 = J_CC(CC_Z);
JitSetCA();
SetJumpTarget(end);
SetJumpTarget(nocarry1);
SetJumpTarget(nocarry2);
gpr.UnlockAll();
gpr.UnlockAllX();
#endif
if (inst.Rc) { if (inst.Rc) {
ComputeRC(gpr.R(a)); ComputeRC(gpr.R(a));
} }

View File

@ -40,21 +40,17 @@ void Jit64::psq_st(UGeckoInstruction inst)
MOV(32, gpr.R(a), R(ECX)); MOV(32, gpr.R(a), R(ECX));
MOVZX(32, 16, EAX, M(&PowerPC::ppcState.spr[SPR_GQR0 + inst.I])); MOVZX(32, 16, EAX, M(&PowerPC::ppcState.spr[SPR_GQR0 + inst.I]));
MOVZX(32, 8, EDX, R(AL)); MOVZX(32, 8, EDX, R(AL));
// FIXME: Fix ModR/M encoding to allow [EDX*4+disp32] without a base register! // FIXME: Fix ModR/M encoding to allow [EDX*4+disp32] without a base register!
#if _M_X86_32
int addr_scale = SCALE_4;
#else
int addr_scale = SCALE_8;
#endif
if (inst.W) { if (inst.W) {
// One value // One value
PXOR(XMM0, R(XMM0)); // TODO: See if we can get rid of this cheaply by tweaking the code in the singleStore* functions. PXOR(XMM0, R(XMM0)); // TODO: See if we can get rid of this cheaply by tweaking the code in the singleStore* functions.
CVTSD2SS(XMM0, fpr.R(s)); CVTSD2SS(XMM0, fpr.R(s));
CALLptr(MScaled(EDX, addr_scale, (u32)(u64)asm_routines.singleStoreQuantized)); CALLptr(MScaled(EDX, SCALE_8, (u32)(u64)asm_routines.singleStoreQuantized));
} else { } else {
// Pair of values // Pair of values
CVTPD2PS(XMM0, fpr.R(s)); CVTPD2PS(XMM0, fpr.R(s));
CALLptr(MScaled(EDX, addr_scale, (u32)(u64)asm_routines.pairedStoreQuantized)); CALLptr(MScaled(EDX, SCALE_8, (u32)(u64)asm_routines.pairedStoreQuantized));
} }
gpr.UnlockAll(); gpr.UnlockAll();
gpr.UnlockAllX(); gpr.UnlockAllX();
@ -83,13 +79,9 @@ void Jit64::psq_l(UGeckoInstruction inst)
MOVZX(32, 8, EDX, R(AL)); MOVZX(32, 8, EDX, R(AL));
if (inst.W) if (inst.W)
OR(32, R(EDX), Imm8(8)); OR(32, R(EDX), Imm8(8));
#if _M_X86_32
int addr_scale = SCALE_4;
#else
int addr_scale = SCALE_8;
#endif
ABI_AlignStack(0); ABI_AlignStack(0);
CALLptr(MScaled(EDX, addr_scale, (u32)(u64)asm_routines.pairedLoadQuantized)); CALLptr(MScaled(EDX, SCALE_8, (u32)(u64)asm_routines.pairedLoadQuantized));
ABI_RestoreStack(0); ABI_RestoreStack(0);
// MEMCHECK_START // FIXME: MMU does not work here because of unsafe memory access // MEMCHECK_START // FIXME: MMU does not work here because of unsafe memory access

View File

@ -137,7 +137,6 @@ static void fregSpill(RegInfo& RI, X64Reg reg) {
} }
// ECX is scratch, so we don't allocate it // ECX is scratch, so we don't allocate it
#if _M_X86_64
// 64-bit - calling conventions differ between linux & windows, so... // 64-bit - calling conventions differ between linux & windows, so...
#ifdef _WIN32 #ifdef _WIN32
@ -149,16 +148,6 @@ static const int RegAllocSize = sizeof(RegAllocOrder) / sizeof(X64Reg);
static const X64Reg FRegAllocOrder[] = {XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5}; static const X64Reg FRegAllocOrder[] = {XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, XMM2, XMM3, XMM4, XMM5};
static const int FRegAllocSize = sizeof(FRegAllocOrder) / sizeof(X64Reg); static const int FRegAllocSize = sizeof(FRegAllocOrder) / sizeof(X64Reg);
#else
// 32-bit
static const X64Reg RegAllocOrder[] = {EDI, ESI, EBP, EBX, EDX, EAX};
static const int RegAllocSize = sizeof(RegAllocOrder) / sizeof(X64Reg);
static const X64Reg FRegAllocOrder[] = {XMM2, XMM3, XMM4, XMM5, XMM6, XMM7};
static const int FRegAllocSize = sizeof(FRegAllocOrder) / sizeof(X64Reg);
#endif
static X64Reg regFindFreeReg(RegInfo& RI) { static X64Reg regFindFreeReg(RegInfo& RI) {
for (auto& reg : RegAllocOrder) for (auto& reg : RegAllocOrder)
if (RI.regs[reg] == nullptr) if (RI.regs[reg] == nullptr)
@ -256,13 +245,6 @@ static X64Reg fregEnsureInReg(RegInfo& RI, InstLoc I) {
} }
static void regSpillCallerSaved(RegInfo& RI) { static void regSpillCallerSaved(RegInfo& RI) {
#if _M_X86_32
// 32-bit
regSpill(RI, EDX);
regSpill(RI, ECX);
regSpill(RI, EAX);
#else
// 64-bit
regSpill(RI, RCX); regSpill(RI, RCX);
regSpill(RI, RDX); regSpill(RI, RDX);
regSpill(RI, RSI); regSpill(RI, RSI);
@ -271,7 +253,6 @@ static void regSpillCallerSaved(RegInfo& RI) {
regSpill(RI, R9); regSpill(RI, R9);
regSpill(RI, R10); regSpill(RI, R10);
regSpill(RI, R11); regSpill(RI, R11);
#endif
} }
static X64Reg regUReg(RegInfo& RI, InstLoc I) { static X64Reg regUReg(RegInfo& RI, InstLoc I) {
@ -1292,13 +1273,9 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress) {
Jit->MOVZX(32, 16, EAX, M(((char *)&GQR(quantreg)) + 2)); Jit->MOVZX(32, 16, EAX, M(((char *)&GQR(quantreg)) + 2));
Jit->MOVZX(32, 8, EDX, R(AL)); Jit->MOVZX(32, 8, EDX, R(AL));
Jit->OR(32, R(EDX), Imm8(w << 3)); Jit->OR(32, R(EDX), Imm8(w << 3));
#if _M_X86_32
int addr_scale = SCALE_4;
#else
int addr_scale = SCALE_8;
#endif
Jit->MOV(32, R(ECX), regLocForInst(RI, getOp1(I))); Jit->MOV(32, R(ECX), regLocForInst(RI, getOp1(I)));
Jit->CALLptr(MScaled(EDX, addr_scale, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedLoadQuantized))); Jit->CALLptr(MScaled(EDX, SCALE_8, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedLoadQuantized)));
Jit->MOVAPD(reg, R(XMM0)); Jit->MOVAPD(reg, R(XMM0));
RI.fregs[reg] = I; RI.fregs[reg] = I;
regNormalRegClear(RI, I); regNormalRegClear(RI, I);
@ -1342,14 +1319,10 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress) {
u32 quantreg = *I >> 24; u32 quantreg = *I >> 24;
Jit->MOVZX(32, 16, EAX, M(&PowerPC::ppcState.spr[SPR_GQR0 + quantreg])); Jit->MOVZX(32, 16, EAX, M(&PowerPC::ppcState.spr[SPR_GQR0 + quantreg]));
Jit->MOVZX(32, 8, EDX, R(AL)); Jit->MOVZX(32, 8, EDX, R(AL));
#if _M_X86_32
int addr_scale = SCALE_4;
#else
int addr_scale = SCALE_8;
#endif
Jit->MOV(32, R(ECX), regLocForInst(RI, getOp2(I))); Jit->MOV(32, R(ECX), regLocForInst(RI, getOp2(I)));
Jit->MOVAPD(XMM0, fregLocForInst(RI, getOp1(I))); Jit->MOVAPD(XMM0, fregLocForInst(RI, getOp1(I)));
Jit->CALLptr(MScaled(EDX, addr_scale, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedStoreQuantized))); Jit->CALLptr(MScaled(EDX, SCALE_8, (u32)(u64)(((JitIL *)jit)->asm_routines.pairedStoreQuantized)));
if (RI.IInfo[I - RI.FirstI] & 4) if (RI.IInfo[I - RI.FirstI] & 4)
fregClearInst(RI, getOp1(I)); fregClearInst(RI, getOp1(I));
if (RI.IInfo[I - RI.FirstI] & 8) if (RI.IInfo[I - RI.FirstI] & 8)
@ -1831,12 +1804,8 @@ static void DoWriteCode(IRBuilder* ibuild, JitIL* Jit, u32 exitAddress) {
Jit->OR(32, M((void *)&PowerPC::ppcState.Exceptions), Imm32(EXCEPTION_ISI)); Jit->OR(32, M((void *)&PowerPC::ppcState.Exceptions), Imm32(EXCEPTION_ISI));
// Remove the invalid instruction from the icache, forcing a recompile // Remove the invalid instruction from the icache, forcing a recompile
#if _M_X86_32
Jit->MOV(32, M(jit->GetBlockCache()->GetICachePtr(InstLoc)), Imm32(JIT_ICACHE_INVALID_WORD));
#else
Jit->MOV(64, R(RAX), ImmPtr(jit->GetBlockCache()->GetICachePtr(InstLoc))); Jit->MOV(64, R(RAX), ImmPtr(jit->GetBlockCache()->GetICachePtr(InstLoc)));
Jit->MOV(32, MatR(RAX), Imm32(JIT_ICACHE_INVALID_WORD)); Jit->MOV(32, MatR(RAX), Imm32(JIT_ICACHE_INVALID_WORD));
#endif
Jit->WriteExceptionExit(); Jit->WriteExceptionExit();
break; break;
} }

View File

@ -346,11 +346,7 @@ static void ImHere()
{ {
if (!f) if (!f)
{ {
#if _M_X86_64
f.Open("log64.txt", "w"); f.Open("log64.txt", "w");
#else
f.Open("log32.txt", "w");
#endif
} }
fprintf(f.GetHandle(), "%08x r0: %08x r5: %08x r6: %08x\n", PC, PowerPC::ppcState.gpr[0], fprintf(f.GetHandle(), "%08x r0: %08x r5: %08x r6: %08x\n", PC, PowerPC::ppcState.gpr[0],
PowerPC::ppcState.gpr[5], PowerPC::ppcState.gpr[6]); PowerPC::ppcState.gpr[5], PowerPC::ppcState.gpr[6]);

View File

@ -36,7 +36,6 @@
#include "Core/PowerPC/JitILCommon/IR.h" #include "Core/PowerPC/JitILCommon/IR.h"
#include "Core/PowerPC/JitILCommon/JitILBase.h" #include "Core/PowerPC/JitILCommon/JitILBase.h"
class JitIL : public JitILBase, public EmuCodeBlock class JitIL : public JitILBase, public EmuCodeBlock
{ {
private: private:

View File

@ -126,7 +126,6 @@ void CommonAsmRoutines::GenQuantizedStores()
UD2(); UD2();
const u8* storePairedFloat = AlignCode4(); const u8* storePairedFloat = AlignCode4();
#if _M_X86_64
SHUFPS(XMM0, R(XMM0), 1); SHUFPS(XMM0, R(XMM0), 1);
MOVQ_xmm(M(&psTemp[0]), XMM0); MOVQ_xmm(M(&psTemp[0]), XMM0);
TEST(32, R(ECX), Imm32(0x0C000000)); TEST(32, R(ECX), Imm32(0x0C000000));
@ -140,27 +139,6 @@ void CommonAsmRoutines::GenQuantizedStores()
ABI_PopRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, true); ABI_PopRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, true);
SetJumpTarget(skip_complex); SetJumpTarget(skip_complex);
RET(); RET();
#else
TEST(32, R(ECX), Imm32(0x0C000000));
FixupBranch argh = J_CC(CC_NZ, true);
MOVQ_xmm(M(&psTemp[0]), XMM0);
MOV(32, R(EAX), M(&psTemp));
BSWAP(32, EAX);
AND(32, R(ECX), Imm32(Memory::MEMVIEW32_MASK));
MOV(32, MDisp(ECX, (u32)Memory::base), R(EAX));
MOV(32, R(EAX), M(((char*)&psTemp) + 4));
BSWAP(32, EAX);
MOV(32, MDisp(ECX, 4+(u32)Memory::base), R(EAX));
FixupBranch arg2 = J(true);
SetJumpTarget(argh);
SHUFPS(XMM0, R(XMM0), 1);
MOVQ_xmm(M(&psTemp[0]), XMM0);
ABI_PushRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, true);
ABI_CallFunctionR((void *)&WriteDual32, ECX);
ABI_PopRegistersAndAdjustStack(QUANTIZED_REGS_TO_SAVE, true);
SetJumpTarget(arg2);
RET();
#endif
const u8* storePairedU8 = AlignCode4(); const u8* storePairedU8 = AlignCode4();
SHR(32, R(EAX), Imm8(6)); SHR(32, R(EAX), Imm8(6));
@ -343,64 +321,24 @@ void CommonAsmRoutines::GenQuantizedLoads()
const u8* loadPairedFloatTwo = AlignCode4(); const u8* loadPairedFloatTwo = AlignCode4();
if (cpu_info.bSSSE3) { if (cpu_info.bSSSE3) {
#if _M_X86_64
MOVQ_xmm(XMM0, MComplex(RBX, RCX, 1, 0)); MOVQ_xmm(XMM0, MComplex(RBX, RCX, 1, 0));
#else
AND(32, R(ECX), Imm32(Memory::MEMVIEW32_MASK));
MOVQ_xmm(XMM0, MDisp(ECX, (u32)Memory::base));
#endif
PSHUFB(XMM0, M((void *)pbswapShuffle2x4)); PSHUFB(XMM0, M((void *)pbswapShuffle2x4));
} else { } else {
#if _M_X86_64
LoadAndSwap(64, RCX, MComplex(RBX, RCX, 1, 0)); LoadAndSwap(64, RCX, MComplex(RBX, RCX, 1, 0));
ROL(64, R(RCX), Imm8(32)); ROL(64, R(RCX), Imm8(32));
MOVQ_xmm(XMM0, R(RCX)); MOVQ_xmm(XMM0, R(RCX));
#else
#if 0
AND(32, R(ECX), Imm32(Memory::MEMVIEW32_MASK));
MOVQ_xmm(XMM0, MDisp(ECX, (u32)Memory::base));
PXOR(XMM1, R(XMM1));
PSHUFLW(XMM0, R(XMM0), 0xB1);
MOVAPD(XMM1, R(XMM0));
PSRLW(XMM0, 8);
PSLLW(XMM1, 8);
POR(XMM0, R(XMM1));
#else
AND(32, R(ECX), Imm32(Memory::MEMVIEW32_MASK));
MOV(32, R(EAX), MDisp(ECX, (u32)Memory::base));
BSWAP(32, EAX);
MOV(32, M(&psTemp[0]), R(RAX));
MOV(32, R(EAX), MDisp(ECX, (u32)Memory::base + 4));
BSWAP(32, EAX);
MOV(32, M(((float *)&psTemp[0]) + 1), R(RAX));
MOVQ_xmm(XMM0, M(&psTemp[0]));
#endif
#endif
} }
RET(); RET();
const u8* loadPairedFloatOne = AlignCode4(); const u8* loadPairedFloatOne = AlignCode4();
if (cpu_info.bSSSE3) { if (cpu_info.bSSSE3) {
#if _M_X86_64
MOVD_xmm(XMM0, MComplex(RBX, RCX, 1, 0)); MOVD_xmm(XMM0, MComplex(RBX, RCX, 1, 0));
#else
AND(32, R(ECX), Imm32(Memory::MEMVIEW32_MASK));
MOVD_xmm(XMM0, MDisp(ECX, (u32)Memory::base));
#endif
PSHUFB(XMM0, M((void *)pbswapShuffle1x4)); PSHUFB(XMM0, M((void *)pbswapShuffle1x4));
UNPCKLPS(XMM0, M((void*)m_one)); UNPCKLPS(XMM0, M((void*)m_one));
} else { } else {
#if _M_X86_64
LoadAndSwap(32, RCX, MComplex(RBX, RCX, 1, 0)); LoadAndSwap(32, RCX, MComplex(RBX, RCX, 1, 0));
MOVD_xmm(XMM0, R(RCX)); MOVD_xmm(XMM0, R(RCX));
UNPCKLPS(XMM0, M((void*)m_one)); UNPCKLPS(XMM0, M((void*)m_one));
#else
AND(32, R(ECX), Imm32(Memory::MEMVIEW32_MASK));
MOV(32, R(EAX), MDisp(ECX, (u32)Memory::base));
BSWAP(32, EAX);
MOVD_xmm(XMM0, R(EAX));
UNPCKLPS(XMM0, M((void*)m_one));
#endif
} }
RET(); RET();

View File

@ -19,24 +19,20 @@
using namespace Gen; using namespace Gen;
#if _M_X86_64 extern u8 *trampolineCodePtr;
static void BackPatchError(const std::string &text, u8 *codePtr, u32 emAddress) { static void BackPatchError(const std::string &text, u8 *codePtr, u32 emAddress) {
u64 code_addr = (u64)codePtr; u64 code_addr = (u64)codePtr;
disassembler disasm; disassembler disasm;
char disbuf[256]; char disbuf[256];
memset(disbuf, 0, 256); memset(disbuf, 0, 256);
#if _M_X86_32
disasm.disasm32(0, code_addr, codePtr, disbuf);
#else
disasm.disasm64(0, code_addr, codePtr, disbuf); disasm.disasm64(0, code_addr, codePtr, disbuf);
#endif
PanicAlert("%s\n\n" PanicAlert("%s\n\n"
"Error encountered accessing emulated address %08x.\n" "Error encountered accessing emulated address %08x.\n"
"Culprit instruction: \n%s\nat %#" PRIx64, "Culprit instruction: \n%s\nat %#" PRIx64,
text.c_str(), emAddress, disbuf, code_addr); text.c_str(), emAddress, disbuf, code_addr);
return; return;
} }
#endif
void TrampolineCache::Init() void TrampolineCache::Init()
{ {
@ -55,7 +51,6 @@ const u8 *TrampolineCache::GetReadTrampoline(const InstructionInfo &info, u32 re
PanicAlert("Trampoline cache full"); PanicAlert("Trampoline cache full");
const u8 *trampoline = GetCodePtr(); const u8 *trampoline = GetCodePtr();
#if _M_X86_64
X64Reg addrReg = (X64Reg)info.scaledReg; X64Reg addrReg = (X64Reg)info.scaledReg;
X64Reg dataReg = (X64Reg)info.regOperandReg; X64Reg dataReg = (X64Reg)info.regOperandReg;
@ -96,7 +91,6 @@ const u8 *TrampolineCache::GetReadTrampoline(const InstructionInfo &info, u32 re
ABI_PopRegistersAndAdjustStack(registersInUse, true); ABI_PopRegistersAndAdjustStack(registersInUse, true);
RET(); RET();
#endif
return trampoline; return trampoline;
} }
@ -108,7 +102,6 @@ const u8 *TrampolineCache::GetWriteTrampoline(const InstructionInfo &info, u32 r
const u8 *trampoline = GetCodePtr(); const u8 *trampoline = GetCodePtr();
#if _M_X86_64
X64Reg dataReg = (X64Reg)info.regOperandReg; X64Reg dataReg = (X64Reg)info.regOperandReg;
X64Reg addrReg = (X64Reg)info.scaledReg; X64Reg addrReg = (X64Reg)info.scaledReg;
@ -158,7 +151,6 @@ const u8 *TrampolineCache::GetWriteTrampoline(const InstructionInfo &info, u32 r
ABI_PopRegistersAndAdjustStack(registersInUse, true); ABI_PopRegistersAndAdjustStack(registersInUse, true);
RET(); RET();
#endif
return trampoline; return trampoline;
} }
@ -170,7 +162,6 @@ const u8 *TrampolineCache::GetWriteTrampoline(const InstructionInfo &info, u32 r
// that many of them in a typical program/game. // that many of them in a typical program/game.
const u8 *Jitx86Base::BackPatch(u8 *codePtr, u32 emAddress, void *ctx_void) const u8 *Jitx86Base::BackPatch(u8 *codePtr, u32 emAddress, void *ctx_void)
{ {
#if _M_X86_64
SContext *ctx = (SContext *)ctx_void; SContext *ctx = (SContext *)ctx_void;
if (!jit->IsInCodeSpace(codePtr)) if (!jit->IsInCodeSpace(codePtr))
@ -271,7 +262,4 @@ const u8 *Jitx86Base::BackPatch(u8 *codePtr, u32 emAddress, void *ctx_void)
} }
return start; return start;
} }
#else
return 0;
#endif
} }

View File

@ -33,16 +33,6 @@ const int BACKPATCH_SIZE = 5;
#define CTX_R14 R14 #define CTX_R14 R14
#define CTX_R15 R15 #define CTX_R15 R15
#define CTX_RIP Rip #define CTX_RIP Rip
#elif _M_X86_32
#define CTX_EAX Eax
#define CTX_EBX Ebx
#define CTX_ECX Ecx
#define CTX_EDX Edx
#define CTX_EDI Edi
#define CTX_ESI Esi
#define CTX_EBP Ebp
#define CTX_ESP Esp
#define CTX_EIP Eip
#else #else
#error No context definition for OS #error No context definition for OS
#endif #endif
@ -68,17 +58,6 @@ const int BACKPATCH_SIZE = 5;
#define CTX_R14 __r14 #define CTX_R14 __r14
#define CTX_R15 __r15 #define CTX_R15 __r15
#define CTX_RIP __rip #define CTX_RIP __rip
#elif _M_X86_32
typedef x86_thread_state32_t SContext;
#define CTX_EAX __eax
#define CTX_EBX __ebx
#define CTX_ECX __ecx
#define CTX_EDX __edx
#define CTX_EDI __edi
#define CTX_ESI __esi
#define CTX_EBP __ebp
#define CTX_ESP __esp
#define CTX_EIP __eip
#else #else
#error No context definition for OS #error No context definition for OS
#endif #endif
@ -104,32 +83,6 @@ const int BACKPATCH_SIZE = 5;
#define CTX_R14 gregs[REG_R14] #define CTX_R14 gregs[REG_R14]
#define CTX_R15 gregs[REG_R15] #define CTX_R15 gregs[REG_R15]
#define CTX_RIP gregs[REG_RIP] #define CTX_RIP gregs[REG_RIP]
#elif _M_X86_32
#ifdef ANDROID
#include <asm/sigcontext.h>
typedef sigcontext SContext;
#define CTX_EAX eax
#define CTX_EBX ebx
#define CTX_ECX ecx
#define CTX_EDX edx
#define CTX_EDI edi
#define CTX_ESI esi
#define CTX_EBP ebp
#define CTX_ESP esp
#define CTX_EIP eip
#else
#include <ucontext.h>
typedef mcontext_t SContext;
#define CTX_EAX gregs[REG_EAX]
#define CTX_EBX gregs[REG_EBX]
#define CTX_ECX gregs[REG_ECX]
#define CTX_EDX gregs[REG_EDX]
#define CTX_EDI gregs[REG_EDI]
#define CTX_ESI gregs[REG_ESI]
#define CTX_EBP gregs[REG_EBP]
#define CTX_ESP gregs[REG_ESP]
#define CTX_EIP gregs[REG_EIP]
#endif
#elif _M_ARM_32 #elif _M_ARM_32
// Add others if required. // Add others if required.
typedef struct sigcontext SContext; typedef struct sigcontext SContext;
@ -158,16 +111,6 @@ const int BACKPATCH_SIZE = 5;
#define CTX_R14 __gregs[_REG_R14] #define CTX_R14 __gregs[_REG_R14]
#define CTX_R15 __gregs[_REG_R15] #define CTX_R15 __gregs[_REG_R15]
#define CTX_RIP __gregs[_REG_RIP] #define CTX_RIP __gregs[_REG_RIP]
#elif _M_X86_32
#define CTX_EAX __gregs[__REG_EAX]
#define CTX_EBX __gregs[__REG_EBX]
#define CTX_ECX __gregs[__REG_ECX]
#define CTX_EDX __gregs[__REG_EDX]
#define CTX_EDI __gregs[__REG_EDI]
#define CTX_ESI __gregs[__REG_ESI]
#define CTX_EBP __gregs[__REG_EBP]
#define CTX_ESP __gregs[__REG_ESP]
#define CTX_EIP __gregs[__REG_EIP]
#else #else
#error No context definition for OS #error No context definition for OS
#endif #endif
@ -192,16 +135,6 @@ const int BACKPATCH_SIZE = 5;
#define CTX_R14 mc_r14 #define CTX_R14 mc_r14
#define CTX_R15 mc_r15 #define CTX_R15 mc_r15
#define CTX_RIP mc_rip #define CTX_RIP mc_rip
#elif _M_X86_32
#define CTX_EAX mc_eax
#define CTX_EBX mc_ebx
#define CTX_ECX mc_ecx
#define CTX_EDX mc_edx
#define CTX_EDI mc_edi
#define CTX_ESI mc_esi
#define CTX_EBP mc_ebp
#define CTX_ESP mc_esp
#define CTX_EIP mc_eip
#else #else
#error No context definition for OS #error No context definition for OS
#endif #endif
@ -233,8 +166,6 @@ static inline u64 *ContextRN(SContext* ctx, int n)
}; };
return (u64 *) ((char *) ctx + offsets[n]); return (u64 *) ((char *) ctx + offsets[n]);
} }
#elif _M_X86_32
#define CTX_PC CTX_EIP
#endif #endif
class TrampolineCache : public Gen::X64CodeBlock class TrampolineCache : public Gen::X64CodeBlock

View File

@ -41,12 +41,7 @@ void EmuCodeBlock::SwapAndStore(int size, const Gen::OpArg& dst, Gen::X64Reg src
void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset, bool signExtend) void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset, bool signExtend)
{ {
#if _M_X86_64
MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset)); MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset));
#else
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
MOVZX(32, accessSize, reg_value, MDisp(reg_addr, (u32)Memory::base + offset));
#endif
if (accessSize == 32) if (accessSize == 32)
{ {
BSWAP(32, reg_value); BSWAP(32, reg_value);
@ -68,18 +63,12 @@ void EmuCodeBlock::UnsafeLoadRegToReg(X64Reg reg_addr, X64Reg reg_value, int acc
void EmuCodeBlock::UnsafeLoadRegToRegNoSwap(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset) void EmuCodeBlock::UnsafeLoadRegToRegNoSwap(X64Reg reg_addr, X64Reg reg_value, int accessSize, s32 offset)
{ {
#if _M_X86_64
MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset)); MOVZX(32, accessSize, reg_value, MComplex(RBX, reg_addr, SCALE_1, offset));
#else
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
MOVZX(32, accessSize, reg_value, MDisp(reg_addr, (u32)Memory::base + offset));
#endif
} }
u8 *EmuCodeBlock::UnsafeLoadToReg(X64Reg reg_value, Gen::OpArg opAddress, int accessSize, s32 offset, bool signExtend) u8 *EmuCodeBlock::UnsafeLoadToReg(X64Reg reg_value, Gen::OpArg opAddress, int accessSize, s32 offset, bool signExtend)
{ {
u8 *result; u8 *result;
#if _M_X86_64
if (opAddress.IsSimpleReg()) if (opAddress.IsSimpleReg())
{ {
// Deal with potential wraparound. (This is just a heuristic, and it would // Deal with potential wraparound. (This is just a heuristic, and it would
@ -109,27 +98,6 @@ u8 *EmuCodeBlock::UnsafeLoadToReg(X64Reg reg_value, Gen::OpArg opAddress, int ac
else else
MOVZX(64, accessSize, reg_value, MComplex(RBX, reg_value, SCALE_1, offset)); MOVZX(64, accessSize, reg_value, MComplex(RBX, reg_value, SCALE_1, offset));
} }
#else
if (opAddress.IsImm())
{
result = GetWritableCodePtr();
if (accessSize == 8 && signExtend)
MOVSX(32, accessSize, reg_value, M(Memory::base + (((u32)opAddress.offset + offset) & Memory::MEMVIEW32_MASK)));
else
MOVZX(32, accessSize, reg_value, M(Memory::base + (((u32)opAddress.offset + offset) & Memory::MEMVIEW32_MASK)));
}
else
{
if (!opAddress.IsSimpleReg(reg_value))
MOV(32, R(reg_value), opAddress);
AND(32, R(reg_value), Imm32(Memory::MEMVIEW32_MASK));
result = GetWritableCodePtr();
if (accessSize == 8 && signExtend)
MOVSX(32, accessSize, reg_value, MDisp(reg_value, (u32)Memory::base + offset));
else
MOVZX(32, accessSize, reg_value, MDisp(reg_value, (u32)Memory::base + offset));
}
#endif
switch (accessSize) switch (accessSize)
{ {
@ -281,7 +249,6 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
{ {
registersInUse &= ~(1 << RAX | 1 << reg_value); registersInUse &= ~(1 << RAX | 1 << reg_value);
} }
#if _M_X86_64
if (!Core::g_CoreStartupParameter.bMMU && if (!Core::g_CoreStartupParameter.bMMU &&
Core::g_CoreStartupParameter.bFastmem && Core::g_CoreStartupParameter.bFastmem &&
!opAddress.IsImm() && !opAddress.IsImm() &&
@ -296,7 +263,6 @@ void EmuCodeBlock::SafeLoadToReg(X64Reg reg_value, const Gen::OpArg & opAddress,
registersInUseAtLoc[mov] = registersInUse; registersInUseAtLoc[mov] = registersInUse;
} }
else else
#endif
{ {
u32 mem_mask = Memory::ADDR_MASK_HW_ACCESS; u32 mem_mask = Memory::ADDR_MASK_HW_ACCESS;
if (Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.bTLBHack) if (Core::g_CoreStartupParameter.bMMU || Core::g_CoreStartupParameter.bTLBHack)
@ -411,7 +377,6 @@ u8 *EmuCodeBlock::UnsafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int acc
if (accessSize == 8 && reg_value >= 4) { if (accessSize == 8 && reg_value >= 4) {
PanicAlert("WARNING: likely incorrect use of UnsafeWriteRegToReg!"); PanicAlert("WARNING: likely incorrect use of UnsafeWriteRegToReg!");
} }
#if _M_X86_64
result = GetWritableCodePtr(); result = GetWritableCodePtr();
OpArg dest = MComplex(RBX, reg_addr, SCALE_1, offset); OpArg dest = MComplex(RBX, reg_addr, SCALE_1, offset);
if (swap) if (swap)
@ -431,15 +396,6 @@ u8 *EmuCodeBlock::UnsafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int acc
{ {
MOV(accessSize, dest, R(reg_value)); MOV(accessSize, dest, R(reg_value));
} }
#else
if (swap)
{
BSWAP(accessSize, reg_value);
}
AND(32, R(reg_addr), Imm32(Memory::MEMVIEW32_MASK));
result = GetWritableCodePtr();
MOV(accessSize, MDisp(reg_addr, (u32)Memory::base + offset), R(reg_value));
#endif
return result; return result;
} }
@ -447,7 +403,6 @@ u8 *EmuCodeBlock::UnsafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int acc
void EmuCodeBlock::SafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int accessSize, s32 offset, u32 registersInUse, int flags) void EmuCodeBlock::SafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int accessSize, s32 offset, u32 registersInUse, int flags)
{ {
registersInUse &= ~(1 << RAX); registersInUse &= ~(1 << RAX);
#if _M_X86_64
if (!Core::g_CoreStartupParameter.bMMU && if (!Core::g_CoreStartupParameter.bMMU &&
Core::g_CoreStartupParameter.bFastmem && Core::g_CoreStartupParameter.bFastmem &&
!(flags & (SAFE_LOADSTORE_NO_SWAP | SAFE_LOADSTORE_NO_FASTMEM)) !(flags & (SAFE_LOADSTORE_NO_SWAP | SAFE_LOADSTORE_NO_FASTMEM))
@ -468,7 +423,6 @@ void EmuCodeBlock::SafeWriteRegToReg(X64Reg reg_value, X64Reg reg_addr, int acce
registersInUseAtLoc[mov] = registersInUse; registersInUseAtLoc[mov] = registersInUse;
return; return;
} }
#endif
if (offset) if (offset)
ADD(32, R(reg_addr), Imm32((u32)offset)); ADD(32, R(reg_addr), Imm32((u32)offset));
@ -517,17 +471,10 @@ void EmuCodeBlock::SafeWriteF32ToReg(X64Reg xmm_value, X64Reg reg_addr, s32 offs
void EmuCodeBlock::WriteToConstRamAddress(int accessSize, Gen::X64Reg arg, u32 address, bool swap) void EmuCodeBlock::WriteToConstRamAddress(int accessSize, Gen::X64Reg arg, u32 address, bool swap)
{ {
#if _M_X86_64
if (swap) if (swap)
SwapAndStore(accessSize, MDisp(RBX, address & 0x3FFFFFFF), arg); SwapAndStore(accessSize, MDisp(RBX, address & 0x3FFFFFFF), arg);
else else
MOV(accessSize, MDisp(RBX, address & 0x3FFFFFFF), R(arg)); MOV(accessSize, MDisp(RBX, address & 0x3FFFFFFF), R(arg));
#else
if (swap)
SwapAndStore(accessSize, M((void*)(Memory::base + (address & Memory::MEMVIEW32_MASK))), arg);
else
MOV(accessSize, M((void*)(Memory::base + (address & Memory::MEMVIEW32_MASK))), R(arg));
#endif
} }
void EmuCodeBlock::ForceSinglePrecisionS(X64Reg xmm) { void EmuCodeBlock::ForceSinglePrecisionS(X64Reg xmm) {
@ -553,17 +500,10 @@ static u64 GC_ALIGNED16(temp64);
static const float GC_ALIGNED16(m_zero[]) = { 0.0f, 0.0f, 0.0f, 0.0f }; static const float GC_ALIGNED16(m_zero[]) = { 0.0f, 0.0f, 0.0f, 0.0f };
#if _M_X86_64
static const __m128i GC_ALIGNED16(single_qnan_bit) = _mm_set_epi64x(0, 0x0000000000400000); static const __m128i GC_ALIGNED16(single_qnan_bit) = _mm_set_epi64x(0, 0x0000000000400000);
static const __m128i GC_ALIGNED16(single_exponent) = _mm_set_epi64x(0, 0x000000007f800000); static const __m128i GC_ALIGNED16(single_exponent) = _mm_set_epi64x(0, 0x000000007f800000);
static const __m128i GC_ALIGNED16(double_qnan_bit) = _mm_set_epi64x(0, 0x0008000000000000); static const __m128i GC_ALIGNED16(double_qnan_bit) = _mm_set_epi64x(0, 0x0008000000000000);
static const __m128i GC_ALIGNED16(double_exponent) = _mm_set_epi64x(0, 0x7ff0000000000000); static const __m128i GC_ALIGNED16(double_exponent) = _mm_set_epi64x(0, 0x7ff0000000000000);
#else
static const __m128i GC_ALIGNED16(single_qnan_bit) = _mm_set_epi32(0, 0, 0x00000000, 0x00400000);
static const __m128i GC_ALIGNED16(single_exponent) = _mm_set_epi32(0, 0, 0x00000000, 0x7f800000);
static const __m128i GC_ALIGNED16(double_qnan_bit) = _mm_set_epi32(0, 0, 0x00080000, 0x00000000);
static const __m128i GC_ALIGNED16(double_exponent) = _mm_set_epi32(0, 0, 0x7ff00000, 0x00000000);
#endif
// Since the following float conversion functions are used in non-arithmetic PPC float instructions, // Since the following float conversion functions are used in non-arithmetic PPC float instructions,
// they must convert floats bitexact and never flush denormals to zero or turn SNaNs into QNaNs. // they must convert floats bitexact and never flush denormals to zero or turn SNaNs into QNaNs.
@ -578,19 +518,11 @@ static const __m128i GC_ALIGNED16(double_exponent) = _mm_set_epi32(0, 0, 0x7ff00
//#define MORE_ACCURATE_DOUBLETOSINGLE //#define MORE_ACCURATE_DOUBLETOSINGLE
#ifdef MORE_ACCURATE_DOUBLETOSINGLE #ifdef MORE_ACCURATE_DOUBLETOSINGLE
#if _M_X86_64
static const __m128i GC_ALIGNED16(double_fraction) = _mm_set_epi64x(0, 0x000fffffffffffff); static const __m128i GC_ALIGNED16(double_fraction) = _mm_set_epi64x(0, 0x000fffffffffffff);
static const __m128i GC_ALIGNED16(double_sign_bit) = _mm_set_epi64x(0, 0x8000000000000000); static const __m128i GC_ALIGNED16(double_sign_bit) = _mm_set_epi64x(0, 0x8000000000000000);
static const __m128i GC_ALIGNED16(double_explicit_top_bit) = _mm_set_epi64x(0, 0x0010000000000000); static const __m128i GC_ALIGNED16(double_explicit_top_bit) = _mm_set_epi64x(0, 0x0010000000000000);
static const __m128i GC_ALIGNED16(double_top_two_bits) = _mm_set_epi64x(0, 0xc000000000000000); static const __m128i GC_ALIGNED16(double_top_two_bits) = _mm_set_epi64x(0, 0xc000000000000000);
static const __m128i GC_ALIGNED16(double_bottom_bits) = _mm_set_epi64x(0, 0x07ffffffe0000000); static const __m128i GC_ALIGNED16(double_bottom_bits) = _mm_set_epi64x(0, 0x07ffffffe0000000);
#else
static const __m128i GC_ALIGNED16(double_fraction) = _mm_set_epi32(0, 0, 0x000fffff, 0xffffffff);
static const __m128i GC_ALIGNED16(double_sign_bit) = _mm_set_epi32(0, 0, 0x80000000, 0x00000000);
static const __m128i GC_ALIGNED16(double_explicit_top_bit) = _mm_set_epi32(0, 0, 0x00100000, 0x00000000);
static const __m128i GC_ALIGNED16(double_top_two_bits) = _mm_set_epi32(0, 0, 0xc0000000, 0x00000000);
static const __m128i GC_ALIGNED16(double_bottom_bits) = _mm_set_epi32(0, 0, 0x07ffffff, 0xe0000000);
#endif
// This is the same algorithm used in the interpreter (and actual hardware) // This is the same algorithm used in the interpreter (and actual hardware)
// The documentation states that the conversion of a double with an outside the // The documentation states that the conversion of a double with an outside the

View File

@ -7,43 +7,13 @@
#include <string> #include <string>
#ifdef _WIN32 #define PROFILER_QUERY_PERFORMANCE_COUNTER(pt)
#if _M_X86_32 // TODO: Implement generic ways to do this cleanly with all supported architectures
#define PROFILER_QUERY_PERFORMANCE_COUNTER(pt) \
LEA(32, EAX, M(pt)); PUSH(EAX); \
CALL(QueryPerformanceCounter)
// TODO: r64 way
// asm write : (u64) dt += t1-t0 // asm write : (u64) dt += t1-t0
#define PROFILER_ADD_DIFF_LARGE_INTEGER(pdt, pt1, pt0) \
MOV(32, R(EAX), M(pt1)); \
SUB(32, R(EAX), M(pt0)); \
MOV(32, R(ECX), M(((u8*)pt1) + 4)); \
SBB(32, R(ECX), M(((u8*)pt0) + 4)); \
ADD(32, R(EAX), M(pdt)); \
MOV(32, R(EDX), M(((u8*)pdt) + 4)); \
ADC(32, R(EDX), R(ECX)); \
MOV(32, M(pdt), R(EAX)); \
MOV(32, M(((u8*)pdt) + 4), R(EDX))
#define PROFILER_VPUSH PUSH(EAX);PUSH(ECX);PUSH(EDX)
#define PROFILER_VPOP POP(EDX);POP(ECX);POP(EAX)
#else
#define PROFILER_QUERY_PERFORMANCE_COUNTER(pt)
#define PROFILER_ADD_DIFF_LARGE_INTEGER(pdt, pt1, pt0) #define PROFILER_ADD_DIFF_LARGE_INTEGER(pdt, pt1, pt0)
#define PROFILER_VPUSH #define PROFILER_VPUSH
#define PROFILER_VPOP #define PROFILER_VPOP
#endif
#else
// TODO
#define PROFILER_QUERY_PERFORMANCE_COUNTER(pt)
#define PROFILER_ADD_DIFF_LARGE_INTEGER(pdt, pt1, pt0)
#define PROFILER_VPUSH
#define PROFILER_VPOP
#endif
struct BlockStat struct BlockStat
{ {

View File

@ -113,7 +113,6 @@ LONG NTAPI Handler(PEXCEPTION_POINTERS pPtrs)
void InstallExceptionHandler() void InstallExceptionHandler()
{ {
#if _M_X86_64
// Make sure this is only called once per process execution // Make sure this is only called once per process execution
// Instead, could make a Uninstall function, but whatever.. // Instead, could make a Uninstall function, but whatever..
static bool handlerInstalled = false; static bool handlerInstalled = false;
@ -122,7 +121,6 @@ void InstallExceptionHandler()
AddVectoredExceptionHandler(TRUE, Handler); AddVectoredExceptionHandler(TRUE, Handler);
handlerInstalled = true; handlerInstalled = true;
#endif
} }
#elif defined(__APPLE__) #elif defined(__APPLE__)
@ -135,7 +133,6 @@ void CheckKR(const char* name, kern_return_t kr)
} }
} }
#if _M_X86_64
void ExceptionThread(mach_port_t port) void ExceptionThread(mach_port_t port)
{ {
Common::SetCurrentThreadName("Mach exception thread"); Common::SetCurrentThreadName("Mach exception thread");
@ -226,13 +223,9 @@ void ExceptionThread(mach_port_t port)
option |= MACH_SEND_MSG; option |= MACH_SEND_MSG;
} }
} }
#endif
void InstallExceptionHandler() void InstallExceptionHandler()
{ {
#if _M_X86_32
PanicAlertT("InstallExceptionHandler called, but this platform does not yet support it.");
#else
mach_port_t port; mach_port_t port;
CheckKR("mach_port_allocate", mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port)); CheckKR("mach_port_allocate", mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port));
std::thread exc_thread(ExceptionThread, port); std::thread exc_thread(ExceptionThread, port);
@ -246,14 +239,12 @@ void InstallExceptionHandler()
CheckKR("mach_port_mod_refs", mach_port_mod_refs(mach_task_self(), port, MACH_PORT_RIGHT_SEND, -1)); CheckKR("mach_port_mod_refs", mach_port_mod_refs(mach_task_self(), port, MACH_PORT_RIGHT_SEND, -1));
mach_port_t previous; mach_port_t previous;
CheckKR("mach_port_request_notification", mach_port_request_notification(mach_task_self(), port, MACH_NOTIFY_NO_SENDERS, 0, port, MACH_MSG_TYPE_MAKE_SEND_ONCE, &previous)); CheckKR("mach_port_request_notification", mach_port_request_notification(mach_task_self(), port, MACH_NOTIFY_NO_SENDERS, 0, port, MACH_MSG_TYPE_MAKE_SEND_ONCE, &previous));
#endif
} }
#elif !defined(ANDROID) #elif !defined(ANDROID)
static void sigsegv_handler(int sig, siginfo_t *info, void *raw_context) static void sigsegv_handler(int sig, siginfo_t *info, void *raw_context)
{ {
#ifndef _M_GENERIC
if (sig != SIGSEGV) if (sig != SIGSEGV)
{ {
// We are not interested in other signals - handle it as usual. // We are not interested in other signals - handle it as usual.
@ -276,21 +267,16 @@ static void sigsegv_handler(int sig, siginfo_t *info, void *raw_context)
// retry and crash // retry and crash
signal(SIGSEGV, SIG_DFL); signal(SIGSEGV, SIG_DFL);
} }
#endif
} }
void InstallExceptionHandler() void InstallExceptionHandler()
{ {
#if _M_X86_32
PanicAlertT("InstallExceptionHandler called, but this platform does not yet support it.");
#else
struct sigaction sa; struct sigaction sa;
sa.sa_handler = nullptr; sa.sa_handler = nullptr;
sa.sa_sigaction = &sigsegv_handler; sa.sa_sigaction = &sigsegv_handler;
sa.sa_flags = SA_SIGINFO; sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask); sigemptyset(&sa.sa_mask);
sigaction(SIGSEGV, &sa, nullptr); sigaction(SIGSEGV, &sa, nullptr);
#endif
} }
#endif #endif

View File

@ -134,11 +134,7 @@ void CJitWindow::Compare(u32 em_address)
int num_x86_instructions = 0; int num_x86_instructions = 0;
while ((u8*)disasmPtr < end) while ((u8*)disasmPtr < end)
{ {
#if _M_X86_64
disasmPtr += x64disasm.disasm64(disasmPtr, disasmPtr, (u8*)disasmPtr, sptr); disasmPtr += x64disasm.disasm64(disasmPtr, disasmPtr, (u8*)disasmPtr, sptr);
#else
disasmPtr += x64disasm.disasm32(disasmPtr, disasmPtr, (u8*)disasmPtr, sptr);
#endif
sptr += strlen(sptr); sptr += strlen(sptr);
*sptr++ = 13; *sptr++ = 13;
*sptr++ = 10; *sptr++ = 10;

View File

@ -122,11 +122,9 @@ LONG WINAPI MyUnhandledExceptionFilter(LPEXCEPTION_POINTERS e) {
//dumpCurrentDate(file); //dumpCurrentDate(file);
etfprintf(file.GetHandle(), "Unhandled Exception\n Code: 0x%08X\n", etfprintf(file.GetHandle(), "Unhandled Exception\n Code: 0x%08X\n",
e->ExceptionRecord->ExceptionCode); e->ExceptionRecord->ExceptionCode);
#if _M_X86_32
STACKTRACE2(file.GetHandle(), e->ContextRecord->Eip, e->ContextRecord->Esp, e->ContextRecord->Ebp);
#else
STACKTRACE2(file.GetHandle(), e->ContextRecord->Rip, e->ContextRecord->Rsp, e->ContextRecord->Rbp); STACKTRACE2(file.GetHandle(), e->ContextRecord->Rip, e->ContextRecord->Rsp, e->ContextRecord->Rbp);
#endif
file.Close(); file.Close();
_flushall(); _flushall();

View File

@ -13,15 +13,7 @@
#define NOMINMAX // Don't include windows min/max definitions #define NOMINMAX // Don't include windows min/max definitions
#include <wx/wx.h> // wxWidgets #include <wx/wx.h> // wxWidgets
#if _M_X86_32 #if defined _M_X86_64
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='x86' publicKeyToken='6595b64144ccf1df' language='*'\"")
#elif defined _M_IA64
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='ia64' publicKeyToken='6595b64144ccf1df' language='*'\"")
#elif _M_X86_64
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df' language='*'\"") #pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls' version='6.0.0.0' processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df' language='*'\"")

View File

@ -752,12 +752,8 @@ void VertexLoader::CompileVertexTranslator()
#ifdef USE_VERTEX_LOADER_JIT #ifdef USE_VERTEX_LOADER_JIT
// End loop here // End loop here
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)&loop_counter)); MOV(64, R(RAX), Imm64((u64)&loop_counter));
SUB(32, MatR(RAX), Imm8(1)); SUB(32, MatR(RAX), Imm8(1));
#else
SUB(32, M(&loop_counter), Imm8(1));
#endif
J_CC(CC_NZ, loop_start); J_CC(CC_NZ, loop_start);
ABI_PopAllCalleeSavedRegsAndAdjustStack(); ABI_PopAllCalleeSavedRegsAndAdjustStack();
@ -768,12 +764,8 @@ void VertexLoader::CompileVertexTranslator()
void VertexLoader::WriteCall(TPipelineFunction func) void VertexLoader::WriteCall(TPipelineFunction func)
{ {
#ifdef USE_VERTEX_LOADER_JIT #ifdef USE_VERTEX_LOADER_JIT
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)func)); MOV(64, R(RAX), Imm64((u64)func));
CALLptr(R(RAX)); CALLptr(R(RAX));
#else
CALL((void*)func);
#endif
#else #else
m_PipelineStages[m_numPipelineStages++] = func; m_PipelineStages[m_numPipelineStages++] = func;
#endif #endif
@ -783,24 +775,16 @@ void VertexLoader::WriteCall(TPipelineFunction func)
void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address) void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address)
{ {
#ifdef USE_VERTEX_LOADER_JIT #ifdef USE_VERTEX_LOADER_JIT
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)address)); MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, dest, MatR(RAX)); MOV(bits, dest, MatR(RAX));
#else
MOV(bits, dest, M(address));
#endif
#endif #endif
} }
void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value) void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value)
{ {
#ifdef USE_VERTEX_LOADER_JIT #ifdef USE_VERTEX_LOADER_JIT
#if _M_X86_64
MOV(64, R(RAX), Imm64((u64)address)); MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, MatR(RAX), value); MOV(bits, MatR(RAX), value);
#else
MOV(bits, M(address), value);
#endif
#endif #endif
} }
#endif #endif

View File

@ -114,4 +114,4 @@
</Lib> </Lib>
</ItemDefinitionGroup> </ItemDefinitionGroup>
<ItemGroup /> <ItemGroup />
</Project> </Project>