mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-01-29 03:32:49 +00:00
1376 lines
54 KiB
C
1376 lines
54 KiB
C
/*
|
|
* Copyright (C) 2017 BlueKitchen GmbH
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the copyright holders nor the names of
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
|
|
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#define BTSTACK_FILE__ "btstack_crypto.c"
|
|
|
|
/*
|
|
* btstack_crypto.h
|
|
*
|
|
* Central place for all crypto-related functions with completion callbacks to allow
|
|
* using of MCU crypto peripherals or the Bluetooth controller
|
|
*/
|
|
|
|
#include "btstack_crypto.h"
|
|
|
|
#include "btstack_debug.h"
|
|
#include "btstack_event.h"
|
|
#include "btstack_linked_list.h"
|
|
#include "btstack_util.h"
|
|
#include "btstack_bool.h"
|
|
#include "hci.h"
|
|
|
|
//
|
|
// AES128 Configuration
|
|
//
|
|
|
|
// By default, AES128 is computed by Bluetooth Controller using HCI Command/Event asynchronously
|
|
// as fallback/alternative, a software implementation can be used
|
|
// configure ECC implementations
|
|
#if defined(HAVE_AES128) && defined(ENABLE_SOFTWARE_AES128)
|
|
#error "If you have custom AES128 implementation (HAVE_AES128), please disable software AES128 (ENABLE_SOFTWARE_AES128) in bstack_config.h"
|
|
#endif
|
|
|
|
#ifdef ENABLE_SOFTWARE_AES128
|
|
#define HAVE_AES128
|
|
#include "rijndael.h"
|
|
#endif
|
|
|
|
#ifdef HAVE_AES128
|
|
#define USE_BTSTACK_AES128
|
|
#endif
|
|
|
|
//
|
|
// ECC Configuration
|
|
//
|
|
|
|
// backwards-compatitility ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS -> ENABLE_MICRO_ECC_P256
|
|
#if defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_P256)
|
|
#define ENABLE_MICRO_ECC_P256
|
|
#endif
|
|
|
|
// configure ECC implementations
|
|
#if defined(ENABLE_MICRO_ECC_P256) && defined(HAVE_MBEDTLS_ECC_P256)
|
|
#error "If you have mbedTLS (HAVE_MBEDTLS_ECC_P256), please disable uECC (ENABLE_MICRO_ECC_P256) in bstack_config.h"
|
|
#endif
|
|
|
|
// Software ECC-P256 implementation provided by micro-ecc
|
|
#ifdef ENABLE_MICRO_ECC_P256
|
|
#define ENABLE_ECC_P256
|
|
#define USE_MICRO_ECC_P256
|
|
#define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
#include "uECC.h"
|
|
#endif
|
|
|
|
// Software ECC-P256 implementation provided by mbedTLS
|
|
#ifdef HAVE_MBEDTLS_ECC_P256
|
|
#define ENABLE_ECC_P256
|
|
#define USE_MBEDTLS_ECC_P256
|
|
#define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
#include "mbedtls/config.h"
|
|
#include "mbedtls/platform.h"
|
|
#include "mbedtls/ecp.h"
|
|
#endif
|
|
|
|
#if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_ECC_P256)
|
|
#define ENABLE_ECC_P256
|
|
#endif
|
|
|
|
// debugging
|
|
// #define DEBUG_CCM
|
|
|
|
typedef enum {
|
|
CMAC_IDLE,
|
|
CMAC_CALC_SUBKEYS,
|
|
CMAC_W4_SUBKEYS,
|
|
CMAC_CALC_MI,
|
|
CMAC_W4_MI,
|
|
CMAC_CALC_MLAST,
|
|
CMAC_W4_MLAST
|
|
} btstack_crypto_cmac_state_t;
|
|
|
|
typedef enum {
|
|
ECC_P256_KEY_GENERATION_IDLE,
|
|
ECC_P256_KEY_GENERATION_GENERATING_RANDOM,
|
|
ECC_P256_KEY_GENERATION_ACTIVE,
|
|
ECC_P256_KEY_GENERATION_W4_KEY,
|
|
ECC_P256_KEY_GENERATION_DONE,
|
|
} btstack_crypto_ecc_p256_key_generation_state_t;
|
|
|
|
static void btstack_crypto_run(void);
|
|
|
|
static const uint8_t zero[16] = { 0 };
|
|
|
|
static bool btstack_crypto_initialized;
|
|
static bool btstack_crypto_wait_for_hci_result;
|
|
static btstack_linked_list_t btstack_crypto_operations;
|
|
static btstack_packet_callback_registration_t hci_event_callback_registration;
|
|
|
|
// state for AES-CMAC
|
|
#ifndef USE_BTSTACK_AES128
|
|
static btstack_crypto_cmac_state_t btstack_crypto_cmac_state;
|
|
static sm_key_t btstack_crypto_cmac_k;
|
|
static sm_key_t btstack_crypto_cmac_x;
|
|
static sm_key_t btstack_crypto_cmac_subkey;
|
|
static uint8_t btstack_crypto_cmac_block_current;
|
|
static uint8_t btstack_crypto_cmac_block_count;
|
|
#endif
|
|
|
|
// state for AES-CCM
|
|
static uint8_t btstack_crypto_ccm_s[16];
|
|
|
|
#ifdef ENABLE_ECC_P256
|
|
|
|
static uint8_t btstack_crypto_ecc_p256_public_key[64];
|
|
static uint8_t btstack_crypto_ecc_p256_random[64];
|
|
static uint8_t btstack_crypto_ecc_p256_random_len;
|
|
static uint8_t btstack_crypto_ecc_p256_random_offset;
|
|
static btstack_crypto_ecc_p256_key_generation_state_t btstack_crypto_ecc_p256_key_generation_state;
|
|
|
|
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
static uint8_t btstack_crypto_ecc_p256_d[32];
|
|
#endif
|
|
|
|
// Software ECDH implementation provided by mbedtls
|
|
#ifdef USE_MBEDTLS_ECC_P256
|
|
static mbedtls_ecp_group mbedtls_ec_group;
|
|
#endif
|
|
|
|
#endif /* ENABLE_ECC_P256 */
|
|
|
|
#ifdef ENABLE_SOFTWARE_AES128
|
|
// AES128 using public domain rijndael implementation
|
|
void btstack_aes128_calc(const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext){
|
|
uint32_t rk[RKLENGTH(KEYBITS)];
|
|
int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
|
|
rijndaelEncrypt(rk, nrounds, plaintext, ciphertext);
|
|
}
|
|
#endif
|
|
|
|
static void btstack_crypto_done(btstack_crypto_t * btstack_crypto){
|
|
btstack_linked_list_pop(&btstack_crypto_operations);
|
|
(*btstack_crypto->context_callback.callback)(btstack_crypto->context_callback.context);
|
|
}
|
|
|
|
static void btstack_crypto_cmac_shift_left_by_one_bit_inplace(int len, uint8_t * data){
|
|
int i;
|
|
int carry = 0;
|
|
for (i=len-1; i >= 0 ; i--){
|
|
int new_carry = data[i] >> 7;
|
|
data[i] = (data[i] << 1) | carry;
|
|
carry = new_carry;
|
|
}
|
|
}
|
|
|
|
static uint8_t btstack_crypto_cmac_get_byte(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, uint16_t pos){
|
|
if (btstack_crypto_cmac->btstack_crypto.operation == BTSTACK_CRYPTO_CMAC_GENERATOR){
|
|
return (*btstack_crypto_cmac->data.get_byte_callback)(pos);
|
|
} else {
|
|
return btstack_crypto_cmac->data.message[pos];
|
|
}
|
|
}
|
|
|
|
#ifdef USE_BTSTACK_AES128
|
|
|
|
static void btstack_crypto_cmac_calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
|
|
memcpy(k1, k0, 16);
|
|
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
|
|
if (k0[0] & 0x80){
|
|
k1[15] ^= 0x87;
|
|
}
|
|
memcpy(k2, k1, 16);
|
|
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
|
|
if (k1[0] & 0x80){
|
|
k2[15] ^= 0x87;
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_cmac_calc(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac) {
|
|
sm_key_t k0, k1, k2;
|
|
uint16_t i;
|
|
|
|
btstack_aes128_calc(btstack_crypto_cmac->key, zero, k0);
|
|
btstack_crypto_cmac_calc_subkeys(k0, k1, k2);
|
|
|
|
uint16_t cmac_block_count = (btstack_crypto_cmac->size + 15) / 16;
|
|
|
|
// step 3: ..
|
|
if (cmac_block_count==0){
|
|
cmac_block_count = 1;
|
|
}
|
|
|
|
// Step 5
|
|
sm_key_t cmac_x;
|
|
memset(cmac_x, 0, 16);
|
|
|
|
// Step 6
|
|
sm_key_t cmac_y;
|
|
int block;
|
|
for (block = 0 ; block < cmac_block_count-1 ; block++){
|
|
for (i=0;i<16;i++){
|
|
cmac_y[i] = cmac_x[i] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (block*16) + i);
|
|
}
|
|
btstack_aes128_calc(btstack_crypto_cmac->key, cmac_y, cmac_x);
|
|
}
|
|
|
|
// step 4: set m_last
|
|
sm_key_t cmac_m_last;
|
|
bool last_block_complete = btstack_crypto_cmac->size != 0 && (btstack_crypto_cmac->size & 0x0f) == 0;
|
|
if (last_block_complete){
|
|
for (i=0;i<16;i++){
|
|
cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16 + i) ^ k1[i];
|
|
}
|
|
} else {
|
|
uint16_t valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0f;
|
|
for (i=0;i<16;i++){
|
|
if (i < valid_octets_in_last_block){
|
|
cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0) + i) ^ k2[i];
|
|
continue;
|
|
}
|
|
if (i == valid_octets_in_last_block){
|
|
cmac_m_last[i] = 0x80 ^ k2[i];
|
|
continue;
|
|
}
|
|
cmac_m_last[i] = k2[i];
|
|
}
|
|
}
|
|
|
|
for (i=0;i<16;i++){
|
|
cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
|
|
}
|
|
|
|
// Step 7
|
|
btstack_aes128_calc(btstack_crypto_cmac->key, cmac_y, btstack_crypto_cmac->hash);
|
|
}
|
|
#else
|
|
|
|
static void btstack_crypto_aes128_start(const sm_key_t key, const sm_key_t plaintext){
|
|
uint8_t key_flipped[16];
|
|
uint8_t plaintext_flipped[16];
|
|
reverse_128(key, key_flipped);
|
|
reverse_128(plaintext, plaintext_flipped);
|
|
btstack_crypto_wait_for_hci_result = 1;
|
|
hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
|
|
}
|
|
|
|
static inline void btstack_crypto_cmac_next_state(void){
|
|
btstack_crypto_cmac_state = (btstack_crypto_cmac_state_t) (((int)btstack_crypto_cmac_state) + 1);
|
|
}
|
|
|
|
static int btstack_crypto_cmac_last_block_complete(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
|
|
uint16_t len = btstack_crypto_cmac->size;
|
|
if (len == 0u) return 0u;
|
|
return (len & 0x0fu) == 0u;
|
|
}
|
|
|
|
static void btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
|
|
switch (btstack_crypto_cmac_state){
|
|
case CMAC_CALC_SUBKEYS: {
|
|
btstack_crypto_cmac_next_state();
|
|
btstack_crypto_aes128_start(btstack_crypto_cmac_k, zero);
|
|
break;
|
|
}
|
|
case CMAC_CALC_MI: {
|
|
int j;
|
|
sm_key_t y;
|
|
for (j=0;j<16;j++){
|
|
y[j] = btstack_crypto_cmac_x[j] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac_block_current*16u) + j);
|
|
}
|
|
btstack_crypto_cmac_block_current++;
|
|
btstack_crypto_cmac_next_state();
|
|
btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
|
|
break;
|
|
}
|
|
case CMAC_CALC_MLAST: {
|
|
sm_key_t k1;
|
|
(void)memcpy(k1, btstack_crypto_cmac_subkey, 16);
|
|
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
|
|
if (btstack_crypto_cmac_subkey[0u] & 0x80u){
|
|
k1[15u] ^= 0x87u;
|
|
}
|
|
sm_key_t k2;
|
|
(void)memcpy(k2, k1, 16);
|
|
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
|
|
if (k1[0u] & 0x80u){
|
|
k2[15u] ^= 0x87u;
|
|
}
|
|
|
|
log_info_key("k", btstack_crypto_cmac_k);
|
|
log_info_key("k1", k1);
|
|
log_info_key("k2", k2);
|
|
|
|
// step 4: set m_last
|
|
int i;
|
|
sm_key_t btstack_crypto_cmac_m_last;
|
|
if (btstack_crypto_cmac_last_block_complete(btstack_crypto_cmac)){
|
|
for (i=0;i<16;i++){
|
|
btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16u + i) ^ k1[i];
|
|
}
|
|
} else {
|
|
int valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0fu;
|
|
for (i=0;i<16;i++){
|
|
if (i < valid_octets_in_last_block){
|
|
btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0u) + i) ^ k2[i];
|
|
continue;
|
|
}
|
|
if (i == valid_octets_in_last_block){
|
|
btstack_crypto_cmac_m_last[i] = 0x80u ^ k2[i];
|
|
continue;
|
|
}
|
|
btstack_crypto_cmac_m_last[i] = k2[i];
|
|
}
|
|
}
|
|
sm_key_t y;
|
|
for (i=0;i<16;i++){
|
|
y[i] = btstack_crypto_cmac_x[i] ^ btstack_crypto_cmac_m_last[i];
|
|
}
|
|
btstack_crypto_cmac_block_current++;
|
|
btstack_crypto_cmac_next_state();
|
|
btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
|
|
break;
|
|
}
|
|
default:
|
|
log_info("btstack_crypto_cmac_handle_aes_engine_ready called in state %u", btstack_crypto_cmac_state);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_cmac_handle_encryption_result(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, sm_key_t data){
|
|
switch (btstack_crypto_cmac_state){
|
|
case CMAC_W4_SUBKEYS:
|
|
(void)memcpy(btstack_crypto_cmac_subkey, data, 16);
|
|
// next
|
|
btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1u)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
|
|
break;
|
|
case CMAC_W4_MI:
|
|
(void)memcpy(btstack_crypto_cmac_x, data, 16);
|
|
btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1u)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
|
|
break;
|
|
case CMAC_W4_MLAST:
|
|
// done
|
|
log_info("Setting CMAC Engine to IDLE");
|
|
btstack_crypto_cmac_state = CMAC_IDLE;
|
|
log_info_key("CMAC", data);
|
|
(void)memcpy(btstack_crypto_cmac->hash, data, 16);
|
|
btstack_linked_list_pop(&btstack_crypto_operations);
|
|
(*btstack_crypto_cmac->btstack_crypto.context_callback.callback)(btstack_crypto_cmac->btstack_crypto.context_callback.context);
|
|
break;
|
|
default:
|
|
log_info("btstack_crypto_cmac_handle_encryption_result called in state %u", btstack_crypto_cmac_state);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_cmac_start(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
|
|
|
|
(void)memcpy(btstack_crypto_cmac_k, btstack_crypto_cmac->key, 16);
|
|
memset(btstack_crypto_cmac_x, 0, 16);
|
|
btstack_crypto_cmac_block_current = 0;
|
|
|
|
// step 2: n := ceil(len/const_Bsize);
|
|
btstack_crypto_cmac_block_count = (btstack_crypto_cmac->size + 15u) / 16u;
|
|
|
|
// step 3: ..
|
|
if (btstack_crypto_cmac_block_count==0u){
|
|
btstack_crypto_cmac_block_count = 1;
|
|
}
|
|
log_info("btstack_crypto_cmac_start: len %u, block count %u", btstack_crypto_cmac->size, btstack_crypto_cmac_block_count);
|
|
|
|
// first, we need to compute l for k1, k2, and m_last
|
|
btstack_crypto_cmac_state = CMAC_CALC_SUBKEYS;
|
|
|
|
// let's go
|
|
btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
To encrypt the message data we use Counter (CTR) mode. We first
|
|
define the key stream blocks by:
|
|
|
|
S_i := E( K, A_i ) for i=0, 1, 2, ...
|
|
|
|
The values A_i are formatted as follows, where the Counter field i is
|
|
encoded in most-significant-byte first order:
|
|
|
|
Octet Number Contents
|
|
------------ ---------
|
|
0 Flags
|
|
1 ... 15-L Nonce N
|
|
16-L ... 15 Counter i
|
|
|
|
Bit Number Contents
|
|
---------- ----------------------
|
|
7 Reserved (always zero)
|
|
6 Reserved (always zero)
|
|
5 ... 3 Zero
|
|
2 ... 0 L'
|
|
*/
|
|
|
|
static void btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm_t * btstack_crypto_ccm, uint16_t counter){
|
|
btstack_crypto_ccm_s[0] = 1; // L' = L - 1
|
|
(void)memcpy(&btstack_crypto_ccm_s[1], btstack_crypto_ccm->nonce, 13);
|
|
big_endian_store_16(btstack_crypto_ccm_s, 14, counter);
|
|
#ifdef DEBUG_CCM
|
|
printf("btstack_crypto_ccm_setup_a_%u\n", counter);
|
|
printf("%16s: ", "ai");
|
|
printf_hexdump(btstack_crypto_ccm_s, 16);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
The first step is to compute the authentication field T. This is
|
|
done using CBC-MAC [MAC]. We first define a sequence of blocks B_0,
|
|
B_1, ..., B_n and then apply CBC-MAC to these blocks.
|
|
|
|
The first block B_0 is formatted as follows, where l(m) is encoded in
|
|
most-significant-byte first order:
|
|
|
|
Octet Number Contents
|
|
------------ ---------
|
|
0 Flags
|
|
1 ... 15-L Nonce N
|
|
16-L ... 15 l(m)
|
|
|
|
Within the first block B_0, the Flags field is formatted as follows:
|
|
|
|
Bit Number Contents
|
|
---------- ----------------------
|
|
7 Reserved (always zero)
|
|
6 Adata
|
|
5 ... 3 M'
|
|
2 ... 0 L'
|
|
*/
|
|
|
|
static void btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm_t * btstack_crypto_ccm, uint8_t * b0){
|
|
uint8_t m_prime = (btstack_crypto_ccm->auth_len - 2u) / 2u;
|
|
uint8_t Adata = btstack_crypto_ccm->aad_len ? 1 : 0;
|
|
b0[0u] = (Adata << 6u) | (m_prime << 3u) | 1u ; // Adata, M', L' = L - 1
|
|
(void)memcpy(&b0[1], btstack_crypto_ccm->nonce, 13);
|
|
big_endian_store_16(b0, 14, btstack_crypto_ccm->message_len);
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "B0");
|
|
printf_hexdump(b0, 16);
|
|
#endif
|
|
}
|
|
|
|
#ifdef ENABLE_ECC_P256
|
|
|
|
static void btstack_crypto_log_ec_publickey(const uint8_t * ec_q){
|
|
log_info("Elliptic curve: X");
|
|
log_info_hexdump(&ec_q[0],32);
|
|
log_info("Elliptic curve: Y");
|
|
log_info_hexdump(&ec_q[32],32);
|
|
}
|
|
|
|
#if (defined(USE_MICRO_ECC_P256) && !defined(WICED_VERSION)) || defined(USE_MBEDTLS_ECC_P256)
|
|
// @return OK
|
|
static int sm_generate_f_rng(unsigned char * buffer, unsigned size){
|
|
if (btstack_crypto_ecc_p256_key_generation_state != ECC_P256_KEY_GENERATION_ACTIVE) return 0;
|
|
log_info("sm_generate_f_rng: size %u - offset %u", (int) size, btstack_crypto_ecc_p256_random_offset);
|
|
while (size) {
|
|
*buffer++ = btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_offset++];
|
|
size--;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
#ifdef USE_MBEDTLS_ECC_P256
|
|
// @return error - just wrap sm_generate_f_rng
|
|
static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){
|
|
UNUSED(context);
|
|
return sm_generate_f_rng(buffer, size) == 0;
|
|
}
|
|
#endif /* USE_MBEDTLS_ECC_P256 */
|
|
|
|
static void btstack_crypto_ecc_p256_generate_key_software(void){
|
|
|
|
btstack_crypto_ecc_p256_random_offset = 0;
|
|
|
|
// generate EC key
|
|
#ifdef USE_MICRO_ECC_P256
|
|
|
|
#ifndef WICED_VERSION
|
|
log_info("set uECC RNG for initial key generation with 64 random bytes");
|
|
// micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it
|
|
uECC_set_rng(&sm_generate_f_rng);
|
|
#endif /* WICED_VERSION */
|
|
|
|
#if uECC_SUPPORTS_secp256r1
|
|
// standard version
|
|
uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d, uECC_secp256r1());
|
|
|
|
// disable RNG again, as returning no randmon data lets shared key generation fail
|
|
log_info("disable uECC RNG in standard version after key generation");
|
|
uECC_set_rng(NULL);
|
|
#else
|
|
// static version
|
|
uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d);
|
|
#endif
|
|
#endif /* USE_MICRO_ECC_P256 */
|
|
|
|
#ifdef USE_MBEDTLS_ECC_P256
|
|
mbedtls_mpi d;
|
|
mbedtls_ecp_point P;
|
|
mbedtls_mpi_init(&d);
|
|
mbedtls_ecp_point_init(&P);
|
|
int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL);
|
|
log_info("gen keypair %x", res);
|
|
mbedtls_mpi_write_binary(&P.X, &btstack_crypto_ecc_p256_public_key[0], 32);
|
|
mbedtls_mpi_write_binary(&P.Y, &btstack_crypto_ecc_p256_public_key[32], 32);
|
|
mbedtls_mpi_write_binary(&d, btstack_crypto_ecc_p256_d, 32);
|
|
mbedtls_ecp_point_free(&P);
|
|
mbedtls_mpi_free(&d);
|
|
#endif /* USE_MBEDTLS_ECC_P256 */
|
|
}
|
|
|
|
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
static void btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192){
|
|
memset(btstack_crypto_ec_p192->dhkey, 0, 32);
|
|
|
|
#ifdef USE_MICRO_ECC_P256
|
|
#if uECC_SUPPORTS_secp256r1
|
|
// standard version
|
|
uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey, uECC_secp256r1());
|
|
#else
|
|
// static version
|
|
uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_MBEDTLS_ECC_P256
|
|
// da * Pb
|
|
mbedtls_mpi d;
|
|
mbedtls_ecp_point Q;
|
|
mbedtls_ecp_point DH;
|
|
mbedtls_mpi_init(&d);
|
|
mbedtls_ecp_point_init(&Q);
|
|
mbedtls_ecp_point_init(&DH);
|
|
mbedtls_mpi_read_binary(&d, btstack_crypto_ecc_p256_d, 32);
|
|
mbedtls_mpi_read_binary(&Q.X, &btstack_crypto_ec_p192->public_key[0] , 32);
|
|
mbedtls_mpi_read_binary(&Q.Y, &btstack_crypto_ec_p192->public_key[32], 32);
|
|
mbedtls_mpi_lset(&Q.Z, 1);
|
|
mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL);
|
|
mbedtls_mpi_write_binary(&DH.X, btstack_crypto_ec_p192->dhkey, 32);
|
|
mbedtls_ecp_point_free(&DH);
|
|
mbedtls_mpi_free(&d);
|
|
mbedtls_ecp_point_free(&Q);
|
|
#endif
|
|
|
|
log_info("dhkey");
|
|
log_info_hexdump(btstack_crypto_ec_p192->dhkey, 32);
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
static void btstack_crypto_ccm_next_block(btstack_crypto_ccm_t * btstack_crypto_ccm, btstack_crypto_ccm_state_t state_when_done){
|
|
uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
|
|
// next block
|
|
btstack_crypto_ccm->counter++;
|
|
btstack_crypto_ccm->input += bytes_to_process;
|
|
btstack_crypto_ccm->output += bytes_to_process;
|
|
btstack_crypto_ccm->block_len -= bytes_to_process;
|
|
btstack_crypto_ccm->message_len -= bytes_to_process;
|
|
#ifdef DEBUG_CCM
|
|
printf("btstack_crypto_ccm_next_block (message len %u, block_len %u)\n", btstack_crypto_ccm->message_len, btstack_crypto_ccm->block_len);
|
|
#endif
|
|
if (btstack_crypto_ccm->message_len == 0u){
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_S0;
|
|
} else {
|
|
btstack_crypto_ccm->state = state_when_done;
|
|
if (btstack_crypto_ccm->block_len == 0u){
|
|
btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If Controller is used for AES128, data is little endian
|
|
static void btstack_crypto_ccm_handle_s0(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
|
|
int i;
|
|
for (i=0;i<16;i++){
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[i];
|
|
#else
|
|
btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[15-i];
|
|
#endif
|
|
}
|
|
btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
|
|
}
|
|
|
|
// If Controller is used for AES128, data is little endian
|
|
static void btstack_crypto_ccm_handle_sn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
|
|
int i;
|
|
uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
|
|
for (i=0;i<bytes_to_process;i++){
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[i];
|
|
#else
|
|
btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[15-i];
|
|
#endif
|
|
}
|
|
switch (btstack_crypto_ccm->btstack_crypto.operation){
|
|
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_XN;
|
|
break;
|
|
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
|
|
btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_XN);
|
|
break;
|
|
default:
|
|
btstack_assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm) {
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "Xn+1 AAD");
|
|
printf_hexdump(btstack_crypto_ccm->x_i, 16);
|
|
#endif
|
|
// more aad?
|
|
if (btstack_crypto_ccm->aad_offset < (btstack_crypto_ccm->aad_len + 2u)){
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
|
|
} else {
|
|
// done
|
|
btstack_crypto_done((btstack_crypto_t *) btstack_crypto_ccm);
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_ccm_handle_x1(btstack_crypto_ccm_t * btstack_crypto_ccm) {
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "Xi");
|
|
printf_hexdump(btstack_crypto_ccm->x_i, 16);
|
|
#endif
|
|
switch (btstack_crypto_ccm->btstack_crypto.operation){
|
|
case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
|
|
btstack_crypto_ccm->aad_remainder_len = 0;
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
|
|
break;
|
|
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_SN;
|
|
break;
|
|
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_XN;
|
|
break;
|
|
default:
|
|
btstack_assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_ccm_handle_xn(btstack_crypto_ccm_t * btstack_crypto_ccm) {
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "Xn+1");
|
|
printf_hexdump(btstack_crypto_ccm->x_i, 16);
|
|
#endif
|
|
switch (btstack_crypto_ccm->btstack_crypto.operation){
|
|
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
|
|
btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_SN);
|
|
break;
|
|
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
|
|
btstack_crypto_ccm->state = CCM_CALCULATE_SN;
|
|
break;
|
|
default:
|
|
btstack_assert(false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_ccm_calc_s0(btstack_crypto_ccm_t * btstack_crypto_ccm){
|
|
#ifdef DEBUG_CCM
|
|
printf("btstack_crypto_ccm_calc_s0\n");
|
|
#endif
|
|
btstack_crypto_ccm->state = CCM_W4_S0;
|
|
btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, 0);
|
|
#ifdef USE_BTSTACK_AES128
|
|
uint8_t data[16];
|
|
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_s, data);
|
|
btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
|
|
#else
|
|
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
|
|
#endif
|
|
}
|
|
|
|
static void btstack_crypto_ccm_calc_sn(btstack_crypto_ccm_t * btstack_crypto_ccm){
|
|
#ifdef DEBUG_CCM
|
|
printf("btstack_crypto_ccm_calc_s%u\n", btstack_crypto_ccm->counter);
|
|
#endif
|
|
btstack_crypto_ccm->state = CCM_W4_SN;
|
|
btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, btstack_crypto_ccm->counter);
|
|
#ifdef USE_BTSTACK_AES128
|
|
uint8_t data[16];
|
|
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_s, data);
|
|
btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
|
|
#else
|
|
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
|
|
#endif
|
|
}
|
|
|
|
static void btstack_crypto_ccm_calc_x1(btstack_crypto_ccm_t * btstack_crypto_ccm){
|
|
uint8_t btstack_crypto_ccm_buffer[16];
|
|
btstack_crypto_ccm->state = CCM_W4_X1;
|
|
btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm, btstack_crypto_ccm_buffer);
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer, btstack_crypto_ccm->x_i);
|
|
btstack_crypto_ccm_handle_x1(btstack_crypto_ccm);
|
|
#else
|
|
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
|
|
#endif
|
|
}
|
|
|
|
static void btstack_crypto_ccm_calc_xn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * plaintext){
|
|
uint8_t btstack_crypto_ccm_buffer[16];
|
|
btstack_crypto_ccm->state = CCM_W4_XN;
|
|
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "bn");
|
|
printf_hexdump(plaintext, 16);
|
|
#endif
|
|
uint8_t i;
|
|
uint8_t bytes_to_decrypt = btstack_crypto_ccm->block_len;
|
|
// use explicit min implementation as c-stat worried about out-of-bounds-reads
|
|
if (bytes_to_decrypt > 16u) {
|
|
bytes_to_decrypt = 16;
|
|
}
|
|
for (i = 0; i < bytes_to_decrypt ; i++){
|
|
btstack_crypto_ccm_buffer[i] = btstack_crypto_ccm->x_i[i] ^ plaintext[i];
|
|
}
|
|
(void)memcpy(&btstack_crypto_ccm_buffer[i], &btstack_crypto_ccm->x_i[i],
|
|
16u - bytes_to_decrypt);
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "Xn XOR bn");
|
|
printf_hexdump(btstack_crypto_ccm_buffer, 16);
|
|
#endif
|
|
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer, btstack_crypto_ccm->x_i);
|
|
btstack_crypto_ccm_handle_xn(btstack_crypto_ccm);
|
|
#else
|
|
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
|
|
#endif
|
|
}
|
|
|
|
static void btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm){
|
|
// store length
|
|
if (btstack_crypto_ccm->aad_offset == 0u){
|
|
uint8_t len_buffer[2];
|
|
big_endian_store_16(len_buffer, 0, btstack_crypto_ccm->aad_len);
|
|
btstack_crypto_ccm->x_i[0] ^= len_buffer[0];
|
|
btstack_crypto_ccm->x_i[1] ^= len_buffer[1];
|
|
btstack_crypto_ccm->aad_remainder_len += 2u;
|
|
btstack_crypto_ccm->aad_offset += 2u;
|
|
}
|
|
|
|
// fill from input
|
|
uint16_t bytes_free = 16u - btstack_crypto_ccm->aad_remainder_len;
|
|
uint16_t bytes_to_copy = btstack_min(bytes_free, btstack_crypto_ccm->block_len);
|
|
while (bytes_to_copy){
|
|
btstack_crypto_ccm->x_i[btstack_crypto_ccm->aad_remainder_len++] ^= *btstack_crypto_ccm->input++;
|
|
btstack_crypto_ccm->aad_offset++;
|
|
btstack_crypto_ccm->block_len--;
|
|
bytes_to_copy--;
|
|
bytes_free--;
|
|
}
|
|
|
|
// if last block, fill with zeros
|
|
if (btstack_crypto_ccm->aad_offset == (btstack_crypto_ccm->aad_len + 2u)){
|
|
btstack_crypto_ccm->aad_remainder_len = 16;
|
|
}
|
|
// if not full, notify done
|
|
if (btstack_crypto_ccm->aad_remainder_len < 16u){
|
|
btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
|
|
return;
|
|
}
|
|
|
|
// encrypt block
|
|
#ifdef DEBUG_CCM
|
|
printf("%16s: ", "Xn XOR Bn (aad)");
|
|
printf_hexdump(btstack_crypto_ccm->x_i, 16);
|
|
#endif
|
|
|
|
btstack_crypto_ccm->aad_remainder_len = 0;
|
|
btstack_crypto_ccm->state = CCM_W4_AAD_XN;
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i, btstack_crypto_ccm->x_i);
|
|
btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm);
|
|
#else
|
|
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i);
|
|
#endif
|
|
}
|
|
|
|
static void btstack_crypto_run(void){
|
|
|
|
btstack_crypto_aes128_t * btstack_crypto_aes128;
|
|
btstack_crypto_ccm_t * btstack_crypto_ccm;
|
|
btstack_crypto_aes128_cmac_t * btstack_crypto_cmac;
|
|
#ifdef ENABLE_ECC_P256
|
|
btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192;
|
|
#endif
|
|
|
|
// stack up and running?
|
|
if (hci_get_state() != HCI_STATE_WORKING) return;
|
|
|
|
// try to do as much as possible
|
|
while (true){
|
|
|
|
// anything to do?
|
|
if (btstack_linked_list_empty(&btstack_crypto_operations)) return;
|
|
|
|
// already active?
|
|
if (btstack_crypto_wait_for_hci_result) return;
|
|
|
|
// can send a command?
|
|
if (!hci_can_send_command_packet_now()) return;
|
|
|
|
// ok, find next task
|
|
btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
switch (btstack_crypto->operation){
|
|
case BTSTACK_CRYPTO_RANDOM:
|
|
btstack_crypto_wait_for_hci_result = true;
|
|
hci_send_cmd(&hci_le_rand);
|
|
break;
|
|
case BTSTACK_CRYPTO_AES128:
|
|
btstack_crypto_aes128 = (btstack_crypto_aes128_t *) btstack_crypto;
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_aes128_calc(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext, btstack_crypto_aes128->ciphertext);
|
|
btstack_crypto_done(btstack_crypto);
|
|
#else
|
|
btstack_crypto_aes128_start(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext);
|
|
#endif
|
|
break;
|
|
|
|
case BTSTACK_CRYPTO_CMAC_MESSAGE:
|
|
case BTSTACK_CRYPTO_CMAC_GENERATOR:
|
|
btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t *) btstack_crypto;
|
|
#ifdef USE_BTSTACK_AES128
|
|
btstack_crypto_cmac_calc( btstack_crypto_cmac );
|
|
btstack_crypto_done(btstack_crypto);
|
|
#else
|
|
btstack_crypto_wait_for_hci_result = 1;
|
|
if (btstack_crypto_cmac_state == CMAC_IDLE){
|
|
btstack_crypto_cmac_start(btstack_crypto_cmac);
|
|
} else {
|
|
btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
|
|
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
|
|
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
|
|
btstack_crypto_ccm = (btstack_crypto_ccm_t *) btstack_crypto;
|
|
switch (btstack_crypto_ccm->state){
|
|
case CCM_CALCULATE_AAD_XN:
|
|
#ifdef DEBUG_CCM
|
|
printf("CCM_CALCULATE_AAD_XN\n");
|
|
#endif
|
|
btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_CALCULATE_X1:
|
|
#ifdef DEBUG_CCM
|
|
printf("CCM_CALCULATE_X1\n");
|
|
#endif
|
|
btstack_crypto_ccm_calc_x1(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_CALCULATE_S0:
|
|
#ifdef DEBUG_CCM
|
|
printf("CCM_CALCULATE_S0\n");
|
|
#endif
|
|
btstack_crypto_ccm_calc_s0(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_CALCULATE_SN:
|
|
#ifdef DEBUG_CCM
|
|
printf("CCM_CALCULATE_SN\n");
|
|
#endif
|
|
btstack_crypto_ccm_calc_sn(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_CALCULATE_XN:
|
|
#ifdef DEBUG_CCM
|
|
printf("CCM_CALCULATE_XN\n");
|
|
#endif
|
|
btstack_crypto_ccm_calc_xn(btstack_crypto_ccm, (btstack_crypto->operation == BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK) ? btstack_crypto_ccm->input : btstack_crypto_ccm->output);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
#ifdef ENABLE_ECC_P256
|
|
case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
|
|
btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
|
|
switch (btstack_crypto_ecc_p256_key_generation_state){
|
|
case ECC_P256_KEY_GENERATION_DONE:
|
|
// done
|
|
btstack_crypto_log_ec_publickey(btstack_crypto_ecc_p256_public_key);
|
|
(void)memcpy(btstack_crypto_ec_p192->public_key,
|
|
btstack_crypto_ecc_p256_public_key, 64);
|
|
btstack_linked_list_pop(&btstack_crypto_operations);
|
|
(*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
|
|
break;
|
|
case ECC_P256_KEY_GENERATION_IDLE:
|
|
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
log_info("start ecc random");
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_GENERATING_RANDOM;
|
|
btstack_crypto_ecc_p256_random_offset = 0;
|
|
btstack_crypto_wait_for_hci_result = true;
|
|
hci_send_cmd(&hci_le_rand);
|
|
#else
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_W4_KEY;
|
|
btstack_crypto_wait_for_hci_result = 1;
|
|
hci_send_cmd(&hci_le_read_local_p256_public_key);
|
|
#endif
|
|
break;
|
|
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
case ECC_P256_KEY_GENERATION_GENERATING_RANDOM:
|
|
log_info("more ecc random");
|
|
btstack_crypto_wait_for_hci_result = true;
|
|
hci_send_cmd(&hci_le_rand);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY:
|
|
btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
|
|
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ec_p192);
|
|
// done
|
|
btstack_linked_list_pop(&btstack_crypto_operations);
|
|
(*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
|
|
#else
|
|
btstack_crypto_wait_for_hci_result = 1;
|
|
hci_send_cmd(&hci_le_generate_dhkey, &btstack_crypto_ec_p192->public_key[0], &btstack_crypto_ec_p192->public_key[32]);
|
|
#endif
|
|
break;
|
|
|
|
#endif /* ENABLE_ECC_P256 */
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void btstack_crypto_handle_random_data(const uint8_t * data, uint16_t len){
|
|
btstack_crypto_random_t * btstack_crypto_random;
|
|
btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
uint16_t bytes_to_copy;
|
|
if (!btstack_crypto) return;
|
|
switch (btstack_crypto->operation){
|
|
case BTSTACK_CRYPTO_RANDOM:
|
|
btstack_crypto_random = (btstack_crypto_random_t*) btstack_crypto;
|
|
bytes_to_copy = btstack_min(btstack_crypto_random->size, len);
|
|
(void)memcpy(btstack_crypto_random->buffer, data, bytes_to_copy);
|
|
btstack_crypto_random->buffer += bytes_to_copy;
|
|
btstack_crypto_random->size -= bytes_to_copy;
|
|
// data processed, more?
|
|
if (!btstack_crypto_random->size) {
|
|
// done
|
|
btstack_linked_list_pop(&btstack_crypto_operations);
|
|
(*btstack_crypto_random->btstack_crypto.context_callback.callback)(btstack_crypto_random->btstack_crypto.context_callback.context);
|
|
}
|
|
break;
|
|
#ifdef ENABLE_ECC_P256
|
|
case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
|
|
(void)memcpy(&btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_len],
|
|
data, 8);
|
|
btstack_crypto_ecc_p256_random_len += 8u;
|
|
if (btstack_crypto_ecc_p256_random_len >= 64u) {
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_ACTIVE;
|
|
btstack_crypto_ecc_p256_generate_key_software();
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
// more work?
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
#ifndef USE_BTSTACK_AES128
|
|
static void btstack_crypto_handle_encryption_result(const uint8_t * data){
|
|
btstack_crypto_aes128_t * btstack_crypto_aes128;
|
|
btstack_crypto_aes128_cmac_t * btstack_crypto_cmac;
|
|
btstack_crypto_ccm_t * btstack_crypto_ccm;
|
|
uint8_t result[16];
|
|
|
|
btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
if (!btstack_crypto) return;
|
|
switch (btstack_crypto->operation){
|
|
case BTSTACK_CRYPTO_AES128:
|
|
btstack_crypto_aes128 = (btstack_crypto_aes128_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
reverse_128(data, btstack_crypto_aes128->ciphertext);
|
|
btstack_crypto_done(btstack_crypto);
|
|
break;
|
|
case BTSTACK_CRYPTO_CMAC_GENERATOR:
|
|
case BTSTACK_CRYPTO_CMAC_MESSAGE:
|
|
btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
reverse_128(data, result);
|
|
btstack_crypto_cmac_handle_encryption_result(btstack_crypto_cmac, result);
|
|
break;
|
|
case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
|
|
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
|
|
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
|
|
btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
switch (btstack_crypto_ccm->state){
|
|
case CCM_W4_X1:
|
|
reverse_128(data, btstack_crypto_ccm->x_i);
|
|
btstack_crypto_ccm_handle_x1(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_W4_XN:
|
|
reverse_128(data, btstack_crypto_ccm->x_i);
|
|
btstack_crypto_ccm_handle_xn(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_W4_AAD_XN:
|
|
reverse_128(data, btstack_crypto_ccm->x_i);
|
|
btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm);
|
|
break;
|
|
case CCM_W4_S0:
|
|
btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
|
|
break;
|
|
case CCM_W4_SN:
|
|
btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void btstack_crypto_event_handler(uint8_t packet_type, uint16_t cid, uint8_t *packet, uint16_t size){
|
|
UNUSED(cid); // ok: there is no channel
|
|
UNUSED(size); // ok: fixed format events read from HCI buffer
|
|
|
|
#ifdef ENABLE_ECC_P256
|
|
#ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192;
|
|
#endif
|
|
#endif
|
|
|
|
if (packet_type != HCI_EVENT_PACKET) return;
|
|
|
|
switch (hci_event_packet_get_type(packet)){
|
|
case BTSTACK_EVENT_STATE:
|
|
if (btstack_event_state_get_state(packet) != HCI_STATE_HALTING) break;
|
|
if (!btstack_crypto_wait_for_hci_result) break;
|
|
// request stack to defer shutdown a bit
|
|
hci_halting_defer();
|
|
break;
|
|
|
|
case HCI_EVENT_COMMAND_COMPLETE:
|
|
#ifndef USE_BTSTACK_AES128
|
|
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
|
|
if (!btstack_crypto_wait_for_hci_result) return;
|
|
btstack_crypto_wait_for_hci_result = 0;
|
|
btstack_crypto_handle_encryption_result(&packet[6]);
|
|
}
|
|
#endif
|
|
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
|
|
if (!btstack_crypto_wait_for_hci_result) return;
|
|
btstack_crypto_wait_for_hci_result = false;
|
|
btstack_crypto_handle_random_data(&packet[6], 8);
|
|
}
|
|
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){
|
|
int ecdh_operations_supported = (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+34u] & 0x06u) == 0x06u;
|
|
UNUSED(ecdh_operations_supported);
|
|
log_info("controller supports ECDH operation: %u", ecdh_operations_supported);
|
|
#ifdef ENABLE_ECC_P256
|
|
#ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
// Assert controller supports ECDH operation if we don't implement them ourselves
|
|
// Please add ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS to btstack_config.h and add 3rd-party/micro-ecc to your port
|
|
btstack_assert(ecdh_operations_supported != 0);
|
|
#endif
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
#ifdef ENABLE_ECC_P256
|
|
#ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
case HCI_EVENT_LE_META:
|
|
btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
|
|
if (!btstack_crypto_ec_p192) break;
|
|
switch (hci_event_le_meta_get_subevent_code(packet)){
|
|
case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE:
|
|
if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY) break;
|
|
if (!btstack_crypto_wait_for_hci_result) return;
|
|
btstack_crypto_wait_for_hci_result = 0;
|
|
if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){
|
|
log_error("Read Local P256 Public Key failed");
|
|
}
|
|
hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &btstack_crypto_ecc_p256_public_key[0]);
|
|
hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &btstack_crypto_ecc_p256_public_key[32]);
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
|
|
break;
|
|
case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE:
|
|
if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY) break;
|
|
if (!btstack_crypto_wait_for_hci_result) return;
|
|
btstack_crypto_wait_for_hci_result = 0;
|
|
if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){
|
|
log_error("Generate DHKEY failed -> abort");
|
|
}
|
|
hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, btstack_crypto_ec_p192->dhkey);
|
|
// done
|
|
btstack_linked_list_pop(&btstack_crypto_operations);
|
|
(*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
#endif
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// try processing
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_init(void){
|
|
if (btstack_crypto_initialized) return;
|
|
btstack_crypto_initialized = true;
|
|
|
|
// register with HCI
|
|
hci_event_callback_registration.callback = &btstack_crypto_event_handler;
|
|
hci_add_event_handler(&hci_event_callback_registration);
|
|
|
|
#ifdef USE_MBEDTLS_ECC_P256
|
|
mbedtls_ecp_group_init(&mbedtls_ec_group);
|
|
mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1);
|
|
#endif
|
|
}
|
|
|
|
void btstack_crypto_random_generate(btstack_crypto_random_t * request, uint8_t * buffer, uint16_t size, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_RANDOM;
|
|
request->buffer = buffer;
|
|
request->size = size;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_aes128_encrypt(btstack_crypto_aes128_t * request, const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_AES128;
|
|
request->key = key;
|
|
request->plaintext = plaintext;
|
|
request->ciphertext = ciphertext;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_aes128_cmac_generator(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, uint8_t (*get_byte_callback)(uint16_t pos), uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_GENERATOR;
|
|
request->key = key;
|
|
request->size = size;
|
|
request->data.get_byte_callback = get_byte_callback;
|
|
request->hash = hash;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_aes128_cmac_message(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_MESSAGE;
|
|
request->key = key;
|
|
request->size = size;
|
|
request->data.message = message;
|
|
request->hash = hash;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_aes128_cmac_zero(btstack_crypto_aes128_cmac_t * request, uint16_t len, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_MESSAGE;
|
|
request->key = zero;
|
|
request->size = len;
|
|
request->data.message = message;
|
|
request->hash = hash;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
#ifdef ENABLE_ECC_P256
|
|
void btstack_crypto_ecc_p256_generate_key(btstack_crypto_ecc_p256_t * request, uint8_t * public_key, void (* callback)(void * arg), void * callback_arg){
|
|
// reset key generation
|
|
if (btstack_crypto_ecc_p256_key_generation_state == ECC_P256_KEY_GENERATION_DONE){
|
|
btstack_crypto_ecc_p256_random_len = 0;
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_IDLE;
|
|
}
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY;
|
|
request->public_key = public_key;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_ecc_p256_calculate_dhkey(btstack_crypto_ecc_p256_t * request, const uint8_t * public_key, uint8_t * dhkey, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY;
|
|
request->public_key = (uint8_t *) public_key;
|
|
request->dhkey = dhkey;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
int btstack_crypto_ecc_p256_validate_public_key(const uint8_t * public_key){
|
|
|
|
// validate public key using micro-ecc
|
|
int err = 0;
|
|
|
|
#ifdef USE_MICRO_ECC_P256
|
|
#if uECC_SUPPORTS_secp256r1
|
|
// standard version
|
|
err = uECC_valid_public_key(public_key, uECC_secp256r1()) == 0;
|
|
#else
|
|
// static version
|
|
err = uECC_valid_public_key(public_key) == 0;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_MBEDTLS_ECC_P256
|
|
mbedtls_ecp_point Q;
|
|
mbedtls_ecp_point_init( &Q );
|
|
mbedtls_mpi_read_binary(&Q.X, &public_key[0], 32);
|
|
mbedtls_mpi_read_binary(&Q.Y, &public_key[32], 32);
|
|
mbedtls_mpi_lset(&Q.Z, 1);
|
|
err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q);
|
|
mbedtls_ecp_point_free( & Q);
|
|
#endif
|
|
|
|
if (err != 0){
|
|
log_error("public key invalid %x", err);
|
|
}
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
void btstack_crypto_ccm_init(btstack_crypto_ccm_t * request, const uint8_t * key, const uint8_t * nonce, uint16_t message_len, uint16_t additional_authenticated_data_len, uint8_t auth_len){
|
|
request->key = key;
|
|
request->nonce = nonce;
|
|
request->message_len = message_len;
|
|
request->aad_len = additional_authenticated_data_len;
|
|
request->aad_offset = 0;
|
|
request->auth_len = auth_len;
|
|
request->counter = 1;
|
|
request->state = CCM_CALCULATE_X1;
|
|
}
|
|
|
|
void btstack_crypto_ccm_digest(btstack_crypto_ccm_t * request, uint8_t * additional_authenticated_data, uint16_t additional_authenticated_data_len, void (* callback)(void * arg), void * callback_arg){
|
|
// not implemented yet
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_DIGEST_BLOCK;
|
|
request->block_len = additional_authenticated_data_len;
|
|
request->input = additional_authenticated_data;
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_ccm_get_authentication_value(btstack_crypto_ccm_t * request, uint8_t * authentication_value){
|
|
(void)memcpy(authentication_value, request->x_i, request->auth_len);
|
|
}
|
|
|
|
void btstack_crypto_ccm_encrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
|
|
#ifdef DEBUG_CCM
|
|
printf("\nbtstack_crypto_ccm_encrypt_block, len %u\n", block_len);
|
|
#endif
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK;
|
|
request->block_len = block_len;
|
|
request->input = plaintext;
|
|
request->output = ciphertext;
|
|
if (request->state != CCM_CALCULATE_X1){
|
|
request->state = CCM_CALCULATE_XN;
|
|
}
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
void btstack_crypto_ccm_decrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * ciphertext, uint8_t * plaintext, void (* callback)(void * arg), void * callback_arg){
|
|
request->btstack_crypto.context_callback.callback = callback;
|
|
request->btstack_crypto.context_callback.context = callback_arg;
|
|
request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK;
|
|
request->block_len = block_len;
|
|
request->input = ciphertext;
|
|
request->output = plaintext;
|
|
if (request->state != CCM_CALCULATE_X1){
|
|
request->state = CCM_CALCULATE_SN;
|
|
}
|
|
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
|
|
btstack_crypto_run();
|
|
}
|
|
|
|
// De-Init
|
|
void btstack_crypto_deinit(void) {
|
|
btstack_crypto_initialized = false;
|
|
btstack_crypto_wait_for_hci_result = false;
|
|
btstack_crypto_operations = NULL;
|
|
}
|
|
|
|
// PTS only
|
|
void btstack_crypto_ecc_p256_set_key(const uint8_t * public_key, const uint8_t * private_key){
|
|
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
|
|
(void)memcpy(btstack_crypto_ecc_p256_d, private_key, 32);
|
|
(void)memcpy(btstack_crypto_ecc_p256_public_key, public_key, 64);
|
|
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
|
|
#else
|
|
UNUSED(public_key);
|
|
UNUSED(private_key);
|
|
#endif
|
|
}
|
|
|
|
// Unit testing
|
|
int btstack_crypto_idle(void){
|
|
return btstack_linked_list_empty(&btstack_crypto_operations);
|
|
}
|
|
void btstack_crypto_reset(void){
|
|
btstack_crypto_deinit();
|
|
btstack_crypto_init();
|
|
}
|