2020-10-04 16:55:17 +02:00

1494 lines
47 KiB
C

/*
______ _
/ _____) _ | |
( (____ _____ ____ _| |_ _____ ____| |__
\____ \| ___ | (_ _) ___ |/ ___) _ \
_____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
(C)2016 Semtech
Description: Driver for SX1280 devices
License: Revised BSD License, see LICENSE.TXT file include in the project
Maintainer: Miguel Luis, Matthieu Verdy and Benjamin Boulet
*/
#include <string.h>
#include "sx1280.h"
#include "sx1280-hal.h"
#include "rangingcorrection.h"
// logging on
#include "SEGGER_RTT.h"
extern TIM_HandleTypeDef htim2;
#define printf(format, ...) SEGGER_RTT_printf(0, format, ## __VA_ARGS__)
/*!
* \brief Radio registers definition
*
*/
typedef struct
{
uint16_t Addr; //!< The address of the register
uint8_t Value; //!< The value of the register
}RadioRegisters_t;
/*!
* \brief Radio hardware registers initialization definition
*/
// { Address, RegValue }
#define RADIO_INIT_REGISTERS_VALUE { NULL }
/*!
* \brief Radio hardware registers initialization
*/
const RadioRegisters_t RadioRegsInit[] = RADIO_INIT_REGISTERS_VALUE;
/*!
* \brief Holds the internal operating mode of the radio
*/
static RadioOperatingModes_t OperatingMode;
/*!
* \brief Stores the current packet type set in the radio
*/
static RadioPacketTypes_t PacketType;
/*!
* \brief Stores the current LoRa bandwidth set in the radio
*/
static RadioLoRaBandwidths_t LoRaBandwidth;
/*!
* \brief Holds the polling state of the driver
*/
static bool PollingMode;
/*!
* Hardware DIO IRQ callback initialization
*/
DioIrqHandler *DioIrq[] = { SX1280OnDioIrq };
void SX1280OnDioIrq( void );
/*!
* \brief Holds a flag raised on radio interrupt
*/
static bool IrqState;
static RadioCallbacks_t* RadioCallbacks;
int32_t SX1280complement2( const uint32_t num, const uint8_t bitCnt )
{
int32_t retVal = ( int32_t )num;
if( num >= 2<<( bitCnt - 2 ) )
{
retVal -= 2<<( bitCnt - 1 );
}
return retVal;
}
void SX1280Init( RadioCallbacks_t *callbacks )
{
RadioCallbacks = callbacks;
SX1280HalInit( DioIrq );
}
void SX1280SetRegistersDefault( void )
{
for( int16_t i = 0; i < sizeof( RadioRegsInit ) / sizeof( RadioRegisters_t ); i++ )
{
SX1280HalWriteRegister( RadioRegsInit[i].Addr, RadioRegsInit[i].Value );
}
}
uint16_t SX1280GetFirmwareVersion( void )
{
return( ( ( SX1280HalReadRegister( REG_LR_FIRMWARE_VERSION_MSB ) ) << 8 ) | ( SX1280HalReadRegister( REG_LR_FIRMWARE_VERSION_MSB + 1 ) ) );
}
RadioStatus_t SX1280GetStatus( void )
{
uint8_t stat = 0;
RadioStatus_t status;
SX1280HalReadCommand( RADIO_GET_STATUS, ( uint8_t * )&stat, 1 );
status.Value = stat;
return status;
}
RadioOperatingModes_t SX1280GetOpMode( void )
{
return OperatingMode;
}
void SX1280SetSleep( SleepParams_t sleepConfig )
{
uint8_t sleep = ( sleepConfig.WakeUpRTC << 3 ) |
( sleepConfig.InstructionRamRetention << 2 ) |
( sleepConfig.DataBufferRetention << 1 ) |
( sleepConfig.DataRamRetention );
OperatingMode = MODE_SLEEP;
SX1280HalWriteCommand( RADIO_SET_SLEEP, &sleep, 1 );
}
void SX1280SetStandby( RadioStandbyModes_t standbyConfig )
{
SX1280HalWriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 );
if( standbyConfig == STDBY_RC )
{
OperatingMode = MODE_STDBY_RC;
}
else
{
OperatingMode = MODE_STDBY_XOSC;
}
}
void SX1280SetFs( void )
{
SX1280HalWriteCommand( RADIO_SET_FS, 0, 0 );
OperatingMode = MODE_FS;
}
void SX1280SetTx( TickTime_t timeout )
{
uint8_t buf[3];
buf[0] = timeout.Step;
buf[1] = ( uint8_t )( ( timeout.NbSteps >> 8 ) & 0x00FF );
buf[2] = ( uint8_t )( timeout.NbSteps & 0x00FF );
// BK BEGIN - skip clear IRQ, it is cleared in process irq
// SX1280ClearIrqStatus( IRQ_RADIO_ALL );
// BK END
// If the radio is doing ranging operations, then apply the specific calls
// prior to SetTx
if( SX1280GetPacketType( ) == PACKET_TYPE_RANGING )
{
SX1280SetRangingRole( RADIO_RANGING_ROLE_MASTER );
}
SX1280HalWriteCommand( RADIO_SET_TX, buf, 3 );
OperatingMode = MODE_TX;
}
void SX1280SetRx( TickTime_t timeout )
{
uint8_t buf[3];
buf[0] = timeout.Step;
buf[1] = ( uint8_t )( ( timeout.NbSteps >> 8 ) & 0x00FF );
buf[2] = ( uint8_t )( timeout.NbSteps & 0x00FF );
// BK BEGIN - skip clear IRQ, it is cleared in process irq
// SX1280ClearIrqStatus( IRQ_RADIO_ALL );
// BK END
// If the radio is doing ranging operations, then apply the specific calls
// prior to SetRx
if( SX1280GetPacketType( ) == PACKET_TYPE_RANGING )
{
SX1280SetRangingRole( RADIO_RANGING_ROLE_SLAVE );
}
SX1280HalWriteCommand( RADIO_SET_RX, buf, 3 );
OperatingMode = MODE_RX;
}
void SX1280SetRxDutyCycle( RadioTickSizes_t Step, uint16_t NbStepRx, uint16_t RxNbStepSleep )
{
uint8_t buf[5];
buf[0] = Step;
buf[1] = ( uint8_t )( ( NbStepRx >> 8 ) & 0x00FF );
buf[2] = ( uint8_t )( NbStepRx & 0x00FF );
buf[3] = ( uint8_t )( ( RxNbStepSleep >> 8 ) & 0x00FF );
buf[4] = ( uint8_t )( RxNbStepSleep & 0x00FF );
SX1280HalWriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 5 );
OperatingMode = MODE_RX;
}
void SX1280SetCad( void )
{
SX1280HalWriteCommand( RADIO_SET_CAD, 0, 0 );
OperatingMode = MODE_CAD;
}
void SX1280SetTxContinuousWave( void )
{
SX1280HalWriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 );
}
void SX1280SetTxContinuousPreamble( void )
{
SX1280HalWriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 );
}
void SX1280SetPacketType( RadioPacketTypes_t packetType )
{
// Save packet type internally to avoid questioning the radio
PacketType = packetType;
SX1280HalWriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 );
}
RadioPacketTypes_t SX1280GetPacketType( void )
{
return PacketType;
}
void SX1280SetRfFrequency( uint32_t frequency )
{
uint8_t buf[3];
uint32_t freq = 0;
freq = ( uint32_t )( ( double )frequency / ( double )FREQ_STEP );
buf[0] = ( uint8_t )( ( freq >> 16 ) & 0xFF );
buf[1] = ( uint8_t )( ( freq >> 8 ) & 0xFF );
buf[2] = ( uint8_t )( freq & 0xFF );
SX1280HalWriteCommand( RADIO_SET_RFFREQUENCY, buf, 3 );
}
void SX1280SetTxParams( int8_t power, RadioRampTimes_t rampTime )
{
uint8_t buf[2];
// The power value to send on SPI/UART is in the range [0..31] and the
// physical output power is in the range [-18..13]dBm
buf[0] = power + 18;
buf[1] = ( uint8_t )rampTime;
SX1280HalWriteCommand( RADIO_SET_TXPARAMS, buf, 2 );
}
void SX1280SetCadParams( RadioLoRaCadSymbols_t cadSymbolNum )
{
SX1280HalWriteCommand( RADIO_SET_CADPARAMS, ( uint8_t* )&cadSymbolNum, 1 );
OperatingMode = MODE_CAD;
}
void SX1280SetBufferBaseAddresses( uint8_t txBaseAddress, uint8_t rxBaseAddress )
{
uint8_t buf[2];
buf[0] = txBaseAddress;
buf[1] = rxBaseAddress;
SX1280HalWriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 );
}
void SX1280SetModulationParams( ModulationParams_t *modulationParams )
{
uint8_t buf[3];
// Check if required configuration corresponds to the stored packet type
// If not, silently update radio packet type
if( PacketType != modulationParams->PacketType )
{
SX1280SetPacketType( modulationParams->PacketType );
}
switch( modulationParams->PacketType )
{
case PACKET_TYPE_GFSK:
buf[0] = modulationParams->Params.Gfsk.BitrateBandwidth;
buf[1] = modulationParams->Params.Gfsk.ModulationIndex;
buf[2] = modulationParams->Params.Gfsk.ModulationShaping;
break;
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
buf[0] = modulationParams->Params.LoRa.SpreadingFactor;
buf[1] = modulationParams->Params.LoRa.Bandwidth;
buf[2] = modulationParams->Params.LoRa.CodingRate;
LoRaBandwidth = modulationParams->Params.LoRa.Bandwidth;
break;
case PACKET_TYPE_FLRC:
buf[0] = modulationParams->Params.Flrc.BitrateBandwidth;
buf[1] = modulationParams->Params.Flrc.CodingRate;
buf[2] = modulationParams->Params.Flrc.ModulationShaping;
break;
case PACKET_TYPE_BLE:
buf[0] = modulationParams->Params.Ble.BitrateBandwidth;
buf[1] = modulationParams->Params.Ble.ModulationIndex;
buf[2] = modulationParams->Params.Ble.ModulationShaping;
break;
case PACKET_TYPE_NONE:
buf[0] = 0;
buf[1] = 0;
buf[2] = 0;
break;
}
SX1280HalWriteCommand( RADIO_SET_MODULATIONPARAMS, buf, 3 );
}
void SX1280SetPacketParams( PacketParams_t *packetParams )
{
uint8_t buf[7];
// Check if required configuration corresponds to the stored packet type
// If not, silently update radio packet type
if( PacketType != packetParams->PacketType )
{
SX1280SetPacketType( packetParams->PacketType );
}
switch( packetParams->PacketType )
{
case PACKET_TYPE_GFSK:
buf[0] = packetParams->Params.Gfsk.PreambleLength;
buf[1] = packetParams->Params.Gfsk.SyncWordLength;
buf[2] = packetParams->Params.Gfsk.SyncWordMatch;
buf[3] = packetParams->Params.Gfsk.HeaderType;
buf[4] = packetParams->Params.Gfsk.PayloadLength;
buf[5] = packetParams->Params.Gfsk.CrcLength;
buf[6] = packetParams->Params.Gfsk.Whitening;
break;
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
buf[0] = packetParams->Params.LoRa.PreambleLength;
buf[1] = packetParams->Params.LoRa.HeaderType;
buf[2] = packetParams->Params.LoRa.PayloadLength;
buf[3] = packetParams->Params.LoRa.CrcMode;
buf[4] = packetParams->Params.LoRa.InvertIQ;
buf[5] = 0;
buf[6] = 0;
break;
case PACKET_TYPE_FLRC:
buf[0] = packetParams->Params.Flrc.PreambleLength;
buf[1] = packetParams->Params.Flrc.SyncWordLength;
buf[2] = packetParams->Params.Flrc.SyncWordMatch;
buf[3] = packetParams->Params.Flrc.HeaderType;
buf[4] = packetParams->Params.Flrc.PayloadLength;
buf[5] = packetParams->Params.Flrc.CrcLength;
buf[6] = packetParams->Params.Flrc.Whitening;
break;
case PACKET_TYPE_BLE:
buf[0] = packetParams->Params.Ble.ConnectionState;
buf[1] = packetParams->Params.Ble.CrcField;
buf[2] = packetParams->Params.Ble.BlePacketType;
buf[3] = packetParams->Params.Ble.Whitening;
buf[4] = 0;
buf[5] = 0;
buf[6] = 0;
break;
case PACKET_TYPE_NONE:
buf[0] = 0;
buf[1] = 0;
buf[2] = 0;
buf[3] = 0;
buf[4] = 0;
buf[5] = 0;
buf[6] = 0;
break;
}
SX1280HalWriteCommand( RADIO_SET_PACKETPARAMS, buf, 7 );
}
void SX1280GetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer )
{
uint8_t status[2];
SX1280HalReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 );
// In case of LORA fixed header, the payloadLength is obtained by reading
// the register REG_LR_PAYLOADLENGTH
if( ( SX1280GetPacketType( ) == PACKET_TYPE_LORA ) && ( SX1280HalReadRegister( REG_LR_PACKETPARAMS ) >> 7 == 1 ) )
{
*payloadLength = SX1280HalReadRegister( REG_LR_PAYLOADLENGTH );
}
else if( SX1280GetPacketType( ) == PACKET_TYPE_BLE )
{
// In the case of BLE, the size returned in status[0] do not include the 2-byte length PDU header
// so it is added there
*payloadLength = status[0] + 2;
}
else
{
*payloadLength = status[0];
}
*rxStartBufferPointer = status[1];
}
void SX1280GetPacketStatus( PacketStatus_t *pktStatus )
{
uint8_t status[5];
SX1280HalReadCommand( RADIO_GET_PACKETSTATUS, status, 5 );
pktStatus->packetType = SX1280GetPacketType( );
switch( pktStatus->packetType )
{
case PACKET_TYPE_GFSK:
pktStatus->Params.Gfsk.RssiAvg = -status[0] / 2;
pktStatus->Params.Gfsk.RssiSync = -status[1] / 2;
pktStatus->Params.Gfsk.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Params.Gfsk.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Params.Gfsk.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Params.Gfsk.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Params.Gfsk.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Params.Gfsk.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Params.Gfsk.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Params.Gfsk.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
pktStatus->Params.Gfsk.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Params.Gfsk.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
pktStatus->Params.LoRa.RssiPkt = -status[0] / 2;
( status[1] < 128 ) ? ( pktStatus->Params.LoRa.SnrPkt = status[1] / 4 ) : ( pktStatus->Params.LoRa.SnrPkt = ( ( status[1] - 256 ) /4 ) );
pktStatus->Params.LoRa.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Params.LoRa.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Params.LoRa.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Params.LoRa.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Params.LoRa.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Params.LoRa.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Params.LoRa.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Params.LoRa.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
pktStatus->Params.LoRa.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Params.LoRa.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_FLRC:
pktStatus->Params.Flrc.RssiAvg = -status[0] / 2;
pktStatus->Params.Flrc.RssiSync = -status[1] / 2;
pktStatus->Params.Flrc.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Params.Flrc.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Params.Flrc.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Params.Flrc.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Params.Flrc.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Params.Flrc.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Params.Flrc.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Params.Flrc.TxRxStatus.RxPid = ( status[3] >> 6 ) & 0x03;
pktStatus->Params.Flrc.TxRxStatus.RxNoAck = ( status[3] >> 5 ) & 0x01;
pktStatus->Params.Flrc.TxRxStatus.RxPidErr = ( status[3] >> 4 ) & 0x01;
pktStatus->Params.Flrc.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Params.Flrc.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_BLE:
pktStatus->Params.Ble.RssiAvg = -status[0] / 2;
pktStatus->Params.Ble.RssiSync = -status[1] / 2;
pktStatus->Params.Ble.ErrorStatus.SyncError = ( status[2] >> 6 ) & 0x01;
pktStatus->Params.Ble.ErrorStatus.LengthError = ( status[2] >> 5 ) & 0x01;
pktStatus->Params.Ble.ErrorStatus.CrcError = ( status[2] >> 4 ) & 0x01;
pktStatus->Params.Ble.ErrorStatus.AbortError = ( status[2] >> 3 ) & 0x01;
pktStatus->Params.Ble.ErrorStatus.HeaderReceived = ( status[2] >> 2 ) & 0x01;
pktStatus->Params.Ble.ErrorStatus.PacketReceived = ( status[2] >> 1 ) & 0x01;
pktStatus->Params.Ble.ErrorStatus.PacketControlerBusy = status[2] & 0x01;
pktStatus->Params.Ble.TxRxStatus.PacketSent = status[3] & 0x01;
pktStatus->Params.Ble.SyncAddrStatus = status[4] & 0x07;
break;
case PACKET_TYPE_NONE:
// In that specific case, we set everything in the pktStatus to zeros
// and reset the packet type accordingly
memset( pktStatus, 0, sizeof( PacketStatus_t ) );
pktStatus->packetType = PACKET_TYPE_NONE;
break;
}
}
int8_t SX1280GetRssiInst( void )
{
uint8_t raw = 0;
SX1280HalReadCommand( RADIO_GET_RSSIINST, &raw, 1 );
return ( int8_t )( -raw / 2 );
}
void SX1280SetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask )
{
uint8_t buf[8];
buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( irqMask & 0x00FF );
buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF );
buf[3] = ( uint8_t )( dio1Mask & 0x00FF );
buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF );
buf[5] = ( uint8_t )( dio2Mask & 0x00FF );
buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF );
buf[7] = ( uint8_t )( dio3Mask & 0x00FF );
SX1280HalWriteCommand( RADIO_SET_DIOIRQPARAMS, buf, 8 );
}
uint16_t SX1280GetIrqStatus( void )
{
uint8_t irqStatus[2];
SX1280HalReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 );
return ( irqStatus[0] << 8 ) | irqStatus[1];
}
void SX1280ClearIrqStatus( uint16_t irq )
{
uint8_t buf[2];
buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF );
SX1280HalWriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 );
}
void SX1280Calibrate( CalibrationParams_t calibParam )
{
uint8_t cal = ( calibParam.ADCBulkPEnable << 5 ) |
( calibParam.ADCBulkNEnable << 4 ) |
( calibParam.ADCPulseEnable << 3 ) |
( calibParam.PLLEnable << 2 ) |
( calibParam.RC13MEnable << 1 ) |
( calibParam.RC64KEnable );
SX1280HalWriteCommand( RADIO_CALIBRATE, &cal, 1 );
}
void SX1280SetRegulatorMode( RadioRegulatorModes_t mode )
{
SX1280HalWriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 );
}
void SX1280SetSaveContext( void )
{
SX1280HalWriteCommand( RADIO_SET_SAVECONTEXT, 0, 0 );
}
void SX1280SetAutoTx( uint16_t time )
{
uint16_t compensatedTime = time - ( uint16_t )AUTO_RX_TX_OFFSET;
uint8_t buf[2];
buf[0] = ( uint8_t )( ( compensatedTime >> 8 ) & 0x00FF );
buf[1] = ( uint8_t )( compensatedTime & 0x00FF );
SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 );
}
void SX1280StopAutoTx( void )
{
uint8_t buf[2] = {0x00, 0x00};
SX1280HalWriteCommand( RADIO_SET_AUTOTX, buf, 2 );
}
void SX1280SetAutoFS( uint8_t enable )
{
SX1280HalWriteCommand( RADIO_SET_AUTOFS, &enable, 1 );
}
void SX1280SetLongPreamble( uint8_t enable )
{
SX1280HalWriteCommand( RADIO_SET_LONGPREAMBLE, &enable, 1 );
}
void SX1280SetPayload( uint8_t *buffer, uint8_t size )
{
SX1280HalWriteBuffer( 0x00, buffer, size );
}
uint8_t SX1280GetPayload( uint8_t *buffer, uint8_t *size , uint8_t maxSize )
{
uint8_t offset;
SX1280GetRxBufferStatus( size, &offset );
if( *size > maxSize )
{
return 1;
}
SX1280HalReadBuffer( offset, buffer, *size );
return 0;
}
void SX1280SendPayload( uint8_t *payload, uint8_t size, TickTime_t timeout )
{
SX1280SetPayload( payload, size );
SX1280SetTx( timeout );
}
uint8_t SX1280SetSyncWord( uint8_t syncWordIdx, uint8_t *syncWord )
{
uint16_t addr;
uint8_t syncwordSize = 0;
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
syncwordSize = 5;
switch( syncWordIdx )
{
case 1:
addr = REG_LR_SYNCWORDBASEADDRESS1;
break;
case 2:
addr = REG_LR_SYNCWORDBASEADDRESS2;
break;
case 3:
addr = REG_LR_SYNCWORDBASEADDRESS3;
break;
default:
return 1;
}
break;
case PACKET_TYPE_FLRC:
// For FLRC packet type, the SyncWord is one byte shorter and
// the base address is shifted by one byte
syncwordSize = 4;
switch( syncWordIdx )
{
case 1:
addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
break;
case 2:
addr = REG_LR_SYNCWORDBASEADDRESS2 + 1;
break;
case 3:
addr = REG_LR_SYNCWORDBASEADDRESS3 + 1;
break;
default:
return 1;
}
break;
case PACKET_TYPE_BLE:
// For Ble packet type, only the first SyncWord is used and its
// address is shifted by one byte
syncwordSize = 4;
switch( syncWordIdx )
{
case 1:
addr = REG_LR_SYNCWORDBASEADDRESS1 + 1;
break;
default:
return 1;
}
break;
default:
return 1;
}
SX1280HalWriteRegisters( addr, syncWord, syncwordSize );
return 0;
}
void SX1280SetSyncWordErrorTolerance( uint8_t ErrorBits )
{
ErrorBits = ( SX1280HalReadRegister( REG_LR_SYNCWORDTOLERANCE ) & 0xF0 ) | ( ErrorBits & 0x0F );
SX1280HalWriteRegister( REG_LR_SYNCWORDTOLERANCE, ErrorBits );
}
void SX1280SetCrcSeed( uint16_t seed )
{
uint8_t val[2];
val[0] = ( uint8_t )( seed >> 8 ) & 0xFF;
val[1] = ( uint8_t )( seed & 0xFF );
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
SX1280HalWriteRegisters( REG_LR_CRCSEEDBASEADDR, val, 2 );
break;
default:
break;
}
}
void SX1280SetBleAccessAddress( uint32_t accessAddress )
{
SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS, ( accessAddress >> 24 ) & 0x000000FF );
SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 1, ( accessAddress >> 16 ) & 0x000000FF );
SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 2, ( accessAddress >> 8 ) & 0x000000FF );
SX1280HalWriteRegister( REG_LR_BLE_ACCESS_ADDRESS + 3, accessAddress & 0x000000FF );
}
void SX1280SetBleAdvertizerAccessAddress( void )
{
SX1280SetBleAccessAddress( BLE_ADVERTIZER_ACCESS_ADDRESS );
}
void SX1280SetCrcPolynomial( uint16_t polynomial )
{
uint8_t val[2];
val[0] = ( uint8_t )( polynomial >> 8 ) & 0xFF;
val[1] = ( uint8_t )( polynomial & 0xFF );
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
SX1280HalWriteRegisters( REG_LR_CRCPOLYBASEADDR, val, 2 );
break;
default:
break;
}
}
void SX1280SetWhiteningSeed( uint8_t seed )
{
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
case PACKET_TYPE_BLE:
SX1280HalWriteRegister( REG_LR_WHITSEEDBASEADDR, seed );
break;
default:
break;
}
}
void SX1280EnableManualGain( void )
{
SX1280HalWriteRegister( REG_ENABLE_MANUAL_GAIN_CONTROL, SX1280HalReadRegister( REG_ENABLE_MANUAL_GAIN_CONTROL ) | MASK_MANUAL_GAIN_CONTROL );
SX1280HalWriteRegister( REG_DEMOD_DETECTION, SX1280HalReadRegister( REG_DEMOD_DETECTION ) & MASK_DEMOD_DETECTION );
}
void SX1280DisableManualGain( void )
{
SX1280HalWriteRegister( REG_ENABLE_MANUAL_GAIN_CONTROL, SX1280HalReadRegister( REG_ENABLE_MANUAL_GAIN_CONTROL ) & ~MASK_MANUAL_GAIN_CONTROL );
SX1280HalWriteRegister( REG_DEMOD_DETECTION, SX1280HalReadRegister( REG_DEMOD_DETECTION ) | ~MASK_DEMOD_DETECTION );
}
void SX1280SetManualGainValue( uint8_t gain )
{
SX1280HalWriteRegister( REG_MANUAL_GAIN_VALUE, ( SX1280HalReadRegister( REG_MANUAL_GAIN_VALUE ) & MASK_MANUAL_GAIN_VALUE ) | gain );
}
void SX1280SetLNAGainSetting( const RadioLnaSettings_t lnaSetting )
{
switch( lnaSetting )
{
case LNA_HIGH_SENSITIVITY_MODE:
{
SX1280HalWriteRegister( REG_LNA_REGIME, SX1280HalReadRegister( REG_LNA_REGIME ) | MASK_LNA_REGIME );
break;
}
case LNA_LOW_POWER_MODE:
{
SX1280HalWriteRegister( REG_LNA_REGIME, SX1280HalReadRegister( REG_LNA_REGIME ) & ~MASK_LNA_REGIME );
break;
}
}
}
void SX1280SetRangingIdLength( RadioRangingIdCheckLengths_t length )
{
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
SX1280HalWriteRegister( REG_LR_RANGINGIDCHECKLENGTH, ( ( ( ( uint8_t )length ) & 0x03 ) << 6 ) | ( SX1280HalReadRegister( REG_LR_RANGINGIDCHECKLENGTH ) & 0x3F ) );
break;
default:
break;
}
}
void SX1280SetDeviceRangingAddress( uint32_t address )
{
uint8_t addrArray[] = { address >> 24, address >> 16, address >> 8, address };
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
SX1280HalWriteRegisters( REG_LR_DEVICERANGINGADDR, addrArray, 4 );
break;
default:
break;
}
}
void SX1280SetRangingRequestAddress( uint32_t address )
{
uint8_t addrArray[] = { address >> 24, address >> 16, address >> 8, address };
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
SX1280HalWriteRegisters( REG_LR_REQUESTRANGINGADDR, addrArray, 4 );
break;
default:
break;
}
}
double SX1280GetRangingResult( RadioRangingResultTypes_t resultType )
{
uint32_t valLsb = 0;
double val = 0.0;
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
SX1280SetStandby( STDBY_XOSC );
SX1280HalWriteRegister( 0x97F, SX1280HalReadRegister( 0x97F ) | ( 1 << 1 ) ); // enable LORA modem clock
SX1280HalWriteRegister( REG_LR_RANGINGRESULTCONFIG, ( SX1280HalReadRegister( REG_LR_RANGINGRESULTCONFIG ) & MASK_RANGINGMUXSEL ) | ( ( ( ( uint8_t )resultType ) & 0x03 ) << 4 ) );
valLsb = ( ( SX1280HalReadRegister( REG_LR_RANGINGRESULTBASEADDR ) << 16 ) | ( SX1280HalReadRegister( REG_LR_RANGINGRESULTBASEADDR + 1 ) << 8 ) | ( SX1280HalReadRegister( REG_LR_RANGINGRESULTBASEADDR + 2 ) ) );
SX1280SetStandby( STDBY_RC );
// Convertion from LSB to distance. For explanation on the formula, refer to Datasheet of SX1280
switch( resultType )
{
case RANGING_RESULT_RAW:
// Convert the ranging LSB to distance in meter
val = ( double )SX1280complement2( valLsb, 24 ) / ( double )SX1280GetLoRaBandwidth( ) * 36621.09375;
break;
case RANGING_RESULT_AVERAGED:
case RANGING_RESULT_DEBIASED:
case RANGING_RESULT_FILTERED:
val = ( double )valLsb * 20.0 / 100.0;
break;
default:
val = 0.0;
}
break;
default:
break;
}
return val;
}
uint8_t SX1280GetRangingPowerDeltaThresholdIndicator( void )
{
SX1280SetStandby( STDBY_XOSC );
SX1280HalWriteRegister( 0x97F, SX1280HalReadRegister( 0x97F ) | ( 1 << 1 ) ); // enable LoRa modem clock
SX1280HalWriteRegister( REG_LR_RANGINGRESULTCONFIG, ( SX1280HalReadRegister( REG_LR_RANGINGRESULTCONFIG ) & MASK_RANGINGMUXSEL ) | ( ( ( ( uint8_t )RANGING_RESULT_RAW ) & 0x03 ) << 4 ) ); // Select raw results
return SX1280HalReadRegister( REG_RANGING_RSSI );
}
void SX1280SetRangingCalibration( uint16_t cal )
{
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_RANGING:
SX1280HalWriteRegister( REG_LR_RANGINGRERXTXDELAYCAL, ( uint8_t )( ( cal >> 8 ) & 0xFF ) );
SX1280HalWriteRegister( REG_LR_RANGINGRERXTXDELAYCAL + 1, ( uint8_t )( ( cal ) & 0xFF ) );
break;
default:
break;
}
}
void SX1280RangingClearFilterResult( void )
{
uint8_t regVal = SX1280HalReadRegister( REG_LR_RANGINGRESULTCLEARREG );
// To clear result, set bit 5 to 1 then to 0
SX1280HalWriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal | ( 1 << 5 ) );
SX1280HalWriteRegister( REG_LR_RANGINGRESULTCLEARREG, regVal & ( ~( 1 << 5 ) ) );
}
void SX1280RangingSetFilterNumSamples( uint8_t num )
{
// Silently set 8 as minimum value
SX1280HalWriteRegister( REG_LR_RANGINGFILTERWINDOWSIZE, ( num < DEFAULT_RANGING_FILTER_SIZE ) ? DEFAULT_RANGING_FILTER_SIZE : num );
}
int8_t SX1280ParseHexFileLine( char* line )
{
uint16_t addr;
uint16_t n;
uint8_t code;
uint8_t bytes[256];
if( SX1280GetHexFileLineFields( line, bytes, &addr, &n, &code ) != 0 )
{
if( code == 0 )
{
SX1280HalWriteRegisters( addr, bytes, n );
}
if( code == 1 )
{ // end of file
//return 2;
}
if( code == 2 )
{ // begin of file
//return 3;
}
}
else
{
return 0;
}
return 1;
}
void SX1280SetRangingRole( RadioRangingRoles_t role )
{
uint8_t buf[1];
buf[0] = role;
SX1280HalWriteCommand( RADIO_SET_RANGING_ROLE, &buf[0], 1 );
}
int8_t SX1280GetHexFileLineFields( char* line, uint8_t *bytes, uint16_t *addr, uint16_t *num, uint8_t *code )
{
uint16_t sum, len, cksum;
char *ptr;
*num = 0;
if( line[0] != ':' )
{
return 0;
}
if( strlen( line ) < 11 )
{
return 0;
}
ptr = line + 1;
if( !sscanf( ptr, "%02hx", &len ) )
{
return 0;
}
ptr += 2;
if( strlen( line ) < ( 11 + ( len * 2 ) ) )
{
return 0;
}
if( !sscanf( ptr, "%04hx", addr ) )
{
return 0;
}
ptr += 4;
if( !sscanf( ptr, "%02hhx", code ) )
{
return 0;
}
ptr += 2;
sum = ( len & 255 ) + ( ( *addr >> 8 ) & 255 ) + ( *addr & 255 ) + ( ( *code >> 8 ) & 255 ) + ( *code & 255 );
while( *num != len )
{
if( !sscanf( ptr, "%02hhx", &bytes[*num] ) )
{
return 0;
}
ptr += 2;
sum += bytes[*num] & 255;
( *num )++;
if( *num >= 256 )
{
return 0;
}
}
if( !sscanf( ptr, "%02hx", &cksum ) )
{
return 0;
}
if( ( ( sum & 255 ) + ( cksum & 255 ) ) & 255 )
{
return 0; // checksum error
}
return 1;
}
double SX1280GetFrequencyError( )
{
uint8_t efeRaw[3] = {0};
uint32_t efe = 0;
double efeHz = 0.0;
switch( SX1280GetPacketType( ) )
{
case PACKET_TYPE_LORA:
case PACKET_TYPE_RANGING:
efeRaw[0] = SX1280HalReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB );
efeRaw[1] = SX1280HalReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 1 );
efeRaw[2] = SX1280HalReadRegister( REG_LR_ESTIMATED_FREQUENCY_ERROR_MSB + 2 );
efe = ( efeRaw[0]<<16 ) | ( efeRaw[1]<<8 ) | efeRaw[2];
efe &= REG_LR_ESTIMATED_FREQUENCY_ERROR_MASK;
efeHz = 1.55 * ( double )SX1280complement2( efe, 20 ) / ( 1600.0 / ( double )SX1280GetLoRaBandwidth( ) * 1000.0 );
break;
case PACKET_TYPE_NONE:
case PACKET_TYPE_BLE:
case PACKET_TYPE_FLRC:
case PACKET_TYPE_GFSK:
break;
}
return efeHz;
}
void SX1280SetPollingMode( void )
{
PollingMode = true;
}
int32_t SX1280GetLoRaBandwidth( )
{
int32_t bwValue = 0;
switch( LoRaBandwidth )
{
case LORA_BW_0200:
bwValue = 203125;
break;
case LORA_BW_0400:
bwValue = 406250;
break;
case LORA_BW_0800:
bwValue = 812500;
break;
case LORA_BW_1600:
bwValue = 1625000;
break;
default:
bwValue = 0;
}
return bwValue;
}
double SX1280GetRangingCorrectionPerSfBwGain( const RadioLoRaSpreadingFactors_t sf, const RadioLoRaBandwidths_t bw, const int8_t gain){
uint8_t sf_index, bw_index;
switch(sf){
case LORA_SF5:
sf_index = 0;
break;
case LORA_SF6:
sf_index = 1;
break;
case LORA_SF7:
sf_index = 2;
break;
case LORA_SF8:
sf_index = 3;
break;
case LORA_SF9:
sf_index = 4;
break;
case LORA_SF10:
sf_index = 5;
break;
case LORA_SF11:
sf_index = 6;
break;
case LORA_SF12:
sf_index = 7;
break;
}
switch(bw){
case LORA_BW_0400:
bw_index = 0;
break;
case LORA_BW_0800:
bw_index = 1;
break;
case LORA_BW_1600:
bw_index = 2;
break;
}
double correction = RangingCorrectionPerSfBwGain[sf_index][bw_index][gain];
return correction;
}
double SX1280ComputeRangingCorrectionPolynome(const RadioLoRaSpreadingFactors_t sf, const RadioLoRaBandwidths_t bw, const double median){
uint8_t sf_index, bw_index;
switch(sf){
case LORA_SF5:
sf_index = 0;
break;
case LORA_SF6:
sf_index = 1;
break;
case LORA_SF7:
sf_index = 2;
break;
case LORA_SF8:
sf_index = 3;
break;
case LORA_SF9:
sf_index = 4;
break;
case LORA_SF10:
sf_index = 5;
break;
case LORA_SF11:
sf_index = 6;
break;
case LORA_SF12:
sf_index = 7;
break;
}
switch(bw){
case LORA_BW_0400:
bw_index = 0;
break;
case LORA_BW_0800:
bw_index = 1;
break;
case LORA_BW_1600:
bw_index = 2;
break;
}
const RangingCorrectionPolynomes_t *polynome = RangingCorrectionPolynomesPerSfBw[sf_index][bw_index];
double correctedValue = 0.0;
double correctionCoeff = 0;
for(uint8_t order = 0; order < polynome->order; order++){
correctionCoeff = polynome->coefficients[order] * pow(median, polynome->order - order - 1);
correctedValue += correctionCoeff;
}
return correctedValue;
}
void SX1280SetInterruptMode( void )
{
PollingMode = false;
}
void SX1280OnDioIrq( void )
{
/*
* When polling mode is activated, it is up to the application to call
* ProcessIrqs( ). Otherwise, the driver automatically calls ProcessIrqs( )
* on radio interrupt.
*/
if( PollingMode == true )
{
IrqState = true;
}
else
{
SX1280ProcessIrqs( );
}
}
void SX1280AutoTxWillStart( void ){
OperatingMode = MODE_TX;
}
void SX1280ProcessIrqs( void )
{
RadioPacketTypes_t packetType = PACKET_TYPE_NONE;
if( SX1280GetOpMode( ) == MODE_SLEEP )
{
return; // DIO glitch on V2b :-)
}
if( PollingMode == true )
{
if( IrqState == true )
{
__disable_irq( );
IrqState = false;
__enable_irq( );
}
else
{
return;
}
}
packetType = SX1280GetPacketType( );
uint16_t irqRegs = SX1280GetIrqStatus( );
SX1280ClearIrqStatus( IRQ_RADIO_ALL );
switch( packetType )
{
case PACKET_TYPE_GFSK:
case PACKET_TYPE_FLRC:
case PACKET_TYPE_BLE:
switch( OperatingMode )
{
case MODE_RX:
if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
{
if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_CRC_ERROR_CODE );
}
}
else if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_SYNCWORD_ERROR_CODE );
}
}
else
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxDone != NULL ) )
{
RadioCallbacks->rxDone( );
}
}
}
if( ( irqRegs & IRQ_SYNCWORD_VALID ) == IRQ_SYNCWORD_VALID )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxSyncWordDone != NULL ) )
{
RadioCallbacks->rxSyncWordDone( );
}
}
if( ( irqRegs & IRQ_SYNCWORD_ERROR ) == IRQ_SYNCWORD_ERROR )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_SYNCWORD_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxTimeout != NULL ) )
{
RadioCallbacks->rxTimeout( );
}
}
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txDone != NULL ) )
{
RadioCallbacks->txDone( );
}
}
break;
case MODE_TX:
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txDone != NULL ) )
{
RadioCallbacks->txDone( );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txTimeout != NULL ) )
{
RadioCallbacks->txTimeout( );
}
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
break;
case PACKET_TYPE_LORA:
switch( OperatingMode )
{
case MODE_RX:
if( ( irqRegs & IRQ_RX_DONE ) == IRQ_RX_DONE )
{
if( ( irqRegs & IRQ_CRC_ERROR ) == IRQ_CRC_ERROR )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_CRC_ERROR_CODE );
}
}
else
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxDone != NULL ) )
{
RadioCallbacks->rxDone( );
}
}
}
if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxHeaderDone != NULL ) )
{
RadioCallbacks->rxHeaderDone( );
}
}
if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_HEADER_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxTimeout != NULL ) )
{
RadioCallbacks->rxTimeout( );
}
}
if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_RANGING_ON_LORA_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txDone != NULL ) )
{
RadioCallbacks->txDone( );
}
}
break;
case MODE_TX:
if( ( irqRegs & IRQ_TX_DONE ) == IRQ_TX_DONE )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txDone != NULL ) )
{
RadioCallbacks->txDone( );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->txTimeout != NULL ) )
{
RadioCallbacks->txTimeout( );
}
}
break;
case MODE_CAD:
if( ( irqRegs & IRQ_CAD_DONE ) == IRQ_CAD_DONE )
{
if( ( irqRegs & IRQ_CAD_ACTIVITY_DETECTED ) == IRQ_CAD_ACTIVITY_DETECTED )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->cadDone != NULL ) )
{
RadioCallbacks->cadDone( true );
}
}
else
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->cadDone != NULL ) )
{
RadioCallbacks->cadDone( false );
}
}
}
else if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxTimeout != NULL ) )
{
RadioCallbacks->rxTimeout( );
}
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
break;
case PACKET_TYPE_RANGING:
switch( OperatingMode )
{
// MODE_RX indicates an IRQ on the Slave side
case MODE_RX:
if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_DISCARDED ) == IRQ_RANGING_SLAVE_REQUEST_DISCARDED )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
{
RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RANGING_SLAVE_REQUEST_VALID ) == IRQ_RANGING_SLAVE_REQUEST_VALID )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
{
RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
}
}
if( ( irqRegs & IRQ_RANGING_SLAVE_RESPONSE_DONE ) == IRQ_RANGING_SLAVE_RESPONSE_DONE )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
{
RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_VALID_CODE );
}
}
if( ( irqRegs & IRQ_RX_TX_TIMEOUT ) == IRQ_RX_TX_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
{
RadioCallbacks->rangingDone( IRQ_RANGING_SLAVE_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_HEADER_VALID ) == IRQ_HEADER_VALID )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxHeaderDone != NULL ) )
{
RadioCallbacks->rxHeaderDone( );
}
}
if( ( irqRegs & IRQ_HEADER_ERROR ) == IRQ_HEADER_ERROR )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rxError != NULL ) )
{
RadioCallbacks->rxError( IRQ_HEADER_ERROR_CODE );
}
}
break;
// MODE_TX indicates an IRQ on the Master side
case MODE_TX:
if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_TIMEOUT ) == IRQ_RANGING_MASTER_RESULT_TIMEOUT )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
{
RadioCallbacks->rangingDone( IRQ_RANGING_MASTER_ERROR_CODE );
}
}
if( ( irqRegs & IRQ_RANGING_MASTER_RESULT_VALID ) == IRQ_RANGING_MASTER_RESULT_VALID )
{
if( ( RadioCallbacks != NULL ) && ( RadioCallbacks->rangingDone != NULL ) )
{
RadioCallbacks->rangingDone( IRQ_RANGING_MASTER_VALID_CODE );
}
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
break;
default:
// Unexpected IRQ: silently returns
break;
}
}