btstack/test/mesh/mesh_crypto.py

112 lines
3.5 KiB
Python
Executable File

#!/usr/bin/env python3
# BlueKitchen GmbH (c) 2019
# pip3 install pycryptodomex
# implementation of the Bluetooth SIG Mesh crypto functions using pycryptodomex
from Cryptodome.Cipher import AES
from Cryptodome.Hash import CMAC
def aes128(key, n):
cipher = AES.new(key, AES.MODE_ECB)
ciphertext = cipher.encrypt(n)
return ciphertext
def aes_cmac(key, n):
cobj = CMAC.new(key, ciphermod=AES)
cobj.update(n)
return cobj.digest()
def aes_ccm_encrypt(key, nonce, message, additional_data, mac_len):
cipher = AES.new(key, AES.MODE_CCM, nonce=nonce, mac_len=mac_len)
cipher.update(additional_data)
ciphertext, tag = cipher.encrypt_and_digest(message)
return ciphertext, tag
def aes_ccm_decrypt(key, nonce, message, additional_data, mac_len, mac_tag):
cipher = AES.new(key, AES.MODE_CCM, nonce=nonce, mac_len=mac_len)
cipher.update(additional_data)
try:
ciphertext = cipher.decrypt_and_verify(message, mac_tag)
return ciphertext
except ValueError:
return None
def s1(m):
# s1(M) = AES-CMACZERO (M)
zero_key = bytes(16)
return aes_cmac(zero_key, m)
def k1(n, salt, p):
# T = AES-CMACSALT (N)
t = aes_cmac(salt, n)
# k1(N, SALT, P) = AES-CMACT (P)
return aes_cmac(t, p)
def k2(n, p):
# SALT = s1(“smk2”)
salt = s1(b'smk2')
# T = AES-CMACSALT (N)
t = aes_cmac(salt, n)
# T0 = empty string (zero length)
t0 = b''
# T1 = AES-CMACT (T0 || P || 0x01)
t1 = aes_cmac(t, t0 + p + b'\x01')
# T2 = AES-CMACT (T1 || P || 0x02)
t2 = aes_cmac(t, t1 + p + b'\x02')
# T3 = AES-CMACT (T2 || P || 0x03)
t3 = aes_cmac(t, t2 + p + b'\x03')
nid = t1[15] & 0x7f
encryption_key = t2
privacy_key = t3
return (nid, encryption_key, privacy_key)
def k3(n):
# SALT = s1(“smk3”)
salt = s1(b'smk3')
# T = AES-CMACSALT (N)
t = aes_cmac(salt, n)
return aes_cmac(t, b'id64' + b'\x01')[8:]
def k4(n):
# SALT = s1(“smk4”)
salt = s1(b'smk4')
# T = AES-CMACSALT (N)
t = aes_cmac(salt, n)
return aes_cmac(t, b'id6' + b'\x01')[15] & 0x3f
def network_pecb(privacy_random, iv_index, privacy_key):
privacy_plaintext = bytes(5) + iv_index + privacy_random
return aes128(privacy_key, privacy_plaintext)[0:6]
def network_decrypt(network_pdu, iv_index, encryption_key, privacy_key):
privacy_random = network_pdu[7:14]
pecb = network_pecb(privacy_random, iv_index, privacy_key)
deobfuscated = bytes([(a ^ b) for (a,b) in zip(pecb, network_pdu[1:7])])
if deobfuscated[0] & 0x80:
net_mic_len = 8
else:
net_mic_len = 4
nonce = bytes(1) + deobfuscated + bytes(2) + iv_index
ciphertext = network_pdu[7:-net_mic_len]
net_mic = network_pdu[-net_mic_len:]
decrypted = aes_ccm_decrypt(encryption_key, nonce, ciphertext, b'', net_mic_len, net_mic)
if decrypted == None:
return None
return network_pdu[0:1] + deobfuscated + decrypted
def network_encrypt(network_pdu, iv_index, encryption_key, privacy_key):
nonce = bytes(1) + network_pdu[1:7] + bytes(2) + iv_index
if network_pdu[1] & 0x80:
net_mic_len = 8
else:
net_mic_len = 4
plaintext = network_pdu[7:]
(ciphertext, net_mic) = aes_ccm_encrypt(encryption_key, nonce, plaintext, b'', net_mic_len)
ciphertext_and_mic = ciphertext + net_mic
privacy_random = ciphertext_and_mic[0:7]
pecb = network_pecb(privacy_random, iv_index, privacy_key)
obfuscated = bytes([(a ^ b) for (a,b) in zip(pecb, network_pdu[1:7])])
return network_pdu[0:1] + obfuscated + ciphertext_and_mic