btstack/src/btstack_crypto.c
2021-02-01 15:15:55 +01:00

1376 lines
54 KiB
C

/*
* Copyright (C) 2017 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#define BTSTACK_FILE__ "btstack_crypto.c"
/*
* btstack_crypto.h
*
* Central place for all crypto-related functions with completion callbacks to allow
* using of MCU crypto peripherals or the Bluetooth controller
*/
#include "btstack_crypto.h"
#include "btstack_debug.h"
#include "btstack_event.h"
#include "btstack_linked_list.h"
#include "btstack_util.h"
#include "btstack_bool.h"
#include "hci.h"
//
// AES128 Configuration
//
// By default, AES128 is computed by Bluetooth Controller using HCI Command/Event asynchronously
// as fallback/alternative, a software implementation can be used
// configure ECC implementations
#if defined(HAVE_AES128) && defined(ENABLE_SOFTWARE_AES128)
#error "If you have custom AES128 implementation (HAVE_AES128), please disable software AES128 (ENABLE_SOFTWARE_AES128) in bstack_config.h"
#endif
#ifdef ENABLE_SOFTWARE_AES128
#define HAVE_AES128
#include "rijndael.h"
#endif
#ifdef HAVE_AES128
#define USE_BTSTACK_AES128
#endif
//
// ECC Configuration
//
// backwards-compatitility ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS -> ENABLE_MICRO_ECC_P256
#if defined(ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS) && !defined(ENABLE_MICRO_ECC_P256)
#define ENABLE_MICRO_ECC_P256
#endif
// configure ECC implementations
#if defined(ENABLE_MICRO_ECC_P256) && defined(HAVE_MBEDTLS_ECC_P256)
#error "If you have mbedTLS (HAVE_MBEDTLS_ECC_P256), please disable uECC (ENABLE_MICRO_ECC_P256) in bstack_config.h"
#endif
// Software ECC-P256 implementation provided by micro-ecc
#ifdef ENABLE_MICRO_ECC_P256
#define ENABLE_ECC_P256
#define USE_MICRO_ECC_P256
#define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
#include "uECC.h"
#endif
// Software ECC-P256 implementation provided by mbedTLS
#ifdef HAVE_MBEDTLS_ECC_P256
#define ENABLE_ECC_P256
#define USE_MBEDTLS_ECC_P256
#define USE_SOFTWARE_ECC_P256_IMPLEMENTATION
#include "mbedtls/config.h"
#include "mbedtls/platform.h"
#include "mbedtls/ecp.h"
#endif
#if defined(ENABLE_LE_SECURE_CONNECTIONS) && !defined(ENABLE_ECC_P256)
#define ENABLE_ECC_P256
#endif
// debugging
// #define DEBUG_CCM
typedef enum {
CMAC_IDLE,
CMAC_CALC_SUBKEYS,
CMAC_W4_SUBKEYS,
CMAC_CALC_MI,
CMAC_W4_MI,
CMAC_CALC_MLAST,
CMAC_W4_MLAST
} btstack_crypto_cmac_state_t;
typedef enum {
ECC_P256_KEY_GENERATION_IDLE,
ECC_P256_KEY_GENERATION_GENERATING_RANDOM,
ECC_P256_KEY_GENERATION_ACTIVE,
ECC_P256_KEY_GENERATION_W4_KEY,
ECC_P256_KEY_GENERATION_DONE,
} btstack_crypto_ecc_p256_key_generation_state_t;
static void btstack_crypto_run(void);
static const uint8_t zero[16] = { 0 };
static bool btstack_crypto_initialized;
static bool btstack_crypto_wait_for_hci_result;
static btstack_linked_list_t btstack_crypto_operations;
static btstack_packet_callback_registration_t hci_event_callback_registration;
// state for AES-CMAC
#ifndef USE_BTSTACK_AES128
static btstack_crypto_cmac_state_t btstack_crypto_cmac_state;
static sm_key_t btstack_crypto_cmac_k;
static sm_key_t btstack_crypto_cmac_x;
static sm_key_t btstack_crypto_cmac_subkey;
static uint8_t btstack_crypto_cmac_block_current;
static uint8_t btstack_crypto_cmac_block_count;
#endif
// state for AES-CCM
static uint8_t btstack_crypto_ccm_s[16];
#ifdef ENABLE_ECC_P256
static uint8_t btstack_crypto_ecc_p256_public_key[64];
static uint8_t btstack_crypto_ecc_p256_random[64];
static uint8_t btstack_crypto_ecc_p256_random_len;
static uint8_t btstack_crypto_ecc_p256_random_offset;
static btstack_crypto_ecc_p256_key_generation_state_t btstack_crypto_ecc_p256_key_generation_state;
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
static uint8_t btstack_crypto_ecc_p256_d[32];
#endif
// Software ECDH implementation provided by mbedtls
#ifdef USE_MBEDTLS_ECC_P256
static mbedtls_ecp_group mbedtls_ec_group;
#endif
#endif /* ENABLE_ECC_P256 */
#ifdef ENABLE_SOFTWARE_AES128
// AES128 using public domain rijndael implementation
void btstack_aes128_calc(const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext){
uint32_t rk[RKLENGTH(KEYBITS)];
int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
rijndaelEncrypt(rk, nrounds, plaintext, ciphertext);
}
#endif
static void btstack_crypto_done(btstack_crypto_t * btstack_crypto){
btstack_linked_list_pop(&btstack_crypto_operations);
(*btstack_crypto->context_callback.callback)(btstack_crypto->context_callback.context);
}
static void btstack_crypto_cmac_shift_left_by_one_bit_inplace(int len, uint8_t * data){
int i;
int carry = 0;
for (i=len-1; i >= 0 ; i--){
int new_carry = data[i] >> 7;
data[i] = (data[i] << 1) | carry;
carry = new_carry;
}
}
static uint8_t btstack_crypto_cmac_get_byte(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, uint16_t pos){
if (btstack_crypto_cmac->btstack_crypto.operation == BTSTACK_CRYPTO_CMAC_GENERATOR){
return (*btstack_crypto_cmac->data.get_byte_callback)(pos);
} else {
return btstack_crypto_cmac->data.message[pos];
}
}
#ifdef USE_BTSTACK_AES128
static void btstack_crypto_cmac_calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
memcpy(k1, k0, 16);
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
if (k0[0] & 0x80){
k1[15] ^= 0x87;
}
memcpy(k2, k1, 16);
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
if (k1[0] & 0x80){
k2[15] ^= 0x87;
}
}
static void btstack_crypto_cmac_calc(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac) {
sm_key_t k0, k1, k2;
uint16_t i;
btstack_aes128_calc(btstack_crypto_cmac->key, zero, k0);
btstack_crypto_cmac_calc_subkeys(k0, k1, k2);
uint16_t cmac_block_count = (btstack_crypto_cmac->size + 15) / 16;
// step 3: ..
if (cmac_block_count==0){
cmac_block_count = 1;
}
// Step 5
sm_key_t cmac_x;
memset(cmac_x, 0, 16);
// Step 6
sm_key_t cmac_y;
int block;
for (block = 0 ; block < cmac_block_count-1 ; block++){
for (i=0;i<16;i++){
cmac_y[i] = cmac_x[i] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (block*16) + i);
}
btstack_aes128_calc(btstack_crypto_cmac->key, cmac_y, cmac_x);
}
// step 4: set m_last
sm_key_t cmac_m_last;
bool last_block_complete = btstack_crypto_cmac->size != 0 && (btstack_crypto_cmac->size & 0x0f) == 0;
if (last_block_complete){
for (i=0;i<16;i++){
cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16 + i) ^ k1[i];
}
} else {
uint16_t valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0f;
for (i=0;i<16;i++){
if (i < valid_octets_in_last_block){
cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0) + i) ^ k2[i];
continue;
}
if (i == valid_octets_in_last_block){
cmac_m_last[i] = 0x80 ^ k2[i];
continue;
}
cmac_m_last[i] = k2[i];
}
}
for (i=0;i<16;i++){
cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
}
// Step 7
btstack_aes128_calc(btstack_crypto_cmac->key, cmac_y, btstack_crypto_cmac->hash);
}
#else
static void btstack_crypto_aes128_start(const sm_key_t key, const sm_key_t plaintext){
uint8_t key_flipped[16];
uint8_t plaintext_flipped[16];
reverse_128(key, key_flipped);
reverse_128(plaintext, plaintext_flipped);
btstack_crypto_wait_for_hci_result = 1;
hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
}
static inline void btstack_crypto_cmac_next_state(void){
btstack_crypto_cmac_state = (btstack_crypto_cmac_state_t) (((int)btstack_crypto_cmac_state) + 1);
}
static int btstack_crypto_cmac_last_block_complete(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
uint16_t len = btstack_crypto_cmac->size;
if (len == 0u) return 0u;
return (len & 0x0fu) == 0u;
}
static void btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
switch (btstack_crypto_cmac_state){
case CMAC_CALC_SUBKEYS: {
btstack_crypto_cmac_next_state();
btstack_crypto_aes128_start(btstack_crypto_cmac_k, zero);
break;
}
case CMAC_CALC_MI: {
int j;
sm_key_t y;
for (j=0;j<16;j++){
y[j] = btstack_crypto_cmac_x[j] ^ btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac_block_current*16u) + j);
}
btstack_crypto_cmac_block_current++;
btstack_crypto_cmac_next_state();
btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
break;
}
case CMAC_CALC_MLAST: {
sm_key_t k1;
(void)memcpy(k1, btstack_crypto_cmac_subkey, 16);
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k1);
if (btstack_crypto_cmac_subkey[0u] & 0x80u){
k1[15u] ^= 0x87u;
}
sm_key_t k2;
(void)memcpy(k2, k1, 16);
btstack_crypto_cmac_shift_left_by_one_bit_inplace(16, k2);
if (k1[0u] & 0x80u){
k2[15u] ^= 0x87u;
}
log_info_key("k", btstack_crypto_cmac_k);
log_info_key("k1", k1);
log_info_key("k2", k2);
// step 4: set m_last
int i;
sm_key_t btstack_crypto_cmac_m_last;
if (btstack_crypto_cmac_last_block_complete(btstack_crypto_cmac)){
for (i=0;i<16;i++){
btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, btstack_crypto_cmac->size - 16u + i) ^ k1[i];
}
} else {
int valid_octets_in_last_block = btstack_crypto_cmac->size & 0x0fu;
for (i=0;i<16;i++){
if (i < valid_octets_in_last_block){
btstack_crypto_cmac_m_last[i] = btstack_crypto_cmac_get_byte(btstack_crypto_cmac, (btstack_crypto_cmac->size & 0xfff0u) + i) ^ k2[i];
continue;
}
if (i == valid_octets_in_last_block){
btstack_crypto_cmac_m_last[i] = 0x80u ^ k2[i];
continue;
}
btstack_crypto_cmac_m_last[i] = k2[i];
}
}
sm_key_t y;
for (i=0;i<16;i++){
y[i] = btstack_crypto_cmac_x[i] ^ btstack_crypto_cmac_m_last[i];
}
btstack_crypto_cmac_block_current++;
btstack_crypto_cmac_next_state();
btstack_crypto_aes128_start(btstack_crypto_cmac_k, y);
break;
}
default:
log_info("btstack_crypto_cmac_handle_aes_engine_ready called in state %u", btstack_crypto_cmac_state);
break;
}
}
static void btstack_crypto_cmac_handle_encryption_result(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac, sm_key_t data){
switch (btstack_crypto_cmac_state){
case CMAC_W4_SUBKEYS:
(void)memcpy(btstack_crypto_cmac_subkey, data, 16);
// next
btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1u)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
break;
case CMAC_W4_MI:
(void)memcpy(btstack_crypto_cmac_x, data, 16);
btstack_crypto_cmac_state = (btstack_crypto_cmac_block_current < (btstack_crypto_cmac_block_count - 1u)) ? CMAC_CALC_MI : CMAC_CALC_MLAST;
break;
case CMAC_W4_MLAST:
// done
log_info("Setting CMAC Engine to IDLE");
btstack_crypto_cmac_state = CMAC_IDLE;
log_info_key("CMAC", data);
(void)memcpy(btstack_crypto_cmac->hash, data, 16);
btstack_linked_list_pop(&btstack_crypto_operations);
(*btstack_crypto_cmac->btstack_crypto.context_callback.callback)(btstack_crypto_cmac->btstack_crypto.context_callback.context);
break;
default:
log_info("btstack_crypto_cmac_handle_encryption_result called in state %u", btstack_crypto_cmac_state);
break;
}
}
static void btstack_crypto_cmac_start(btstack_crypto_aes128_cmac_t * btstack_crypto_cmac){
(void)memcpy(btstack_crypto_cmac_k, btstack_crypto_cmac->key, 16);
memset(btstack_crypto_cmac_x, 0, 16);
btstack_crypto_cmac_block_current = 0;
// step 2: n := ceil(len/const_Bsize);
btstack_crypto_cmac_block_count = (btstack_crypto_cmac->size + 15u) / 16u;
// step 3: ..
if (btstack_crypto_cmac_block_count==0u){
btstack_crypto_cmac_block_count = 1;
}
log_info("btstack_crypto_cmac_start: len %u, block count %u", btstack_crypto_cmac->size, btstack_crypto_cmac_block_count);
// first, we need to compute l for k1, k2, and m_last
btstack_crypto_cmac_state = CMAC_CALC_SUBKEYS;
// let's go
btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
}
#endif
/*
To encrypt the message data we use Counter (CTR) mode. We first
define the key stream blocks by:
S_i := E( K, A_i ) for i=0, 1, 2, ...
The values A_i are formatted as follows, where the Counter field i is
encoded in most-significant-byte first order:
Octet Number Contents
------------ ---------
0 Flags
1 ... 15-L Nonce N
16-L ... 15 Counter i
Bit Number Contents
---------- ----------------------
7 Reserved (always zero)
6 Reserved (always zero)
5 ... 3 Zero
2 ... 0 L'
*/
static void btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm_t * btstack_crypto_ccm, uint16_t counter){
btstack_crypto_ccm_s[0] = 1; // L' = L - 1
(void)memcpy(&btstack_crypto_ccm_s[1], btstack_crypto_ccm->nonce, 13);
big_endian_store_16(btstack_crypto_ccm_s, 14, counter);
#ifdef DEBUG_CCM
printf("btstack_crypto_ccm_setup_a_%u\n", counter);
printf("%16s: ", "ai");
printf_hexdump(btstack_crypto_ccm_s, 16);
#endif
}
/*
The first step is to compute the authentication field T. This is
done using CBC-MAC [MAC]. We first define a sequence of blocks B_0,
B_1, ..., B_n and then apply CBC-MAC to these blocks.
The first block B_0 is formatted as follows, where l(m) is encoded in
most-significant-byte first order:
Octet Number Contents
------------ ---------
0 Flags
1 ... 15-L Nonce N
16-L ... 15 l(m)
Within the first block B_0, the Flags field is formatted as follows:
Bit Number Contents
---------- ----------------------
7 Reserved (always zero)
6 Adata
5 ... 3 M'
2 ... 0 L'
*/
static void btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm_t * btstack_crypto_ccm, uint8_t * b0){
uint8_t m_prime = (btstack_crypto_ccm->auth_len - 2u) / 2u;
uint8_t Adata = btstack_crypto_ccm->aad_len ? 1 : 0;
b0[0u] = (Adata << 6u) | (m_prime << 3u) | 1u ; // Adata, M', L' = L - 1
(void)memcpy(&b0[1], btstack_crypto_ccm->nonce, 13);
big_endian_store_16(b0, 14, btstack_crypto_ccm->message_len);
#ifdef DEBUG_CCM
printf("%16s: ", "B0");
printf_hexdump(b0, 16);
#endif
}
#ifdef ENABLE_ECC_P256
static void btstack_crypto_log_ec_publickey(const uint8_t * ec_q){
log_info("Elliptic curve: X");
log_info_hexdump(&ec_q[0],32);
log_info("Elliptic curve: Y");
log_info_hexdump(&ec_q[32],32);
}
#if (defined(USE_MICRO_ECC_P256) && !defined(WICED_VERSION)) || defined(USE_MBEDTLS_ECC_P256)
// @return OK
static int sm_generate_f_rng(unsigned char * buffer, unsigned size){
if (btstack_crypto_ecc_p256_key_generation_state != ECC_P256_KEY_GENERATION_ACTIVE) return 0;
log_info("sm_generate_f_rng: size %u - offset %u", (int) size, btstack_crypto_ecc_p256_random_offset);
while (size) {
*buffer++ = btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_offset++];
size--;
}
return 1;
}
#endif
#ifdef USE_MBEDTLS_ECC_P256
// @return error - just wrap sm_generate_f_rng
static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){
UNUSED(context);
return sm_generate_f_rng(buffer, size) == 0;
}
#endif /* USE_MBEDTLS_ECC_P256 */
static void btstack_crypto_ecc_p256_generate_key_software(void){
btstack_crypto_ecc_p256_random_offset = 0;
// generate EC key
#ifdef USE_MICRO_ECC_P256
#ifndef WICED_VERSION
log_info("set uECC RNG for initial key generation with 64 random bytes");
// micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it
uECC_set_rng(&sm_generate_f_rng);
#endif /* WICED_VERSION */
#if uECC_SUPPORTS_secp256r1
// standard version
uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d, uECC_secp256r1());
// disable RNG again, as returning no randmon data lets shared key generation fail
log_info("disable uECC RNG in standard version after key generation");
uECC_set_rng(NULL);
#else
// static version
uECC_make_key(btstack_crypto_ecc_p256_public_key, btstack_crypto_ecc_p256_d);
#endif
#endif /* USE_MICRO_ECC_P256 */
#ifdef USE_MBEDTLS_ECC_P256
mbedtls_mpi d;
mbedtls_ecp_point P;
mbedtls_mpi_init(&d);
mbedtls_ecp_point_init(&P);
int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL);
log_info("gen keypair %x", res);
mbedtls_mpi_write_binary(&P.X, &btstack_crypto_ecc_p256_public_key[0], 32);
mbedtls_mpi_write_binary(&P.Y, &btstack_crypto_ecc_p256_public_key[32], 32);
mbedtls_mpi_write_binary(&d, btstack_crypto_ecc_p256_d, 32);
mbedtls_ecp_point_free(&P);
mbedtls_mpi_free(&d);
#endif /* USE_MBEDTLS_ECC_P256 */
}
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
static void btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192){
memset(btstack_crypto_ec_p192->dhkey, 0, 32);
#ifdef USE_MICRO_ECC_P256
#if uECC_SUPPORTS_secp256r1
// standard version
uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey, uECC_secp256r1());
#else
// static version
uECC_shared_secret(btstack_crypto_ec_p192->public_key, btstack_crypto_ecc_p256_d, btstack_crypto_ec_p192->dhkey);
#endif
#endif
#ifdef USE_MBEDTLS_ECC_P256
// da * Pb
mbedtls_mpi d;
mbedtls_ecp_point Q;
mbedtls_ecp_point DH;
mbedtls_mpi_init(&d);
mbedtls_ecp_point_init(&Q);
mbedtls_ecp_point_init(&DH);
mbedtls_mpi_read_binary(&d, btstack_crypto_ecc_p256_d, 32);
mbedtls_mpi_read_binary(&Q.X, &btstack_crypto_ec_p192->public_key[0] , 32);
mbedtls_mpi_read_binary(&Q.Y, &btstack_crypto_ec_p192->public_key[32], 32);
mbedtls_mpi_lset(&Q.Z, 1);
mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL);
mbedtls_mpi_write_binary(&DH.X, btstack_crypto_ec_p192->dhkey, 32);
mbedtls_ecp_point_free(&DH);
mbedtls_mpi_free(&d);
mbedtls_ecp_point_free(&Q);
#endif
log_info("dhkey");
log_info_hexdump(btstack_crypto_ec_p192->dhkey, 32);
}
#endif
#endif
static void btstack_crypto_ccm_next_block(btstack_crypto_ccm_t * btstack_crypto_ccm, btstack_crypto_ccm_state_t state_when_done){
uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
// next block
btstack_crypto_ccm->counter++;
btstack_crypto_ccm->input += bytes_to_process;
btstack_crypto_ccm->output += bytes_to_process;
btstack_crypto_ccm->block_len -= bytes_to_process;
btstack_crypto_ccm->message_len -= bytes_to_process;
#ifdef DEBUG_CCM
printf("btstack_crypto_ccm_next_block (message len %u, block_len %u)\n", btstack_crypto_ccm->message_len, btstack_crypto_ccm->block_len);
#endif
if (btstack_crypto_ccm->message_len == 0u){
btstack_crypto_ccm->state = CCM_CALCULATE_S0;
} else {
btstack_crypto_ccm->state = state_when_done;
if (btstack_crypto_ccm->block_len == 0u){
btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
}
}
}
// If Controller is used for AES128, data is little endian
static void btstack_crypto_ccm_handle_s0(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
int i;
for (i=0;i<16;i++){
#ifdef USE_BTSTACK_AES128
btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[i];
#else
btstack_crypto_ccm->x_i[i] = btstack_crypto_ccm->x_i[i] ^ data[15-i];
#endif
}
btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
}
// If Controller is used for AES128, data is little endian
static void btstack_crypto_ccm_handle_sn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * data){
int i;
uint16_t bytes_to_process = btstack_min(btstack_crypto_ccm->block_len, 16);
for (i=0;i<bytes_to_process;i++){
#ifdef USE_BTSTACK_AES128
btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[i];
#else
btstack_crypto_ccm->output[i] = btstack_crypto_ccm->input[i] ^ data[15-i];
#endif
}
switch (btstack_crypto_ccm->btstack_crypto.operation){
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
btstack_crypto_ccm->state = CCM_CALCULATE_XN;
break;
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_XN);
break;
default:
btstack_assert(false);
break;
}
}
static void btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm) {
#ifdef DEBUG_CCM
printf("%16s: ", "Xn+1 AAD");
printf_hexdump(btstack_crypto_ccm->x_i, 16);
#endif
// more aad?
if (btstack_crypto_ccm->aad_offset < (btstack_crypto_ccm->aad_len + 2u)){
btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
} else {
// done
btstack_crypto_done((btstack_crypto_t *) btstack_crypto_ccm);
}
}
static void btstack_crypto_ccm_handle_x1(btstack_crypto_ccm_t * btstack_crypto_ccm) {
#ifdef DEBUG_CCM
printf("%16s: ", "Xi");
printf_hexdump(btstack_crypto_ccm->x_i, 16);
#endif
switch (btstack_crypto_ccm->btstack_crypto.operation){
case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
btstack_crypto_ccm->aad_remainder_len = 0;
btstack_crypto_ccm->state = CCM_CALCULATE_AAD_XN;
break;
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
btstack_crypto_ccm->state = CCM_CALCULATE_SN;
break;
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
btstack_crypto_ccm->state = CCM_CALCULATE_XN;
break;
default:
btstack_assert(false);
break;
}
}
static void btstack_crypto_ccm_handle_xn(btstack_crypto_ccm_t * btstack_crypto_ccm) {
#ifdef DEBUG_CCM
printf("%16s: ", "Xn+1");
printf_hexdump(btstack_crypto_ccm->x_i, 16);
#endif
switch (btstack_crypto_ccm->btstack_crypto.operation){
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
btstack_crypto_ccm_next_block(btstack_crypto_ccm, CCM_CALCULATE_SN);
break;
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
btstack_crypto_ccm->state = CCM_CALCULATE_SN;
break;
default:
btstack_assert(false);
break;
}
}
static void btstack_crypto_ccm_calc_s0(btstack_crypto_ccm_t * btstack_crypto_ccm){
#ifdef DEBUG_CCM
printf("btstack_crypto_ccm_calc_s0\n");
#endif
btstack_crypto_ccm->state = CCM_W4_S0;
btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, 0);
#ifdef USE_BTSTACK_AES128
uint8_t data[16];
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_s, data);
btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
#else
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
#endif
}
static void btstack_crypto_ccm_calc_sn(btstack_crypto_ccm_t * btstack_crypto_ccm){
#ifdef DEBUG_CCM
printf("btstack_crypto_ccm_calc_s%u\n", btstack_crypto_ccm->counter);
#endif
btstack_crypto_ccm->state = CCM_W4_SN;
btstack_crypto_ccm_setup_a_i(btstack_crypto_ccm, btstack_crypto_ccm->counter);
#ifdef USE_BTSTACK_AES128
uint8_t data[16];
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_s, data);
btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
#else
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_s);
#endif
}
static void btstack_crypto_ccm_calc_x1(btstack_crypto_ccm_t * btstack_crypto_ccm){
uint8_t btstack_crypto_ccm_buffer[16];
btstack_crypto_ccm->state = CCM_W4_X1;
btstack_crypto_ccm_setup_b_0(btstack_crypto_ccm, btstack_crypto_ccm_buffer);
#ifdef USE_BTSTACK_AES128
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer, btstack_crypto_ccm->x_i);
btstack_crypto_ccm_handle_x1(btstack_crypto_ccm);
#else
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
#endif
}
static void btstack_crypto_ccm_calc_xn(btstack_crypto_ccm_t * btstack_crypto_ccm, const uint8_t * plaintext){
uint8_t btstack_crypto_ccm_buffer[16];
btstack_crypto_ccm->state = CCM_W4_XN;
#ifdef DEBUG_CCM
printf("%16s: ", "bn");
printf_hexdump(plaintext, 16);
#endif
uint8_t i;
uint8_t bytes_to_decrypt = btstack_crypto_ccm->block_len;
// use explicit min implementation as c-stat worried about out-of-bounds-reads
if (bytes_to_decrypt > 16u) {
bytes_to_decrypt = 16;
}
for (i = 0; i < bytes_to_decrypt ; i++){
btstack_crypto_ccm_buffer[i] = btstack_crypto_ccm->x_i[i] ^ plaintext[i];
}
(void)memcpy(&btstack_crypto_ccm_buffer[i], &btstack_crypto_ccm->x_i[i],
16u - bytes_to_decrypt);
#ifdef DEBUG_CCM
printf("%16s: ", "Xn XOR bn");
printf_hexdump(btstack_crypto_ccm_buffer, 16);
#endif
#ifdef USE_BTSTACK_AES128
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer, btstack_crypto_ccm->x_i);
btstack_crypto_ccm_handle_xn(btstack_crypto_ccm);
#else
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm_buffer);
#endif
}
static void btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm_t * btstack_crypto_ccm){
// store length
if (btstack_crypto_ccm->aad_offset == 0u){
uint8_t len_buffer[2];
big_endian_store_16(len_buffer, 0, btstack_crypto_ccm->aad_len);
btstack_crypto_ccm->x_i[0] ^= len_buffer[0];
btstack_crypto_ccm->x_i[1] ^= len_buffer[1];
btstack_crypto_ccm->aad_remainder_len += 2u;
btstack_crypto_ccm->aad_offset += 2u;
}
// fill from input
uint16_t bytes_free = 16u - btstack_crypto_ccm->aad_remainder_len;
uint16_t bytes_to_copy = btstack_min(bytes_free, btstack_crypto_ccm->block_len);
while (bytes_to_copy){
btstack_crypto_ccm->x_i[btstack_crypto_ccm->aad_remainder_len++] ^= *btstack_crypto_ccm->input++;
btstack_crypto_ccm->aad_offset++;
btstack_crypto_ccm->block_len--;
bytes_to_copy--;
bytes_free--;
}
// if last block, fill with zeros
if (btstack_crypto_ccm->aad_offset == (btstack_crypto_ccm->aad_len + 2u)){
btstack_crypto_ccm->aad_remainder_len = 16;
}
// if not full, notify done
if (btstack_crypto_ccm->aad_remainder_len < 16u){
btstack_crypto_done(&btstack_crypto_ccm->btstack_crypto);
return;
}
// encrypt block
#ifdef DEBUG_CCM
printf("%16s: ", "Xn XOR Bn (aad)");
printf_hexdump(btstack_crypto_ccm->x_i, 16);
#endif
btstack_crypto_ccm->aad_remainder_len = 0;
btstack_crypto_ccm->state = CCM_W4_AAD_XN;
#ifdef USE_BTSTACK_AES128
btstack_aes128_calc(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i, btstack_crypto_ccm->x_i);
btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm);
#else
btstack_crypto_aes128_start(btstack_crypto_ccm->key, btstack_crypto_ccm->x_i);
#endif
}
static void btstack_crypto_run(void){
btstack_crypto_aes128_t * btstack_crypto_aes128;
btstack_crypto_ccm_t * btstack_crypto_ccm;
btstack_crypto_aes128_cmac_t * btstack_crypto_cmac;
#ifdef ENABLE_ECC_P256
btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192;
#endif
// stack up and running?
if (hci_get_state() != HCI_STATE_WORKING) return;
// try to do as much as possible
while (true){
// anything to do?
if (btstack_linked_list_empty(&btstack_crypto_operations)) return;
// already active?
if (btstack_crypto_wait_for_hci_result) return;
// can send a command?
if (!hci_can_send_command_packet_now()) return;
// ok, find next task
btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
switch (btstack_crypto->operation){
case BTSTACK_CRYPTO_RANDOM:
btstack_crypto_wait_for_hci_result = true;
hci_send_cmd(&hci_le_rand);
break;
case BTSTACK_CRYPTO_AES128:
btstack_crypto_aes128 = (btstack_crypto_aes128_t *) btstack_crypto;
#ifdef USE_BTSTACK_AES128
btstack_aes128_calc(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext, btstack_crypto_aes128->ciphertext);
btstack_crypto_done(btstack_crypto);
#else
btstack_crypto_aes128_start(btstack_crypto_aes128->key, btstack_crypto_aes128->plaintext);
#endif
break;
case BTSTACK_CRYPTO_CMAC_MESSAGE:
case BTSTACK_CRYPTO_CMAC_GENERATOR:
btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t *) btstack_crypto;
#ifdef USE_BTSTACK_AES128
btstack_crypto_cmac_calc( btstack_crypto_cmac );
btstack_crypto_done(btstack_crypto);
#else
btstack_crypto_wait_for_hci_result = 1;
if (btstack_crypto_cmac_state == CMAC_IDLE){
btstack_crypto_cmac_start(btstack_crypto_cmac);
} else {
btstack_crypto_cmac_handle_aes_engine_ready(btstack_crypto_cmac);
}
#endif
break;
case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
btstack_crypto_ccm = (btstack_crypto_ccm_t *) btstack_crypto;
switch (btstack_crypto_ccm->state){
case CCM_CALCULATE_AAD_XN:
#ifdef DEBUG_CCM
printf("CCM_CALCULATE_AAD_XN\n");
#endif
btstack_crypto_ccm_calc_aad_xn(btstack_crypto_ccm);
break;
case CCM_CALCULATE_X1:
#ifdef DEBUG_CCM
printf("CCM_CALCULATE_X1\n");
#endif
btstack_crypto_ccm_calc_x1(btstack_crypto_ccm);
break;
case CCM_CALCULATE_S0:
#ifdef DEBUG_CCM
printf("CCM_CALCULATE_S0\n");
#endif
btstack_crypto_ccm_calc_s0(btstack_crypto_ccm);
break;
case CCM_CALCULATE_SN:
#ifdef DEBUG_CCM
printf("CCM_CALCULATE_SN\n");
#endif
btstack_crypto_ccm_calc_sn(btstack_crypto_ccm);
break;
case CCM_CALCULATE_XN:
#ifdef DEBUG_CCM
printf("CCM_CALCULATE_XN\n");
#endif
btstack_crypto_ccm_calc_xn(btstack_crypto_ccm, (btstack_crypto->operation == BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK) ? btstack_crypto_ccm->input : btstack_crypto_ccm->output);
break;
default:
break;
}
break;
#ifdef ENABLE_ECC_P256
case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
switch (btstack_crypto_ecc_p256_key_generation_state){
case ECC_P256_KEY_GENERATION_DONE:
// done
btstack_crypto_log_ec_publickey(btstack_crypto_ecc_p256_public_key);
(void)memcpy(btstack_crypto_ec_p192->public_key,
btstack_crypto_ecc_p256_public_key, 64);
btstack_linked_list_pop(&btstack_crypto_operations);
(*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
break;
case ECC_P256_KEY_GENERATION_IDLE:
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
log_info("start ecc random");
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_GENERATING_RANDOM;
btstack_crypto_ecc_p256_random_offset = 0;
btstack_crypto_wait_for_hci_result = true;
hci_send_cmd(&hci_le_rand);
#else
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_W4_KEY;
btstack_crypto_wait_for_hci_result = 1;
hci_send_cmd(&hci_le_read_local_p256_public_key);
#endif
break;
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
case ECC_P256_KEY_GENERATION_GENERATING_RANDOM:
log_info("more ecc random");
btstack_crypto_wait_for_hci_result = true;
hci_send_cmd(&hci_le_rand);
break;
#endif
default:
break;
}
break;
case BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY:
btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t *) btstack_crypto;
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
btstack_crypto_ecc_p256_calculate_dhkey_software(btstack_crypto_ec_p192);
// done
btstack_linked_list_pop(&btstack_crypto_operations);
(*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
#else
btstack_crypto_wait_for_hci_result = 1;
hci_send_cmd(&hci_le_generate_dhkey, &btstack_crypto_ec_p192->public_key[0], &btstack_crypto_ec_p192->public_key[32]);
#endif
break;
#endif /* ENABLE_ECC_P256 */
default:
break;
}
}
}
static void btstack_crypto_handle_random_data(const uint8_t * data, uint16_t len){
btstack_crypto_random_t * btstack_crypto_random;
btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
uint16_t bytes_to_copy;
if (!btstack_crypto) return;
switch (btstack_crypto->operation){
case BTSTACK_CRYPTO_RANDOM:
btstack_crypto_random = (btstack_crypto_random_t*) btstack_crypto;
bytes_to_copy = btstack_min(btstack_crypto_random->size, len);
(void)memcpy(btstack_crypto_random->buffer, data, bytes_to_copy);
btstack_crypto_random->buffer += bytes_to_copy;
btstack_crypto_random->size -= bytes_to_copy;
// data processed, more?
if (!btstack_crypto_random->size) {
// done
btstack_linked_list_pop(&btstack_crypto_operations);
(*btstack_crypto_random->btstack_crypto.context_callback.callback)(btstack_crypto_random->btstack_crypto.context_callback.context);
}
break;
#ifdef ENABLE_ECC_P256
case BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY:
(void)memcpy(&btstack_crypto_ecc_p256_random[btstack_crypto_ecc_p256_random_len],
data, 8);
btstack_crypto_ecc_p256_random_len += 8u;
if (btstack_crypto_ecc_p256_random_len >= 64u) {
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_ACTIVE;
btstack_crypto_ecc_p256_generate_key_software();
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
}
break;
#endif
default:
break;
}
// more work?
btstack_crypto_run();
}
#ifndef USE_BTSTACK_AES128
static void btstack_crypto_handle_encryption_result(const uint8_t * data){
btstack_crypto_aes128_t * btstack_crypto_aes128;
btstack_crypto_aes128_cmac_t * btstack_crypto_cmac;
btstack_crypto_ccm_t * btstack_crypto_ccm;
uint8_t result[16];
btstack_crypto_t * btstack_crypto = (btstack_crypto_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
if (!btstack_crypto) return;
switch (btstack_crypto->operation){
case BTSTACK_CRYPTO_AES128:
btstack_crypto_aes128 = (btstack_crypto_aes128_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
reverse_128(data, btstack_crypto_aes128->ciphertext);
btstack_crypto_done(btstack_crypto);
break;
case BTSTACK_CRYPTO_CMAC_GENERATOR:
case BTSTACK_CRYPTO_CMAC_MESSAGE:
btstack_crypto_cmac = (btstack_crypto_aes128_cmac_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
reverse_128(data, result);
btstack_crypto_cmac_handle_encryption_result(btstack_crypto_cmac, result);
break;
case BTSTACK_CRYPTO_CCM_DIGEST_BLOCK:
case BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK:
case BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK:
btstack_crypto_ccm = (btstack_crypto_ccm_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
switch (btstack_crypto_ccm->state){
case CCM_W4_X1:
reverse_128(data, btstack_crypto_ccm->x_i);
btstack_crypto_ccm_handle_x1(btstack_crypto_ccm);
break;
case CCM_W4_XN:
reverse_128(data, btstack_crypto_ccm->x_i);
btstack_crypto_ccm_handle_xn(btstack_crypto_ccm);
break;
case CCM_W4_AAD_XN:
reverse_128(data, btstack_crypto_ccm->x_i);
btstack_crypto_ccm_handle_aad_xn(btstack_crypto_ccm);
break;
case CCM_W4_S0:
btstack_crypto_ccm_handle_s0(btstack_crypto_ccm, data);
break;
case CCM_W4_SN:
btstack_crypto_ccm_handle_sn(btstack_crypto_ccm, data);
break;
default:
break;
}
break;
default:
break;
}
}
#endif
static void btstack_crypto_event_handler(uint8_t packet_type, uint16_t cid, uint8_t *packet, uint16_t size){
UNUSED(cid); // ok: there is no channel
UNUSED(size); // ok: fixed format events read from HCI buffer
#ifdef ENABLE_ECC_P256
#ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
btstack_crypto_ecc_p256_t * btstack_crypto_ec_p192;
#endif
#endif
if (packet_type != HCI_EVENT_PACKET) return;
switch (hci_event_packet_get_type(packet)){
case BTSTACK_EVENT_STATE:
if (btstack_event_state_get_state(packet) != HCI_STATE_HALTING) break;
if (!btstack_crypto_wait_for_hci_result) break;
// request stack to defer shutdown a bit
hci_halting_defer();
break;
case HCI_EVENT_COMMAND_COMPLETE:
#ifndef USE_BTSTACK_AES128
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
if (!btstack_crypto_wait_for_hci_result) return;
btstack_crypto_wait_for_hci_result = 0;
btstack_crypto_handle_encryption_result(&packet[6]);
}
#endif
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
if (!btstack_crypto_wait_for_hci_result) return;
btstack_crypto_wait_for_hci_result = false;
btstack_crypto_handle_random_data(&packet[6], 8);
}
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_local_supported_commands)){
int ecdh_operations_supported = (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+34u] & 0x06u) == 0x06u;
UNUSED(ecdh_operations_supported);
log_info("controller supports ECDH operation: %u", ecdh_operations_supported);
#ifdef ENABLE_ECC_P256
#ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
// Assert controller supports ECDH operation if we don't implement them ourselves
// Please add ENABLE_MICRO_ECC_FOR_LE_SECURE_CONNECTIONS to btstack_config.h and add 3rd-party/micro-ecc to your port
btstack_assert(ecdh_operations_supported != 0);
#endif
#endif
}
break;
#ifdef ENABLE_ECC_P256
#ifndef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
case HCI_EVENT_LE_META:
btstack_crypto_ec_p192 = (btstack_crypto_ecc_p256_t*) btstack_linked_list_get_first_item(&btstack_crypto_operations);
if (!btstack_crypto_ec_p192) break;
switch (hci_event_le_meta_get_subevent_code(packet)){
case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE:
if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY) break;
if (!btstack_crypto_wait_for_hci_result) return;
btstack_crypto_wait_for_hci_result = 0;
if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){
log_error("Read Local P256 Public Key failed");
}
hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &btstack_crypto_ecc_p256_public_key[0]);
hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &btstack_crypto_ecc_p256_public_key[32]);
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
break;
case HCI_SUBEVENT_LE_GENERATE_DHKEY_COMPLETE:
if (btstack_crypto_ec_p192->btstack_crypto.operation != BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY) break;
if (!btstack_crypto_wait_for_hci_result) return;
btstack_crypto_wait_for_hci_result = 0;
if (hci_subevent_le_generate_dhkey_complete_get_status(packet)){
log_error("Generate DHKEY failed -> abort");
}
hci_subevent_le_generate_dhkey_complete_get_dhkey(packet, btstack_crypto_ec_p192->dhkey);
// done
btstack_linked_list_pop(&btstack_crypto_operations);
(*btstack_crypto_ec_p192->btstack_crypto.context_callback.callback)(btstack_crypto_ec_p192->btstack_crypto.context_callback.context);
break;
default:
break;
}
break;
#endif
#endif
default:
break;
}
// try processing
btstack_crypto_run();
}
void btstack_crypto_init(void){
if (btstack_crypto_initialized) return;
btstack_crypto_initialized = true;
// register with HCI
hci_event_callback_registration.callback = &btstack_crypto_event_handler;
hci_add_event_handler(&hci_event_callback_registration);
#ifdef USE_MBEDTLS_ECC_P256
mbedtls_ecp_group_init(&mbedtls_ec_group);
mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1);
#endif
}
void btstack_crypto_random_generate(btstack_crypto_random_t * request, uint8_t * buffer, uint16_t size, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_RANDOM;
request->buffer = buffer;
request->size = size;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_aes128_encrypt(btstack_crypto_aes128_t * request, const uint8_t * key, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_AES128;
request->key = key;
request->plaintext = plaintext;
request->ciphertext = ciphertext;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_aes128_cmac_generator(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, uint8_t (*get_byte_callback)(uint16_t pos), uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_GENERATOR;
request->key = key;
request->size = size;
request->data.get_byte_callback = get_byte_callback;
request->hash = hash;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_aes128_cmac_message(btstack_crypto_aes128_cmac_t * request, const uint8_t * key, uint16_t size, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_MESSAGE;
request->key = key;
request->size = size;
request->data.message = message;
request->hash = hash;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_aes128_cmac_zero(btstack_crypto_aes128_cmac_t * request, uint16_t len, const uint8_t * message, uint8_t * hash, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_CMAC_MESSAGE;
request->key = zero;
request->size = len;
request->data.message = message;
request->hash = hash;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
#ifdef ENABLE_ECC_P256
void btstack_crypto_ecc_p256_generate_key(btstack_crypto_ecc_p256_t * request, uint8_t * public_key, void (* callback)(void * arg), void * callback_arg){
// reset key generation
if (btstack_crypto_ecc_p256_key_generation_state == ECC_P256_KEY_GENERATION_DONE){
btstack_crypto_ecc_p256_random_len = 0;
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_IDLE;
}
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_ECC_P256_GENERATE_KEY;
request->public_key = public_key;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_ecc_p256_calculate_dhkey(btstack_crypto_ecc_p256_t * request, const uint8_t * public_key, uint8_t * dhkey, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_ECC_P256_CALCULATE_DHKEY;
request->public_key = (uint8_t *) public_key;
request->dhkey = dhkey;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
int btstack_crypto_ecc_p256_validate_public_key(const uint8_t * public_key){
// validate public key using micro-ecc
int err = 0;
#ifdef USE_MICRO_ECC_P256
#if uECC_SUPPORTS_secp256r1
// standard version
err = uECC_valid_public_key(public_key, uECC_secp256r1()) == 0;
#else
// static version
err = uECC_valid_public_key(public_key) == 0;
#endif
#endif
#ifdef USE_MBEDTLS_ECC_P256
mbedtls_ecp_point Q;
mbedtls_ecp_point_init( &Q );
mbedtls_mpi_read_binary(&Q.X, &public_key[0], 32);
mbedtls_mpi_read_binary(&Q.Y, &public_key[32], 32);
mbedtls_mpi_lset(&Q.Z, 1);
err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q);
mbedtls_ecp_point_free( & Q);
#endif
if (err != 0){
log_error("public key invalid %x", err);
}
return err;
}
#endif
void btstack_crypto_ccm_init(btstack_crypto_ccm_t * request, const uint8_t * key, const uint8_t * nonce, uint16_t message_len, uint16_t additional_authenticated_data_len, uint8_t auth_len){
request->key = key;
request->nonce = nonce;
request->message_len = message_len;
request->aad_len = additional_authenticated_data_len;
request->aad_offset = 0;
request->auth_len = auth_len;
request->counter = 1;
request->state = CCM_CALCULATE_X1;
}
void btstack_crypto_ccm_digest(btstack_crypto_ccm_t * request, uint8_t * additional_authenticated_data, uint16_t additional_authenticated_data_len, void (* callback)(void * arg), void * callback_arg){
// not implemented yet
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_DIGEST_BLOCK;
request->block_len = additional_authenticated_data_len;
request->input = additional_authenticated_data;
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_ccm_get_authentication_value(btstack_crypto_ccm_t * request, uint8_t * authentication_value){
(void)memcpy(authentication_value, request->x_i, request->auth_len);
}
void btstack_crypto_ccm_encrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * plaintext, uint8_t * ciphertext, void (* callback)(void * arg), void * callback_arg){
#ifdef DEBUG_CCM
printf("\nbtstack_crypto_ccm_encrypt_block, len %u\n", block_len);
#endif
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_ENCRYPT_BLOCK;
request->block_len = block_len;
request->input = plaintext;
request->output = ciphertext;
if (request->state != CCM_CALCULATE_X1){
request->state = CCM_CALCULATE_XN;
}
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
void btstack_crypto_ccm_decrypt_block(btstack_crypto_ccm_t * request, uint16_t block_len, const uint8_t * ciphertext, uint8_t * plaintext, void (* callback)(void * arg), void * callback_arg){
request->btstack_crypto.context_callback.callback = callback;
request->btstack_crypto.context_callback.context = callback_arg;
request->btstack_crypto.operation = BTSTACK_CRYPTO_CCM_DECRYPT_BLOCK;
request->block_len = block_len;
request->input = ciphertext;
request->output = plaintext;
if (request->state != CCM_CALCULATE_X1){
request->state = CCM_CALCULATE_SN;
}
btstack_linked_list_add_tail(&btstack_crypto_operations, (btstack_linked_item_t*) request);
btstack_crypto_run();
}
// De-Init
void btstack_crypto_deinit(void) {
btstack_crypto_initialized = false;
btstack_crypto_wait_for_hci_result = false;
btstack_crypto_operations = NULL;
}
// PTS only
void btstack_crypto_ecc_p256_set_key(const uint8_t * public_key, const uint8_t * private_key){
#ifdef USE_SOFTWARE_ECC_P256_IMPLEMENTATION
(void)memcpy(btstack_crypto_ecc_p256_d, private_key, 32);
(void)memcpy(btstack_crypto_ecc_p256_public_key, public_key, 64);
btstack_crypto_ecc_p256_key_generation_state = ECC_P256_KEY_GENERATION_DONE;
#else
UNUSED(public_key);
UNUSED(private_key);
#endif
}
// Unit testing
int btstack_crypto_idle(void){
return btstack_linked_list_empty(&btstack_crypto_operations);
}
void btstack_crypto_reset(void){
btstack_crypto_deinit();
btstack_crypto_init();
}