btstack/src/classic/btstack_cvsd_plc.c
2016-11-16 13:01:05 +01:00

291 lines
9.0 KiB
C

/*
* Copyright (C) 2016 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
/*
* btstack_sbc_plc.c
*
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "btstack_cvsd_plc.h"
#include "btstack_debug.h"
static float rcos[CVSD_OLAL] = {
0.99148655,0.96623611,0.92510857,0.86950446,
0.80131732,0.72286918,0.63683150,0.54613418,
0.45386582,0.36316850,0.27713082,0.19868268,
0.13049554,0.07489143,0.03376389,0.00851345};
// taken from http://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi
// Algorithm: Babylonian Method + some manipulations on IEEE 32 bit floating point representation
static float sqrt3(const float x){
union {
int i;
float x;
} u;
u.x = x;
u.i = (1<<29) + (u.i >> 1) - (1<<22);
// Two Babylonian Steps (simplified from:)
// u.x = 0.5f * (u.x + x/u.x);
// u.x = 0.5f * (u.x + x/u.x);
u.x = u.x + x/u.x;
u.x = 0.25f*u.x + x/u.x;
return u.x;
}
static float absolute(float x){
if (x < 0) x = -x;
return x;
}
static float CrossCorrelation(int8_t *x, int8_t *y){
float num = 0;
float den = 0;
float x2 = 0;
float y2 = 0;
int m;
for (m=0;m<CVSD_M;m++){
num+=((float)x[m])*y[m];
x2+=((float)x[m])*x[m];
y2+=((float)y[m])*y[m];
}
den = (float)sqrt3(x2*y2);
return num/den;
}
static int PatternMatch(int8_t *y){
float maxCn = -999999.0; // large negative number
int bestmatch = 0;
float Cn;
int n;
for (n=0;n<CVSD_N;n++){
Cn = CrossCorrelation(&y[CVSD_LHIST-CVSD_M], &y[n]);
if (Cn>maxCn){
bestmatch=n;
maxCn = Cn;
}
}
return bestmatch;
}
static float AmplitudeMatch(int8_t *y, int8_t bestmatch) {
int i;
float sumx = 0;
float sumy = 0.000001f;
float sf;
for (i=0;i<CVSD_FS;i++){
sumx += absolute(y[CVSD_LHIST-CVSD_FS+i]);
sumy += absolute(y[bestmatch+i]);
}
sf = sumx/sumy;
// This is not in the paper, but limit the scaling factor to something reasonable to avoid creating artifacts
if (sf<0.75f) sf=0.75f;
if (sf>1.2f) sf=1.2f;
return sf;
}
static int8_t crop_to_int8(float val){
float croped_val = val;
if (croped_val > 127.0) croped_val= 127.0;
if (croped_val < -128.0) croped_val=-128.0;
return (int8_t) croped_val;
}
void btstack_cvsd_plc_init(btstack_cvsd_plc_state_t *plc_state){
memset(plc_state, 0, sizeof(btstack_cvsd_plc_state_t));
}
void btstack_cvsd_plc_bad_frame(btstack_cvsd_plc_state_t *plc_state, int8_t *out){
float val;
int i = 0;
float sf = 1;
plc_state->nbf++;
if (plc_state->nbf==1){
// Perform pattern matching to find where to replicate
plc_state->bestlag = PatternMatch(plc_state->hist);
// the replication begins after the template match
plc_state->bestlag += CVSD_M;
// Compute Scale Factor to Match Amplitude of Substitution Packet to that of Preceding Packet
sf = AmplitudeMatch(plc_state->hist, plc_state->bestlag);
for (i=0;i<CVSD_OLAL;i++){
val = sf*plc_state->hist[plc_state->bestlag+i];
plc_state->hist[CVSD_LHIST+i] = crop_to_int8(val);
}
for (;i<CVSD_FS;i++){
val = sf*plc_state->hist[plc_state->bestlag+i];
plc_state->hist[CVSD_LHIST+i] = crop_to_int8(val);
}
for (;i<CVSD_FS+CVSD_OLAL;i++){
float left = sf*plc_state->hist[plc_state->bestlag+i];
float right = plc_state->hist[plc_state->bestlag+i];
val = left*rcos[i-CVSD_FS] + right*rcos[CVSD_OLAL-1-i+CVSD_FS];
plc_state->hist[CVSD_LHIST+i] = crop_to_int8(val);
}
for (;i<CVSD_FS+CVSD_RT+CVSD_OLAL;i++){
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
}
} else {
for (;i<CVSD_FS+CVSD_RT+CVSD_OLAL;i++){
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
}
}
for (i=0;i<CVSD_FS;i++){
out[i] = plc_state->hist[CVSD_LHIST+i];
}
// shift the history buffer
for (i=0;i<CVSD_LHIST+CVSD_RT+CVSD_OLAL;i++){
plc_state->hist[i] = plc_state->hist[i+CVSD_FS];
}
}
void btstack_cvsd_plc_good_frame(btstack_cvsd_plc_state_t *plc_state, int8_t *in, int8_t *out){
float val;
int i = 0;
if (plc_state->nbf>0){
for (i=0;i<CVSD_RT;i++){
out[i] = plc_state->hist[CVSD_LHIST+i];
}
for (i=CVSD_RT;i<CVSD_RT+CVSD_OLAL;i++){
float left = plc_state->hist[CVSD_LHIST+i];
float right = in[i];
val = left * rcos[i-CVSD_RT] + right *rcos[CVSD_OLAL+CVSD_RT-1-i];
out[i] = (int8_t)val;
}
}
for (;i<CVSD_FS;i++){
out[i] = in[i];
}
// Copy the output to the history buffer
for (i=0;i<CVSD_FS;i++){
plc_state->hist[CVSD_LHIST+i] = out[i];
}
// shift the history buffer
for (i=0;i<CVSD_LHIST;i++){
plc_state->hist[i] = plc_state->hist[i+CVSD_FS];
}
plc_state->nbf=0;
}
static int count_equal_bytes(int8_t * packet, uint16_t size){
int count = 0;
int temp_count = 1;
int i;
for (i = 0; i < size-1; i++){
if (packet[i] == packet[i+1]){
temp_count++;
continue;
}
if (count < temp_count){
count = temp_count;
}
temp_count = 1;
}
if (temp_count > count + 1){
count = temp_count;
}
return count;
}
static int bad_frame(int8_t * frame, uint16_t size){
return count_equal_bytes(frame, size) > 20;
}
void btstack_cvsd_plc_process_data(btstack_cvsd_plc_state_t * state, int8_t * in, uint16_t size, int8_t * out){
if (size != 24){
log_error("btstack_cvsd_plc_process_data: audio frame size is incorrect. Expected %d, got %d", CVSD_FS, size);
}
state->frame_count++;
if (bad_frame(in,size)){
memcpy(out, in, size);
if (state->good_frames_nr > CVSD_LHIST/CVSD_FS){
btstack_cvsd_plc_bad_frame(state, out);
state->bad_frames_nr++;
} else {
memset(out, 0, CVSD_FS);
}
} else {
btstack_cvsd_plc_good_frame(state, in, out);
state->good_frames_nr++;
if (state->good_frames_nr == 1){
log_info("First good frame at index %d\n", state->frame_count-1);
}
}
}
void btstack_cvsd_plc_mark_bad_frame(btstack_cvsd_plc_state_t * state, int8_t * in, uint16_t size, int8_t * out){
if (size != 24){
log_error("btstack_cvsd_plc_mark_bad_frame: audio frame size is incorrect. Expected %d, got %d", CVSD_FS, size);
}
state->frame_count++;
if (bad_frame(in,size)){
memcpy(out, in, size);
if (state->good_frames_nr > CVSD_LHIST/CVSD_FS){
memset(out, 50, size);
state->bad_frames_nr++;
}
} else {
memcpy(out, in, size);
state->good_frames_nr++;
if (state->good_frames_nr == 1){
log_info("First good frame at index %d\n", state->frame_count-1);
}
}
}
void btstack_cvsd_dump_statistics(btstack_cvsd_plc_state_t * state){
log_info("Good frames: %d\n", state->good_frames_nr);
log_info("Bad frames: %d\n", state->bad_frames_nr);
}