btstack/src/mesh/mesh_upper_transport.c
2020-08-08 19:47:49 +02:00

1365 lines
58 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#include <stdarg.h>
#include "btstack_tlv.h"
#include "mesh/mesh_foundation.h"
#include "mesh_upper_transport.h"
#include "mesh/mesh.h"
#include "mesh/mesh_proxy.h"
#include "mesh/mesh_node.h"
#define BTSTACK_FILE__ "mesh_upper_transport.c"
#include "mesh/mesh_upper_transport.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "btstack_util.h"
#include "btstack_memory.h"
#include "btstack_debug.h"
#include "btstack_bool.h"
#include "mesh/beacon.h"
#include "mesh/mesh_iv_index_seq_number.h"
#include "mesh/mesh_keys.h"
#include "mesh/mesh_lower_transport.h"
#include "mesh/mesh_peer.h"
#include "mesh/mesh_virtual_addresses.h"
// TODO: extract mesh_pdu functions into lower transport or network
#include "mesh/mesh_access.h"
// MESH_ACCESS_MESH_NETWORK_PAYLOAD_MAX (384) / MESH_NETWORK_PAYLOAD_MAX (29) = 13.24.. < 14
#define MESSAGE_BUILDER_MAX_NUM_NETWORK_PDUS (14)
// combined key x address iterator for upper transport decryption
typedef struct {
// state
mesh_transport_key_iterator_t key_it;
mesh_virtual_address_iterator_t address_it;
// elements
const mesh_transport_key_t * key;
const mesh_virtual_address_t * address;
// address - might be virtual
uint16_t dst;
// key info
} mesh_transport_key_and_virtual_address_iterator_t;
static void mesh_upper_transport_run(void);
static void mesh_upper_transport_schedule_send_requests(void);
static void mesh_upper_transport_validate_access_message(void);
// upper transport callbacks - in access layer
static void (*mesh_access_message_handler)( mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu);
static void (*mesh_control_message_handler)( mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu);
//
static int crypto_active;
static uint8_t application_nonce[13];
static btstack_crypto_ccm_t ccm;
static mesh_transport_key_and_virtual_address_iterator_t mesh_transport_key_it;
// incoming segmented (mesh_segmented_pdu_t) or unsegmented (network_pdu_t)
static mesh_pdu_t * incoming_access_encrypted;
// multi-purpose union: segmented control reassembly, decrypted access pdu
static union {
mesh_control_pdu_t control;
mesh_access_pdu_t access;
} incoming_pdu_singleton;
// pointer to incoming_pdu_singleton.access
static mesh_access_pdu_t * incoming_access_decrypted;
// pointer to incoming_pdu_singleton.access
static mesh_control_pdu_t * incoming_control_pdu;
// incoming incoming_access_decrypted ready to be deliverd
static bool incoming_access_pdu_ready;
// incoming unsegmented (network) and segmented (transport) control and access messages
static btstack_linked_list_t upper_transport_incoming;
// outgoing unsegmented and segmented control and access messages
static btstack_linked_list_t upper_transport_outgoing;
// outgoing upper transport messages that have been sent to lower transport and wait for sent event
static btstack_linked_list_t upper_transport_outgoing_active;
// outgoing send requests
static btstack_linked_list_t upper_transport_send_requests;
// message builder buffers
static mesh_upper_transport_pdu_t * message_builder_reserved_upper_pdu;
static uint8_t message_builder_num_network_pdus_reserved;
static btstack_linked_list_t message_builder_reserved_network_pdus;
// requets network pdus for outgoing send requests and outgoing run
static bool upper_transport_need_pdu_for_send_requests;
static bool upper_transport_need_pdu_for_run_outgoing;
// TODO: higher layer define used for assert
#define MESH_ACCESS_OPCODE_NOT_SET 0xFFFFFFFEu
static void mesh_print_hex(const char * name, const uint8_t * data, uint16_t len){
printf("%-20s ", name);
printf_hexdump(data, len);
}
// static void mesh_print_x(const char * name, uint32_t value){
// printf("%20s: 0x%x", name, (int) value);
// }
static void mesh_transport_key_and_virtual_address_iterator_init(mesh_transport_key_and_virtual_address_iterator_t *it,
uint16_t dst, uint16_t netkey_index, uint8_t akf,
uint8_t aid) {
printf("KEY_INIT: dst %04x, akf %x, aid %x\n", dst, akf, aid);
// config
it->dst = dst;
// init elements
it->key = NULL;
it->address = NULL;
// init element iterators
mesh_transport_key_aid_iterator_init(&it->key_it, netkey_index, akf, aid);
// init address iterator
if (mesh_network_address_virtual(it->dst)){
mesh_virtual_address_iterator_init(&it->address_it, dst);
// get first key
if (mesh_transport_key_aid_iterator_has_more(&it->key_it)) {
it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it);
}
}
}
// cartesian product: keys x addressses
static int mesh_transport_key_and_virtual_address_iterator_has_more(mesh_transport_key_and_virtual_address_iterator_t * it){
if (mesh_network_address_virtual(it->dst)) {
// find next valid entry
while (true){
if (mesh_virtual_address_iterator_has_more(&it->address_it)) return 1;
if (!mesh_transport_key_aid_iterator_has_more(&it->key_it)) return 0;
// get next key
it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it);
mesh_virtual_address_iterator_init(&it->address_it, it->dst);
}
} else {
return mesh_transport_key_aid_iterator_has_more(&it->key_it);
}
}
static void mesh_transport_key_and_virtual_address_iterator_next(mesh_transport_key_and_virtual_address_iterator_t * it){
if (mesh_network_address_virtual(it->dst)) {
it->address = mesh_virtual_address_iterator_get_next(&it->address_it);
} else {
it->key = mesh_transport_key_aid_iterator_get_next(&it->key_it);
}
}
// UPPER TRANSPORT
static void mesh_segmented_pdu_flatten(btstack_linked_list_t * segments, uint8_t segment_len, uint8_t * buffer) {
// assemble payload
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, segments);
while (btstack_linked_list_iterator_has_next(&it)) {
mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_iterator_next(&it);
btstack_assert(segment->pdu_header.pdu_type == MESH_PDU_TYPE_NETWORK);
uint8_t offset = 0;
while (offset < segment->len){
uint8_t seg_o = segment->data[offset++];
(void) memcpy(&buffer[seg_o * segment_len], &segment->data[offset], segment_len);
offset += segment_len;
}
}
}
static uint16_t mesh_upper_pdu_flatten(mesh_upper_transport_pdu_t * upper_pdu, uint8_t * buffer, uint16_t buffer_len) {
// assemble payload
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &upper_pdu->segments);
uint16_t offset = 0;
while (btstack_linked_list_iterator_has_next(&it)) {
mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_iterator_next(&it);
btstack_assert(segment->pdu_header.pdu_type == MESH_PDU_TYPE_NETWORK);
btstack_assert((offset + segment->len) <= buffer_len);
(void) memcpy(&buffer[offset], segment->data, segment->len);
offset += segment->len;
}
return offset;
}
// store payload in provided list of network pdus
static void mesh_segmented_store_payload(const uint8_t * payload, uint16_t payload_len, btstack_linked_list_t * in_segments, btstack_linked_list_t * out_segments){
uint16_t payload_offset = 0;
uint16_t bytes_current_segment = 0;
mesh_network_pdu_t * network_pdu = NULL;
while (payload_offset < payload_len){
if (bytes_current_segment == 0){
network_pdu = (mesh_network_pdu_t *) btstack_linked_list_pop(in_segments);
btstack_assert(network_pdu != NULL);
btstack_linked_list_add_tail(out_segments, (btstack_linked_item_t *) network_pdu);
bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX;
}
uint16_t bytes_to_copy = btstack_min(bytes_current_segment, payload_len - payload_offset);
(void) memcpy(&network_pdu->data[network_pdu->len], &payload[payload_offset], bytes_to_copy);
bytes_current_segment -= bytes_to_copy;
network_pdu->len += bytes_to_copy;
payload_offset += bytes_to_copy;
}
}
// tries allocate and add enough segments to store payload of given size
static bool mesh_segmented_allocate_segments(btstack_linked_list_t * segments, uint16_t payload_len){
uint16_t storage_size = btstack_linked_list_count(segments) * MESH_NETWORK_PAYLOAD_MAX;
while (storage_size < payload_len){
mesh_network_pdu_t * network_pdu = mesh_network_pdu_get();
if (network_pdu == NULL) break;
storage_size += MESH_NETWORK_PAYLOAD_MAX;
btstack_linked_list_add(segments, (btstack_linked_item_t *) network_pdu);
}
return (storage_size >= payload_len);
}
// stub lower transport
static void mesh_upper_transport_dump_pdus(const char *name, btstack_linked_list_t *list){
printf("List: %s:\n", name);
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, list);
while (btstack_linked_list_iterator_has_next(&it)){
mesh_pdu_t * pdu = (mesh_pdu_t*) btstack_linked_list_iterator_next(&it);
printf("- %p\n", pdu);
// printf_hexdump( mesh_pdu_data(pdu), mesh_pdu_len(pdu));
}
}
static void mesh_upper_transport_reset_pdus(btstack_linked_list_t *list){
while (!btstack_linked_list_empty(list)){
mesh_upper_transport_pdu_free((mesh_pdu_t *) btstack_linked_list_pop(list));
}
}
void mesh_upper_transport_dump(void){
mesh_upper_transport_dump_pdus("upper_transport_incoming", &upper_transport_incoming);
}
void mesh_upper_transport_reset(void){
crypto_active = 0;
mesh_upper_transport_reset_pdus(&upper_transport_incoming);
}
static mesh_transport_key_t * mesh_upper_transport_get_outgoing_appkey(uint16_t netkey_index, uint16_t appkey_index){
// Device Key is fixed
if (appkey_index == MESH_DEVICE_KEY_INDEX) {
return mesh_transport_key_get(appkey_index);
}
// Get key refresh state from subnet
mesh_subnet_t * subnet = mesh_subnet_get_by_netkey_index(netkey_index);
if (subnet == NULL) return NULL;
// identify old and new app keys for given appkey_index
mesh_transport_key_t * old_key = NULL;
mesh_transport_key_t * new_key = NULL;
mesh_transport_key_iterator_t it;
mesh_transport_key_iterator_init(&it, netkey_index);
while (mesh_transport_key_iterator_has_more(&it)){
mesh_transport_key_t * transport_key = mesh_transport_key_iterator_get_next(&it);
if (transport_key->appkey_index != appkey_index) continue;
if (transport_key->old_key == 0) {
new_key = transport_key;
} else {
old_key = transport_key;
}
}
// if no key is marked as old, just use the current one
if (old_key == NULL) return new_key;
// use new key if it exists in phase two
if ((subnet->key_refresh == MESH_KEY_REFRESH_SECOND_PHASE) && (new_key != NULL)){
return new_key;
} else {
return old_key;
}
}
static uint32_t iv_index_for_ivi_nid(uint8_t ivi_nid){
// get IV Index and IVI
uint32_t iv_index = mesh_get_iv_index();
int ivi = ivi_nid >> 7;
// if least significant bit differs, use previous IV Index
if ((iv_index & 1 ) ^ ivi){
iv_index--;
}
return iv_index;
}
static void transport_segmented_setup_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){
mesh_access_pdu_t * access_pdu;
mesh_upper_transport_pdu_t * upper_pdu;
switch (pdu->pdu_type){
case MESH_PDU_TYPE_ACCESS:
access_pdu = (mesh_access_pdu_t *) pdu;
nonce[1] = ((access_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 0x80 : 0x00;
big_endian_store_24(nonce, 2, access_pdu->seq);
big_endian_store_16(nonce, 5, access_pdu->src);
big_endian_store_16(nonce, 7, access_pdu->dst);
big_endian_store_32(nonce, 9, iv_index_for_ivi_nid(access_pdu->ivi_nid));
break;
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
upper_pdu = (mesh_upper_transport_pdu_t *) pdu;
nonce[1] = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 0x80 : 0x00;
// 'network header'
big_endian_store_24(nonce, 2, upper_pdu->seq);
big_endian_store_16(nonce, 5, upper_pdu->src);
big_endian_store_16(nonce, 7, upper_pdu->dst);
big_endian_store_32(nonce, 9, iv_index_for_ivi_nid(upper_pdu->ivi_nid));
break;
default:
btstack_assert(0);
break;
}
}
static void transport_segmented_setup_application_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){
nonce[0] = 0x01;
transport_segmented_setup_nonce(nonce, pdu);
mesh_print_hex("AppNonce", nonce, 13);
}
static void transport_segmented_setup_device_nonce(uint8_t * nonce, const mesh_pdu_t * pdu){
nonce[0] = 0x02;
transport_segmented_setup_nonce(nonce, pdu);
mesh_print_hex("DeviceNonce", nonce, 13);
}
static void mesh_upper_transport_process_access_message_done(mesh_access_pdu_t *access_pdu){
crypto_active = 0;
btstack_assert((access_pdu->ctl_ttl & 0x80) == 0);
mesh_lower_transport_message_processed_by_higher_layer(incoming_access_encrypted);
incoming_access_encrypted = NULL;
incoming_access_decrypted = NULL;
mesh_upper_transport_run();
}
static void mesh_upper_transport_process_control_message_done(mesh_control_pdu_t * control_pdu){
UNUSED(control_pdu);
crypto_active = 0;
incoming_control_pdu = NULL;
mesh_upper_transport_run();
}
static void mesh_upper_transport_network_pdu_freed(void){
// call both while prioritizing run outgoing
// both functions will trigger request for network pdu if needed
if (upper_transport_need_pdu_for_run_outgoing){
upper_transport_need_pdu_for_run_outgoing = false;
mesh_upper_transport_run();
}
if (upper_transport_need_pdu_for_send_requests){
upper_transport_need_pdu_for_send_requests = false;
mesh_upper_transport_schedule_send_requests();
}
}
static void mesh_upper_transport_need_pdu_for_send_requests(void) {
bool waiting = upper_transport_need_pdu_for_send_requests || upper_transport_need_pdu_for_run_outgoing;
upper_transport_need_pdu_for_send_requests = true;
if (waiting == false) {
mesh_network_notify_on_freed_pdu(&mesh_upper_transport_network_pdu_freed);
}
}
static void mesh_upper_transport_need_pdu_for_run_outgoing(void) {
bool waiting = upper_transport_need_pdu_for_send_requests || upper_transport_need_pdu_for_run_outgoing;
upper_transport_need_pdu_for_run_outgoing = true;
if (waiting == false) {
mesh_network_notify_on_freed_pdu(&mesh_upper_transport_network_pdu_freed);
}
}
static void mesh_upper_transport_deliver_access_message(void) {
incoming_access_pdu_ready = false;
mesh_access_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, (mesh_pdu_t *) incoming_access_decrypted);
}
static bool mesh_upper_transport_send_requests_pending(void){
if (incoming_access_pdu_ready) {
return true;
}
return btstack_linked_list_empty(&upper_transport_send_requests) == false;
}
static void mesh_upper_transport_schedule_send_requests(void){
while (mesh_upper_transport_send_requests_pending()){
// get ready
bool message_builder_ready = mesh_upper_transport_message_reserve();
if (message_builder_ready == false){
// waiting for free upper pdu, we will get called again on pdu free
if (message_builder_reserved_upper_pdu == false){
return;
}
// request callback on network pdu free
mesh_upper_transport_need_pdu_for_send_requests();
return;
}
// process send requests
// incoming access pdu
if (incoming_access_pdu_ready){
// message builder ready = one outgoing pdu is guaranteed, deliver access pdu
mesh_upper_transport_deliver_access_message();
continue;
}
// regular send request
btstack_context_callback_registration_t * send_request = (btstack_context_callback_registration_t *) btstack_linked_list_pop(&upper_transport_send_requests);
btstack_assert(send_request != NULL);
(*send_request->callback)(send_request->context);
}
}
void mesh_upper_transport_request_to_send(btstack_context_callback_registration_t * request){
btstack_linked_list_add_tail(&upper_transport_send_requests, (btstack_linked_item_t *) request);
mesh_upper_transport_schedule_send_requests();
}
static void mesh_upper_transport_validate_access_message_ccm(void * arg){
UNUSED(arg);
uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
uint8_t * upper_transport_pdu = incoming_access_decrypted->data;
uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len;
mesh_print_hex("Decrypted PDU", upper_transport_pdu, upper_transport_pdu_len);
// store TransMIC
uint8_t trans_mic[8];
btstack_crypto_ccm_get_authentication_value(&ccm, trans_mic);
mesh_print_hex("TransMIC", trans_mic, transmic_len);
if (memcmp(trans_mic, &upper_transport_pdu[upper_transport_pdu_len], transmic_len) == 0){
printf("TransMIC matches\n");
// remove TransMIC from payload
incoming_access_decrypted->len -= transmic_len;
// if virtual address, update dst to pseudo_dst
if (mesh_network_address_virtual(incoming_access_decrypted->dst)){
incoming_access_decrypted->dst = mesh_transport_key_it.address->pseudo_dst;
}
// pass to upper layer
incoming_access_pdu_ready = true;
mesh_upper_transport_schedule_send_requests();
} else {
uint8_t akf = incoming_access_decrypted->akf_aid_control & 0x40;
if (akf){
printf("TransMIC does not match, try next key\n");
mesh_upper_transport_validate_access_message();
} else {
printf("TransMIC does not match device key, done\n");
// done
mesh_upper_transport_process_access_message_done(incoming_access_decrypted);
}
}
}
static void mesh_upper_transport_validate_access_message_digest(void * arg){
UNUSED(arg);
uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len;
uint8_t * upper_transport_pdu_data_out = incoming_access_decrypted->data;
mesh_network_pdu_t * unsegmented_pdu = NULL;
mesh_segmented_pdu_t * segmented_pdu = NULL;
switch (incoming_access_encrypted->pdu_type){
case MESH_PDU_TYPE_SEGMENTED:
segmented_pdu = (mesh_segmented_pdu_t *) incoming_access_encrypted;
mesh_segmented_pdu_flatten(&segmented_pdu->segments, 12, upper_transport_pdu_data_out);
mesh_print_hex("Encrypted Payload:", upper_transport_pdu_data_out, upper_transport_pdu_len);
btstack_crypto_ccm_decrypt_block(&ccm, upper_transport_pdu_len, upper_transport_pdu_data_out, upper_transport_pdu_data_out,
&mesh_upper_transport_validate_access_message_ccm, NULL);
break;
case MESH_PDU_TYPE_UNSEGMENTED:
unsegmented_pdu = (mesh_network_pdu_t *) incoming_access_encrypted;
(void)memcpy(upper_transport_pdu_data_out, &unsegmented_pdu->data[10], incoming_access_decrypted->len);
btstack_crypto_ccm_decrypt_block(&ccm, upper_transport_pdu_len, upper_transport_pdu_data_out, upper_transport_pdu_data_out,
&mesh_upper_transport_validate_access_message_ccm, NULL);
break;
default:
btstack_assert(false);
break;
}
}
static void mesh_upper_transport_validate_access_message(void){
uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
uint8_t * upper_transport_pdu_data = incoming_access_decrypted->data;
uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len;
if (!mesh_transport_key_and_virtual_address_iterator_has_more(&mesh_transport_key_it)){
printf("No valid transport key found\n");
mesh_upper_transport_process_access_message_done(incoming_access_decrypted);
return;
}
mesh_transport_key_and_virtual_address_iterator_next(&mesh_transport_key_it);
const mesh_transport_key_t * message_key = mesh_transport_key_it.key;
if (message_key->akf){
transport_segmented_setup_application_nonce(application_nonce, (mesh_pdu_t *) incoming_access_decrypted);
} else {
transport_segmented_setup_device_nonce(application_nonce, (mesh_pdu_t *) incoming_access_decrypted);
}
// store application / device key index
mesh_print_hex("AppOrDevKey", message_key->key, 16);
incoming_access_decrypted->appkey_index = message_key->appkey_index;
mesh_print_hex("EncAccessPayload", upper_transport_pdu_data, upper_transport_pdu_len);
// decrypt ccm
crypto_active = 1;
uint16_t aad_len = 0;
if (mesh_network_address_virtual(incoming_access_decrypted->dst)){
aad_len = 16;
}
btstack_crypto_ccm_init(&ccm, message_key->key, application_nonce, upper_transport_pdu_len, aad_len, transmic_len);
if (aad_len){
btstack_crypto_ccm_digest(&ccm, (uint8_t *) mesh_transport_key_it.address->label_uuid, aad_len,
&mesh_upper_transport_validate_access_message_digest, NULL);
} else {
mesh_upper_transport_validate_access_message_digest(NULL);
}
}
static void mesh_upper_transport_process_access_message(void){
uint8_t transmic_len = ((incoming_access_decrypted->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
uint8_t * upper_transport_pdu = incoming_access_decrypted->data;
uint8_t upper_transport_pdu_len = incoming_access_decrypted->len - transmic_len;
mesh_print_hex("Upper Transport pdu", upper_transport_pdu, upper_transport_pdu_len);
uint8_t aid = incoming_access_decrypted->akf_aid_control & 0x3f;
uint8_t akf = (incoming_access_decrypted->akf_aid_control & 0x40) >> 6;
printf("AKF: %u\n", akf);
printf("AID: %02x\n", aid);
mesh_transport_key_and_virtual_address_iterator_init(&mesh_transport_key_it, incoming_access_decrypted->dst,
incoming_access_decrypted->netkey_index, akf, aid);
mesh_upper_transport_validate_access_message();
}
static void mesh_upper_transport_message_received(mesh_pdu_t * pdu){
btstack_linked_list_add_tail(&upper_transport_incoming, (btstack_linked_item_t*) pdu);
mesh_upper_transport_run();
}
static void mesh_upper_transport_send_access_segmented(mesh_upper_transport_pdu_t * upper_pdu){
mesh_segmented_pdu_t * segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu;
segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED;
// convert mesh_access_pdu_t into mesh_segmented_pdu_t
btstack_linked_list_t free_segments = segmented_pdu->segments;
segmented_pdu->segments = NULL;
mesh_segmented_store_payload(incoming_pdu_singleton.access.data, upper_pdu->len, &free_segments, &segmented_pdu->segments);
// copy meta
segmented_pdu->len = upper_pdu->len;
segmented_pdu->netkey_index = upper_pdu->netkey_index;
segmented_pdu->akf_aid_control = upper_pdu->akf_aid_control;
segmented_pdu->flags = upper_pdu->flags;
// setup segmented_pdu header
// (void)memcpy(segmented_pdu->network_header, upper_pdu->network_header, 9);
// TODO: use fields in mesh_segmented_pdu_t and setup network header in lower transport
segmented_pdu->ivi_nid = upper_pdu->ivi_nid;
segmented_pdu->ctl_ttl = upper_pdu->ctl_ttl;
segmented_pdu->seq = upper_pdu->seq;
segmented_pdu->src = upper_pdu->src;
segmented_pdu->dst = upper_pdu->dst;
// queue up
upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu;
btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu);
mesh_lower_transport_send_pdu((mesh_pdu_t*) segmented_pdu);
}
static void mesh_upper_transport_send_access_unsegmented(mesh_upper_transport_pdu_t * upper_pdu){
// provide segment
mesh_network_pdu_t * network_pdu = (mesh_network_pdu_t *) upper_pdu->lower_pdu;
// setup network pdu
network_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS;
network_pdu->data[0] = upper_pdu->ivi_nid;
network_pdu->data[1] = upper_pdu->ctl_ttl;
big_endian_store_24(network_pdu->data, 2, upper_pdu->seq);
big_endian_store_16(network_pdu->data, 5, upper_pdu->src);
big_endian_store_16(network_pdu->data, 7, upper_pdu->dst);
network_pdu->netkey_index = upper_pdu->netkey_index;
// setup access message
network_pdu->data[9] = upper_pdu->akf_aid_control;
btstack_assert(upper_pdu->len < 15);
(void)memcpy(&network_pdu->data[10], &incoming_pdu_singleton.access.data, upper_pdu->len);
network_pdu->len = 10 + upper_pdu->len;
network_pdu->flags = 0;
// queue up
btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu);
mesh_lower_transport_send_pdu((mesh_pdu_t*) network_pdu);
}
static void mesh_upper_transport_send_access_ccm(void * arg){
crypto_active = 0;
mesh_upper_transport_pdu_t * upper_pdu = (mesh_upper_transport_pdu_t *) arg;
mesh_print_hex("EncAccessPayload", incoming_pdu_singleton.access.data, upper_pdu->len);
// store TransMIC
btstack_crypto_ccm_get_authentication_value(&ccm, &incoming_pdu_singleton.access.data[upper_pdu->len]);
uint8_t transmic_len = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
mesh_print_hex("TransMIC", &incoming_pdu_singleton.access.data[upper_pdu->len], transmic_len);
upper_pdu->len += transmic_len;
mesh_print_hex("UpperTransportPDU", incoming_pdu_singleton.access.data, upper_pdu->len);
switch (upper_pdu->pdu_header.pdu_type){
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
mesh_upper_transport_send_access_unsegmented(upper_pdu);
break;
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
mesh_upper_transport_send_access_segmented(upper_pdu);
break;
default:
btstack_assert(false);
}
}
static void mesh_upper_transport_send_access_digest(void *arg){
mesh_upper_transport_pdu_t * upper_pdu = (mesh_upper_transport_pdu_t *) arg;
uint16_t access_pdu_len = upper_pdu->len;
btstack_crypto_ccm_encrypt_block(&ccm, access_pdu_len, incoming_pdu_singleton.access.data, incoming_pdu_singleton.access.data,
&mesh_upper_transport_send_access_ccm, upper_pdu);
}
static void mesh_upper_transport_send_access(mesh_upper_transport_pdu_t * upper_pdu){
// if dst is virtual address, lookup label uuid and hash
uint16_t aad_len = 0;
mesh_virtual_address_t * virtual_address = NULL;
if (mesh_network_address_virtual(upper_pdu->dst)){
virtual_address = mesh_virtual_address_for_pseudo_dst(upper_pdu->dst);
if (!virtual_address){
printf("No virtual address register for pseudo dst %4x\n", upper_pdu->dst);
mesh_access_message_handler(MESH_TRANSPORT_PDU_SENT, MESH_TRANSPORT_STATUS_SEND_FAILED, (mesh_pdu_t *) upper_pdu);
return;
}
// printf("Using hash %4x with LabelUUID: ", virtual_address->hash);
// printf_hexdump(virtual_address->label_uuid, 16);
aad_len = 16;
upper_pdu->dst = virtual_address->hash;
}
// get app or device key
uint16_t appkey_index = upper_pdu->appkey_index;
const mesh_transport_key_t * appkey = mesh_upper_transport_get_outgoing_appkey(upper_pdu->netkey_index, appkey_index);
if (appkey == NULL){
printf("AppKey %04x not found, drop message\n", appkey_index);
mesh_access_message_handler(MESH_TRANSPORT_PDU_SENT, MESH_TRANSPORT_STATUS_SEND_FAILED, (mesh_pdu_t *) upper_pdu);
return;
}
// reserve slot
mesh_lower_transport_reserve_slot();
// reserve one sequence number, which is also used to encrypt access payload
uint32_t seq = mesh_sequence_number_next();
upper_pdu->flags |= MESH_TRANSPORT_FLAG_SEQ_RESERVED;
upper_pdu->seq = seq;
// also reserves crypto_buffer
crypto_active = 1;
// flatten segmented pdu into crypto buffer
uint16_t payload_len = mesh_upper_pdu_flatten(upper_pdu, incoming_pdu_singleton.access.data, sizeof(incoming_pdu_singleton.access.data));
btstack_assert(payload_len == upper_pdu->len);
// Dump PDU
printf("[+] Upper transport, send upper (un)segmented Access PDU - dest %04x, seq %06x\n", upper_pdu->dst, upper_pdu->seq);
mesh_print_hex("Access Payload", incoming_pdu_singleton.access.data, upper_pdu->len);
// setup nonce - uses dst, so after pseudo address translation
if (appkey_index == MESH_DEVICE_KEY_INDEX){
transport_segmented_setup_device_nonce(application_nonce, (mesh_pdu_t *) upper_pdu);
} else {
transport_segmented_setup_application_nonce(application_nonce, (mesh_pdu_t *) upper_pdu);
}
// Dump key
mesh_print_hex("AppOrDevKey", appkey->key, 16);
// encrypt ccm
uint8_t transmic_len = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
uint16_t access_pdu_len = upper_pdu->len;
btstack_crypto_ccm_init(&ccm, appkey->key, application_nonce, access_pdu_len, aad_len, transmic_len);
if (virtual_address){
mesh_print_hex("LabelUUID", virtual_address->label_uuid, 16);
btstack_crypto_ccm_digest(&ccm, virtual_address->label_uuid, 16,
&mesh_upper_transport_send_access_digest, upper_pdu);
} else {
mesh_upper_transport_send_access_digest(upper_pdu);
}
}
static void mesh_upper_transport_send_unsegmented_control_pdu(mesh_network_pdu_t * network_pdu){
// reserve slot
mesh_lower_transport_reserve_slot();
// reserve sequence number
uint32_t seq = mesh_sequence_number_next();
mesh_network_pdu_set_seq(network_pdu, seq);
// Dump PDU
uint8_t opcode = network_pdu->data[9];
printf("[+] Upper transport, send unsegmented Control PDU %p - seq %06x opcode %02x\n", network_pdu, seq, opcode);
mesh_print_hex("Access Payload", &network_pdu->data[10], network_pdu->len - 10);
// send
mesh_lower_transport_send_pdu((mesh_pdu_t *) network_pdu);
}
static void mesh_upper_transport_send_segmented_control_pdu(mesh_upper_transport_pdu_t * upper_pdu){
// reserve slot
mesh_lower_transport_reserve_slot();
// reserve sequence number
uint32_t seq = mesh_sequence_number_next();
upper_pdu->flags |= MESH_TRANSPORT_FLAG_SEQ_RESERVED;
upper_pdu->seq = seq;
// Dump PDU
// uint8_t opcode = upper_pdu->data[0];
// printf("[+] Upper transport, send segmented Control PDU %p - seq %06x opcode %02x\n", upper_pdu, seq, opcode);
// mesh_print_hex("Access Payload", &upper_pdu->data[1], upper_pdu->len - 1);
// send
mesh_segmented_pdu_t * segmented_pdu = (mesh_segmented_pdu_t *) upper_pdu->lower_pdu;
segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED;
// lend segments to lower transport pdu
segmented_pdu->segments = upper_pdu->segments;
upper_pdu->segments = NULL;
// copy meta
segmented_pdu->len = upper_pdu->len;
segmented_pdu->netkey_index = upper_pdu->netkey_index;
segmented_pdu->akf_aid_control = upper_pdu->akf_aid_control;
segmented_pdu->flags = upper_pdu->flags;
btstack_assert((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) == 0);
// setup segmented_pdu header
// TODO: use fields in mesh_segmented_pdu_t and setup network header in lower transport
segmented_pdu->ivi_nid = upper_pdu->ivi_nid;
segmented_pdu->ctl_ttl = upper_pdu->ctl_ttl;
segmented_pdu->seq = upper_pdu->seq;
segmented_pdu->src = upper_pdu->src;
segmented_pdu->dst = upper_pdu->dst;
// queue up
upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu;
btstack_linked_list_add(&upper_transport_outgoing_active, (btstack_linked_item_t *) upper_pdu);
mesh_lower_transport_send_pdu((mesh_pdu_t *) segmented_pdu);
}
static void mesh_upper_transport_run(void){
while(!btstack_linked_list_empty(&upper_transport_incoming)){
if (crypto_active) return;
// get next message
mesh_pdu_t * pdu = (mesh_pdu_t *) btstack_linked_list_pop(&upper_transport_incoming);
mesh_network_pdu_t * network_pdu;
mesh_segmented_pdu_t * segmented_pdu;
switch (pdu->pdu_type){
case MESH_PDU_TYPE_UNSEGMENTED:
network_pdu = (mesh_network_pdu_t *) pdu;
// control?
if (mesh_network_control(network_pdu)) {
incoming_control_pdu = &incoming_pdu_singleton.control;
incoming_control_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_CONTROL;
incoming_control_pdu->len = network_pdu->len;
incoming_control_pdu->netkey_index = network_pdu->netkey_index;
uint8_t * lower_transport_pdu = mesh_network_pdu_data(network_pdu);
incoming_control_pdu->akf_aid_control = lower_transport_pdu[0];
incoming_control_pdu->len = network_pdu->len - 10; // 9 header + 1 opcode
(void)memcpy(incoming_control_pdu->data, &lower_transport_pdu[1], incoming_control_pdu->len);
// copy meta data into encrypted pdu buffer
incoming_control_pdu->ivi_nid = network_pdu->data[0];
incoming_control_pdu->ctl_ttl = network_pdu->data[1];
incoming_control_pdu->seq = big_endian_read_24(network_pdu->data, 2);
incoming_control_pdu->src = big_endian_read_16(network_pdu->data, 5);
incoming_control_pdu->dst = big_endian_read_16(network_pdu->data, 7);
mesh_print_hex("Assembled payload", incoming_control_pdu->data, incoming_control_pdu->len);
// free mesh message
mesh_lower_transport_message_processed_by_higher_layer(pdu);
btstack_assert(mesh_control_message_handler != NULL);
mesh_control_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, (mesh_pdu_t*) incoming_control_pdu);
} else {
incoming_access_encrypted = (mesh_pdu_t *) network_pdu;
incoming_access_decrypted = &incoming_pdu_singleton.access;
incoming_access_decrypted->pdu_header.pdu_type = MESH_PDU_TYPE_ACCESS;
incoming_access_decrypted->flags = 0;
incoming_access_decrypted->netkey_index = network_pdu->netkey_index;
incoming_access_decrypted->akf_aid_control = network_pdu->data[9];
incoming_access_decrypted->len = network_pdu->len - 10; // 9 header + 1 AID
incoming_access_decrypted->ivi_nid = network_pdu->data[0];
incoming_access_decrypted->ctl_ttl = network_pdu->data[1];
incoming_access_decrypted->seq = big_endian_read_24(network_pdu->data, 2);
incoming_access_decrypted->src = big_endian_read_16(network_pdu->data, 5);
incoming_access_decrypted->dst = big_endian_read_16(network_pdu->data, 7);
mesh_upper_transport_process_access_message();
}
break;
case MESH_PDU_TYPE_SEGMENTED:
segmented_pdu = (mesh_segmented_pdu_t *) pdu;
uint8_t ctl = segmented_pdu->ctl_ttl >> 7;
if (ctl){
incoming_control_pdu= &incoming_pdu_singleton.control;
incoming_control_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_CONTROL;
// flatten
mesh_segmented_pdu_flatten(&segmented_pdu->segments, 8, incoming_control_pdu->data);
// copy meta data into encrypted pdu buffer
incoming_control_pdu->flags = 0;
incoming_control_pdu->len = segmented_pdu->len;
incoming_control_pdu->netkey_index = segmented_pdu->netkey_index;
incoming_control_pdu->akf_aid_control = segmented_pdu->akf_aid_control;
incoming_control_pdu->ivi_nid = segmented_pdu->ivi_nid;
incoming_control_pdu->ctl_ttl = segmented_pdu->ctl_ttl;
incoming_control_pdu->seq = segmented_pdu->seq;
incoming_control_pdu->src = segmented_pdu->src;
incoming_control_pdu->dst = segmented_pdu->dst;
mesh_print_hex("Assembled payload", incoming_control_pdu->data, incoming_control_pdu->len);
// free mesh message
mesh_lower_transport_message_processed_by_higher_layer((mesh_pdu_t *)segmented_pdu);
btstack_assert(mesh_control_message_handler != NULL);
mesh_control_message_handler(MESH_TRANSPORT_PDU_RECEIVED, MESH_TRANSPORT_STATUS_SUCCESS, (mesh_pdu_t*) incoming_control_pdu);
} else {
incoming_access_encrypted = (mesh_pdu_t *) segmented_pdu;
incoming_access_decrypted = &incoming_pdu_singleton.access;
incoming_access_decrypted->pdu_header.pdu_type = MESH_PDU_TYPE_ACCESS;
incoming_access_decrypted->flags = segmented_pdu->flags;
incoming_access_decrypted->len = segmented_pdu->len;
incoming_access_decrypted->netkey_index = segmented_pdu->netkey_index;
incoming_access_decrypted->akf_aid_control = segmented_pdu->akf_aid_control;
incoming_access_decrypted->ivi_nid = segmented_pdu->ivi_nid;
incoming_access_decrypted->ctl_ttl = segmented_pdu->ctl_ttl;
incoming_access_decrypted->seq = segmented_pdu->seq;
incoming_access_decrypted->src = segmented_pdu->src;
incoming_access_decrypted->dst = segmented_pdu->dst;
mesh_upper_transport_process_access_message();
}
break;
default:
btstack_assert(0);
break;
}
}
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &upper_transport_outgoing);
while (btstack_linked_list_iterator_has_next(&it)){
if (crypto_active) break;
mesh_pdu_t * pdu = (mesh_pdu_t *) btstack_linked_list_iterator_next(&it);
if (mesh_lower_transport_can_send_to_dest(mesh_pdu_dst(pdu)) == false) {
// skip pdu for now
continue;
}
mesh_upper_transport_pdu_t * upper_pdu;
mesh_segmented_pdu_t * segmented_pdu;
uint8_t transmic_len;
bool ok;
bool abort_outgoing_loop = false;
switch (pdu->pdu_type){
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL:
// control pdus can go through directly
btstack_assert(mesh_pdu_ctl(pdu) != 0);
btstack_linked_list_iterator_remove(&it);
mesh_upper_transport_send_unsegmented_control_pdu((mesh_network_pdu_t *) pdu);
break;
case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL:
// control pdus can go through directly
btstack_assert(mesh_pdu_ctl(pdu) != 0);
btstack_linked_list_iterator_remove(&it);
mesh_upper_transport_send_segmented_control_pdu((mesh_upper_transport_pdu_t *) pdu);
break;
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
// segmented access pdus required a mesh-segmented-pdu
upper_pdu = (mesh_upper_transport_pdu_t *) pdu;
if (upper_pdu->lower_pdu == NULL){
segmented_pdu = btstack_memory_mesh_segmented_pdu_get();
}
if (segmented_pdu == NULL) {
mesh_upper_transport_need_pdu_for_run_outgoing();
abort_outgoing_loop = true;
break;
}
upper_pdu->lower_pdu = (mesh_pdu_t *) segmented_pdu;
segmented_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_SEGMENTED;
// and a mesh-network-pdu for each segment in upper pdu
transmic_len = ((upper_pdu->flags & MESH_TRANSPORT_FLAG_TRANSMIC_64) != 0) ? 8 : 4;
ok = mesh_segmented_allocate_segments(&segmented_pdu->segments, upper_pdu->len + transmic_len);
if (!ok) {
abort_outgoing_loop = true;
break;
}
// all buffers available, get started
btstack_linked_list_iterator_remove(&it);
mesh_upper_transport_send_access(upper_pdu);
break;
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
// unsegmented access pdus require a single mesh-network-dpu
upper_pdu = (mesh_upper_transport_pdu_t *) pdu;
if (upper_pdu->lower_pdu == NULL){
upper_pdu->lower_pdu = (mesh_pdu_t *) mesh_network_pdu_get();
}
if (upper_pdu->lower_pdu == NULL) {
mesh_upper_transport_need_pdu_for_run_outgoing();
abort_outgoing_loop = true;
break;
}
btstack_linked_list_iterator_remove(&it);
mesh_upper_transport_send_access((mesh_upper_transport_pdu_t *) pdu);
break;
default:
btstack_assert(false);
break;
}
if (abort_outgoing_loop) {
break;
}
}
}
static mesh_upper_transport_pdu_t * mesh_upper_transport_find_and_remove_pdu_for_lower(mesh_pdu_t * pdu_to_find){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &upper_transport_outgoing_active);
mesh_upper_transport_pdu_t * upper_pdu;
while (btstack_linked_list_iterator_has_next(&it)){
mesh_pdu_t * mesh_pdu = (mesh_pdu_t *) btstack_linked_list_iterator_next(&it);
switch (mesh_pdu->pdu_type){
case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL:
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
upper_pdu = (mesh_upper_transport_pdu_t *) mesh_pdu;
if (upper_pdu->lower_pdu == pdu_to_find){
btstack_linked_list_iterator_remove(&it);
return upper_pdu;
}
break;
default:
break;
}
}
return NULL;
}
static void mesh_upper_transport_pdu_handler(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu){
mesh_upper_transport_pdu_t * upper_pdu;
mesh_segmented_pdu_t * segmented_pdu;
switch (callback_type){
case MESH_TRANSPORT_PDU_RECEIVED:
mesh_upper_transport_message_received(pdu);
break;
case MESH_TRANSPORT_PDU_SENT:
switch (pdu->pdu_type){
case MESH_PDU_TYPE_SEGMENTED:
// try to find in outgoing active
upper_pdu = mesh_upper_transport_find_and_remove_pdu_for_lower(pdu);
btstack_assert(upper_pdu != NULL);
segmented_pdu = (mesh_segmented_pdu_t *) pdu;
// free chunks
while (!btstack_linked_list_empty(&segmented_pdu->segments)){
mesh_network_pdu_t * chunk_pdu = (mesh_network_pdu_t *) btstack_linked_list_pop(&segmented_pdu->segments);
mesh_network_pdu_free(chunk_pdu);
}
// free segmented pdu
btstack_memory_mesh_segmented_pdu_free(segmented_pdu);
upper_pdu->lower_pdu = NULL;
switch (upper_pdu->pdu_header.pdu_type){
case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL:
mesh_control_message_handler(callback_type, status, (mesh_pdu_t *) upper_pdu);
break;
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
mesh_access_message_handler(callback_type, status, (mesh_pdu_t *) upper_pdu);
break;
default:
btstack_assert(false);
break;
}
break;
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
// find corresponding upper transport pdu and free single segment
upper_pdu = mesh_upper_transport_find_and_remove_pdu_for_lower(pdu);
btstack_assert(upper_pdu != NULL);
btstack_assert(upper_pdu->lower_pdu == (mesh_pdu_t *) pdu);
mesh_network_pdu_free((mesh_network_pdu_t *) pdu);
upper_pdu->lower_pdu = NULL;
mesh_access_message_handler(callback_type, status, (mesh_pdu_t*) upper_pdu);
break;
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL:
mesh_access_message_handler(callback_type, status, pdu);
break;
default:
btstack_assert(false);
break;
}
mesh_upper_transport_run();
break;
default:
break;
}
}
void mesh_upper_transport_pdu_free(mesh_pdu_t * pdu){
btstack_assert(pdu != NULL);
mesh_network_pdu_t * network_pdu;
mesh_segmented_pdu_t * message_pdu;
mesh_upper_transport_pdu_t * upper_pdu;
switch (pdu->pdu_type) {
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL:
case MESH_PDU_TYPE_NETWORK:
network_pdu = (mesh_network_pdu_t *) pdu;
mesh_network_pdu_free(network_pdu);
break;
case MESH_PDU_TYPE_SEGMENTED:
message_pdu = (mesh_segmented_pdu_t *) pdu;
mesh_segmented_pdu_free(message_pdu);
break;
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL:
upper_pdu = (mesh_upper_transport_pdu_t *) pdu;
while (upper_pdu->segments) {
mesh_network_pdu_t *segment = (mesh_network_pdu_t *) btstack_linked_list_pop(&upper_pdu->segments);
mesh_network_pdu_free(segment);
}
btstack_memory_mesh_upper_transport_pdu_free(upper_pdu);
// check if send request can be handled now
mesh_upper_transport_schedule_send_requests();
break;
default:
btstack_assert(false);
break;
}
}
void mesh_upper_transport_message_processed_by_higher_layer(mesh_pdu_t * pdu){
crypto_active = 0;
switch (pdu->pdu_type){
case MESH_PDU_TYPE_ACCESS:
mesh_upper_transport_process_access_message_done((mesh_access_pdu_t *) pdu);
case MESH_PDU_TYPE_CONTROL:
mesh_upper_transport_process_control_message_done((mesh_control_pdu_t *) pdu);
break;
default:
btstack_assert(0);
break;
}
}
void mesh_upper_transport_send_access_pdu(mesh_pdu_t *pdu){
switch (pdu->pdu_type){
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
break;
default:
btstack_assert(false);
break;
}
btstack_assert(((mesh_upper_transport_pdu_t *) pdu)->lower_pdu == NULL);
btstack_linked_list_add_tail(&upper_transport_outgoing, (btstack_linked_item_t*) pdu);
mesh_upper_transport_run();
}
void mesh_upper_transport_send_control_pdu(mesh_pdu_t * pdu){
switch (pdu->pdu_type){
case MESH_PDU_TYPE_UPPER_SEGMENTED_CONTROL:
break;
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL:
btstack_assert( ((mesh_network_pdu_t *) pdu)->len >= 9);
break;
default:
btstack_assert(false);
break;
}
btstack_linked_list_add_tail(&upper_transport_outgoing, (btstack_linked_item_t*) pdu);
mesh_upper_transport_run();
}
uint8_t mesh_upper_transport_setup_unsegmented_control_pdu(mesh_network_pdu_t * network_pdu, uint16_t netkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode,
const uint8_t * control_pdu_data, uint16_t control_pdu_len){
btstack_assert(network_pdu != NULL);
btstack_assert(control_pdu_len <= 11);
const mesh_network_key_t * network_key = mesh_network_key_list_get(netkey_index);
if (!network_key) return 1;
uint8_t transport_pdu_data[12];
transport_pdu_data[0] = opcode;
(void)memcpy(&transport_pdu_data[1], control_pdu_data, control_pdu_len);
uint16_t transport_pdu_len = control_pdu_len + 1;
// setup network_pdu
network_pdu->pdu_header.pdu_type = MESH_PDU_TYPE_UPPER_UNSEGMENTED_CONTROL;
mesh_network_setup_pdu(network_pdu, netkey_index, network_key->nid, 1, ttl, 0, src, dest, transport_pdu_data, transport_pdu_len);
return 0;
}
uint8_t mesh_upper_transport_setup_segmented_control_pdu_header(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t opcode){
const mesh_network_key_t * network_key = mesh_network_key_list_get(netkey_index);
if (!network_key) return 1;
upper_pdu->ivi_nid = network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7);
upper_pdu->ctl_ttl = ttl;
upper_pdu->src = src;
upper_pdu->dst = dest;
upper_pdu->netkey_index = netkey_index;
upper_pdu->akf_aid_control = opcode;
return 0;
}
static uint8_t mesh_upper_transport_setup_upper_access_pdu_header(mesh_upper_transport_pdu_t * upper_pdu, uint16_t netkey_index,
uint16_t appkey_index, uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){
// get app or device key
const mesh_transport_key_t *appkey;
appkey = mesh_transport_key_get(appkey_index);
if (appkey == NULL) {
printf("[!] Upper transport, setup segmented Access PDU - appkey_index %x unknown\n", appkey_index);
return 1;
}
uint8_t akf_aid = (appkey->akf << 6) | appkey->aid;
// lookup network by netkey_index
const mesh_network_key_t *network_key = mesh_network_key_list_get(netkey_index);
if (!network_key) return 1;
if (network_key == NULL) {
printf("[!] Upper transport, setup segmented Access PDU - netkey_index %x unknown\n", appkey_index);
return 1;
}
// store in transport pdu
upper_pdu->ivi_nid = network_key->nid | ((mesh_get_iv_index_for_tx() & 1) << 7);
upper_pdu->ctl_ttl = ttl;
upper_pdu->src = src;
upper_pdu->dst = dest;
upper_pdu->netkey_index = netkey_index;
upper_pdu->appkey_index = appkey_index;
upper_pdu->akf_aid_control = akf_aid;
if (szmic) {
upper_pdu->flags |= MESH_TRANSPORT_FLAG_TRANSMIC_64;
}
return 0;
}
uint8_t mesh_upper_transport_setup_access_pdu_header(mesh_pdu_t * pdu, uint16_t netkey_index, uint16_t appkey_index,
uint8_t ttl, uint16_t src, uint16_t dest, uint8_t szmic){
switch (pdu->pdu_type){
case MESH_PDU_TYPE_UPPER_SEGMENTED_ACCESS:
case MESH_PDU_TYPE_UPPER_UNSEGMENTED_ACCESS:
return mesh_upper_transport_setup_upper_access_pdu_header((mesh_upper_transport_pdu_t *) pdu, netkey_index,
appkey_index, ttl, src, dest, szmic);
default:
btstack_assert(false);
return 1;
}
}
void mesh_upper_transport_register_access_message_handler(void (*callback)(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu)) {
mesh_access_message_handler = callback;
}
void mesh_upper_transport_register_control_message_handler(void (*callback)(mesh_transport_callback_type_t callback_type, mesh_transport_status_t status, mesh_pdu_t * pdu)){
mesh_control_message_handler = callback;
}
void mesh_upper_transport_init(){
mesh_lower_transport_set_higher_layer_handler(&mesh_upper_transport_pdu_handler);
}
bool mesh_upper_transport_message_reserve(void){
if (message_builder_reserved_upper_pdu == NULL){
message_builder_reserved_upper_pdu = btstack_memory_mesh_upper_transport_pdu_get();
}
if (message_builder_reserved_upper_pdu == NULL){
return false;
}
while (message_builder_num_network_pdus_reserved < MESSAGE_BUILDER_MAX_NUM_NETWORK_PDUS){
mesh_network_pdu_t * network_pdu = mesh_network_pdu_get();
if (network_pdu == NULL){
return false;
}
btstack_linked_list_add(&message_builder_reserved_network_pdus, (btstack_linked_item_t *) network_pdu);
message_builder_num_network_pdus_reserved++;
}
return true;
}
void mesh_upper_transport_message_init(mesh_upper_transport_builder_t * builder, mesh_pdu_type_t pdu_type) {
btstack_assert(builder != NULL);
// use reserved buffer if available
if (message_builder_reserved_upper_pdu != NULL){
builder->pdu = message_builder_reserved_upper_pdu;
message_builder_reserved_upper_pdu = NULL;
} else {
builder->pdu = btstack_memory_mesh_upper_transport_pdu_get();
}
if (!builder->pdu) return;
builder->segment = NULL;
builder->pdu->pdu_header.pdu_type = pdu_type;
builder->pdu->ack_opcode = MESH_ACCESS_OPCODE_NOT_SET;
}
void mesh_upper_transport_message_add_data(mesh_upper_transport_builder_t * builder, const uint8_t * data, uint16_t data_len){
btstack_assert(builder != NULL);
if (builder->pdu == NULL) return;
builder->pdu->len += data_len;
uint16_t bytes_current_segment = 0;
if (builder->segment){
bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX - builder->segment->len;
}
while (data_len > 0){
if (bytes_current_segment == 0){
// use reserved buffer if available
if (message_builder_num_network_pdus_reserved > 0){
message_builder_num_network_pdus_reserved--;
builder->segment = (mesh_network_pdu_t *) btstack_linked_list_pop(&message_builder_reserved_network_pdus);
} else {
builder->segment = (mesh_network_pdu_t *) mesh_network_pdu_get();
}
if (builder->segment == NULL) {
mesh_upper_transport_pdu_free((mesh_pdu_t *) builder->pdu);
builder->pdu = NULL;
return;
}
btstack_linked_list_add_tail(&builder->pdu->segments, (btstack_linked_item_t *) builder->segment);
bytes_current_segment = MESH_NETWORK_PAYLOAD_MAX;
}
uint16_t bytes_to_copy = btstack_min(bytes_current_segment, data_len);
(void) memcpy(&builder->segment->data[builder->segment->len], data, bytes_to_copy);
builder->segment->len += bytes_to_copy;
bytes_current_segment -= bytes_to_copy;
data += bytes_to_copy;
data_len -= bytes_to_copy;
}
}
void mesh_upper_transport_message_add_uint8(mesh_upper_transport_builder_t * builder, uint8_t value){
mesh_upper_transport_message_add_data(builder, &value, 1);
}
void mesh_upper_transport_message_add_uint16(mesh_upper_transport_builder_t * builder, uint16_t value){
uint8_t buffer[2];
little_endian_store_16(buffer, 0, value);
mesh_upper_transport_message_add_data(builder, buffer, sizeof(buffer));
}
void mesh_upper_transport_message_add_uint24(mesh_upper_transport_builder_t * builder, uint32_t value){
uint8_t buffer[3];
little_endian_store_24(buffer, 0, value);
mesh_upper_transport_message_add_data(builder, buffer, sizeof(buffer));
}
void mesh_upper_transport_message_add_uint32(mesh_upper_transport_builder_t * builder, uint32_t value){
uint8_t buffer[4];
little_endian_store_32(buffer, 0, value);
mesh_upper_transport_message_add_data(builder, buffer, sizeof(buffer));
}
mesh_upper_transport_pdu_t * mesh_upper_transport_message_finalize(mesh_upper_transport_builder_t * builder){
return builder->pdu;
}