btstack/port/stm32-f4discovery-cc256x/bsp/stm32f4_discovery_audio.c
Dirk Helbig e0a94143c1 stm32-f4discovery-usb: added i2s pll tables and samplerate compensation support
stm32-f4discovery-cc256xx: dokumentation and some cleanups
2023-05-17 15:07:35 +02:00

1181 lines
41 KiB
C
Raw Blame History

/**
******************************************************************************
* @file stm32f4_discovery_audio.c
* @author MCD Application Team
* @version V2.1.2
* @date 27-January-2017
* @brief This file provides the Audio driver for the STM32F4-Discovery
* board.
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/*==============================================================================
User NOTES
1. How To use this driver:
--------------------------
- This driver supports STM32F4xx devices on STM32F4-Discovery Kit:
a) to play an audio file (all functions names start by BSP_AUDIO_OUT_xxx)
b) to record an audio file through MP45DT02, ST MEMS (all functions names start by AUDIO_IN_xxx)
a) PLAY A FILE:
==============
+ Call the function BSP_AUDIO_OUT_Init(
OutputDevice: physical output mode (OUTPUT_DEVICE_SPEAKER,
OUTPUT_DEVICE_HEADPHONE, OUTPUT_DEVICE_AUTO or
OUTPUT_DEVICE_BOTH)
Volume: initial volume to be set (0 is min (mute), 100 is max (100%)
AudioFreq: Audio frequency in Hz (8000, 16000, 22500, 32000 ...)
this parameter is relative to the audio file/stream type.
)
This function configures all the hardware required for the audio application (codec, I2C, I2S,
GPIOs, DMA and interrupt if needed). This function returns 0 if configuration is OK.
If the returned value is different from 0 or the function is stuck then the communication with
the codec (try to un-plug the power or reset device in this case).
- OUTPUT_DEVICE_SPEAKER: only speaker will be set as output for the audio stream.
- OUTPUT_DEVICE_HEADPHONE: only headphones will be set as output for the audio stream.
- OUTPUT_DEVICE_AUTO: Selection of output device is made through external switch (implemented
into the audio jack on the discovery board). When the Headphone is connected it is used
as output. When the headphone is disconnected from the audio jack, the output is
automatically switched to Speaker.
- OUTPUT_DEVICE_BOTH: both Speaker and Headphone are used as outputs for the audio stream
at the same time.
+ Call the function BSP_AUDIO_OUT_Play(
pBuffer: pointer to the audio data file address
Size: size of the buffer to be sent in Bytes
)
to start playing (for the first time) from the audio file/stream.
+ Call the function BSP_AUDIO_OUT_Pause() to pause playing
+ Call the function BSP_AUDIO_OUT_Resume() to resume playing.
Note. After calling BSP_AUDIO_OUT_Pause() function for pause, only BSP_AUDIO_OUT_Resume() should be called
for resume (it is not allowed to call BSP_AUDIO_OUT_Play() in this case).
Note. This function should be called only when the audio file is played or paused (not stopped).
+ For each mode, you may need to implement the relative callback functions into your code.
The Callback functions are named BSP_AUDIO_OUT_XXXCallBack() and only their prototypes are declared in
the stm32f4_discovery_audio.h file. (refer to the example for more details on the callbacks implementations)
+ To Stop playing, to modify the volume level, the frequency or to mute, use the functions
BSP_AUDIO_OUT_Stop(), BSP_AUDIO_OUT_SetVolume(), AUDIO_OUT_SetFrequency() BSP_AUDIO_OUT_SetOutputMode and BSP_AUDIO_OUT_SetMute().
+ The driver API and the callback functions are at the end of the stm32f4_discovery_audio.h file.
Driver architecture:
--------------------
+ This driver provide the High Audio Layer: consists of the function API exported in the stm32f4_discovery_audio.h file
(BSP_AUDIO_OUT_Init(), BSP_AUDIO_OUT_Play() ...)
+ This driver provide also the Media Access Layer (MAL): which consists of functions allowing to access the media containing/
providing the audio file/stream. These functions are also included as local functions into
the stm32f4_discovery_audio.c file (I2S3_Init()...)
Known Limitations:
-------------------
1- When using the Speaker, if the audio file quality is not high enough, the speaker output
may produce high and uncomfortable noise level. To avoid this issue, to use speaker
output properly, try to increase audio file sampling rate (typically higher than 48KHz).
This operation will lead to larger file size.
2- Communication with the audio codec (through I2C) may be corrupted if it is interrupted by some
user interrupt routines (in this case, interrupts could be disabled just before the start of
communication then re-enabled when it is over). Note that this communication is only done at
the configuration phase (BSP_AUDIO_OUT_Init() or BSP_AUDIO_OUT_Stop()) and when Volume control modification is
performed (BSP_AUDIO_OUT_SetVolume() or BSP_AUDIO_OUT_SetMute()or BSP_AUDIO_OUT_SetOutputMode()).
When the audio data is played, no communication is required with the audio codec.
3- Parsing of audio file is not implemented (in order to determine audio file properties: Mono/Stereo, Data size,
File size, Audio Frequency, Audio Data header size ...). The configuration is fixed for the given audio file.
4- Supports only Stereo audio streaming. To play mono audio streams, each data should be sent twice
on the I2S or should be duplicated on the source buffer. Or convert the stream in stereo before playing.
5- Supports only 16-bits audio data size.
b) RECORD A FILE:
================
+ Call the function BSP_AUDIO_IN_Init(
AudioFreq: Audio frequency in Hz (8000, 16000, 22500, 32000 ...)
)
This function configures all the hardware required for the audio application (I2S,
GPIOs, DMA and interrupt if needed). This function returns 0 if configuration is OK.
+ Call the function BSP_AUDIO_IN_Record(
pbuf Main buffer pointer for the recorded data storing
size Current size of the recorded buffer
)
to start recording from the microphone.
+ User needs to implement user callbacks to retrieve data saved in the record buffer
(AUDIO_IN_RxHalfCpltCallback/BSP_AUDIO_IN_ReceiveComplete_CallBack)
+ Call the function AUDIO_IN_STOP() to stop recording
==============================================================================*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4_discovery_audio.h"
#include "pdm_filter.h"
#include "btstack_config.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32F4_DISCOVERY
* @{
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO STM32F4 DISCOVERY AUDIO
* @brief This file includes the low layer audio driver available on STM32F4-Discovery
* discovery board.
* @{
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_Private_Types STM32F4 DISCOVERY AUDIO Private Types
* @{
*/
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_Private_Defines STM32F4 DISCOVERY AUDIO Private Defines
* @{
*/
static uint32_t bsp_audio_out_actual_frequency = 0;
static uint32_t bsp_audio_out_frequency = 0;
typedef struct {
uint32_t freq;
uint32_t actual;
uint16_t r;
uint16_t n;
} i2s_pll_entry_t;
// HSE_VALUE = 8000000
// PLLM = 4
// MCK on
static const i2s_pll_entry_t i2s_pll_table[] = {
{ 8000, 8000, 5, 128 }, /* i2sdiv: 12, odd: 1, rate error % (desired vs actual)%: 0.0000 */
{ 11025, 11024, 2, 127 }, /* i2sdiv: 22, odd: 1, rate error % (desired vs actual)%: 0.0063 */
{ 12000, 12000, 5, 192 }, /* i2sdiv: 12, odd: 1, rate error % (desired vs actual)%: 0.0000 */
{ 16000, 16000, 4, 213 }, /* i2sdiv: 13, odd: 0, rate error % (desired vs actual)%: 0.0038 */
{ 22050, 22048, 5, 127 }, /* i2sdiv: 4, odd: 1, rate error % (desired vs actual)%: 0.0063 */
{ 24000, 24003, 3, 212 }, /* i2sdiv: 11, odd: 1, rate error % (desired vs actual)%: 0.0151 */
{ 32000, 32001, 4, 213 }, /* i2sdiv: 6, odd: 1, rate error % (desired vs actual)%: 0.0038 */
{ 44100, 44084, 2, 79 }, /* i2sdiv: 3, odd: 1, rate error % (desired vs actual)%: 0.0344 */
{ 48000, 47991, 2, 86 }, /* i2sdiv: 3, odd: 1, rate error % (desired vs actual)%: 0.0186 */
{ 96000, 95982, 2, 172 }, /* i2sdiv: 3, odd: 1, rate error % (desired vs actual)%: 0.0186 */
};
#define BARRIER do { __asm__ volatile("" ::: "memory"); } while (0)
#define BINARY(I) do { \
base = ((base)[I].freq <= frequency)?base+I:base; \
BARRIER; \
} while (0)
/** @brief Searches I2S PLL parameter giving highest frequency accuracy possible
* @param frequency: the frequency to seach PLL parameter for
* @retval The PLL config with helps setting specified frequency
* @note This assembles a unrolled binary search for a fixed table size,
* so changes to the table size need to be reflected here. Or should
* be auto-generated
*/
static i2s_pll_entry_t const *i2s_find_pll_params( uint32_t frequency ) {
i2s_pll_entry_t const* base = i2s_pll_table;
BINARY(5);
BINARY(2);
BINARY(1);
BINARY(1);
return base;
}
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_Private_Macros STM32F4 DISCOVERY AUDIO Private Macros
* @{
*/
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_Private_Variables STM32F4 DISCOVERY AUDIO Private Variables
* @{
*/
/*##### PLAY #####*/
static AUDIO_DrvTypeDef *pAudioDrv;
I2S_HandleTypeDef hAudioOutI2s;
/*### RECORDER ###*/
I2S_HandleTypeDef hAudioInI2s;
static PDMFilter_InitStruct Filter[DEFAULT_AUDIO_IN_CHANNEL_NBR];
__IO uint16_t AudioInVolume = DEFAULT_AUDIO_IN_VOLUME;
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_Private_Function_Prototypes STM32F4 DISCOVERY AUDIO Private Function Prototypes
* @{
*/
static uint8_t I2S2_Init(uint32_t AudioFreq);
static uint8_t I2S3_Init(uint32_t AudioFreq);
static void PDMDecoder_Init(uint32_t AudioFreq, uint32_t ChnlNbr);
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_OUT_Private_Functions STM32F4 DISCOVERY AUDIO OUT Private Functions
* @{
*/
/**
* @brief Configures the audio peripherals.
* @param OutputDevice: OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE,
* OUTPUT_DEVICE_BOTH or OUTPUT_DEVICE_AUTO .
* @param Volume: Initial volume level (from 0 (Mute) to 100 (Max))
* @param AudioFreq: Audio frequency used to play the audio stream.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Init(uint16_t OutputDevice, uint8_t Volume, uint32_t AudioFreq)
{
uint8_t ret = AUDIO_OK;
/* PLL clock is set depending by the AudioFreq (44.1khz vs 48khz groups) */
BSP_AUDIO_OUT_ClockConfig(&hAudioOutI2s, AudioFreq, NULL);
/* I2S data transfer preparation:
Prepare the Media to be used for the audio transfer from memory to I2S peripheral */
hAudioOutI2s.Instance = I2S3;
if(HAL_I2S_GetState(&hAudioOutI2s) == HAL_I2S_STATE_RESET)
{
/* Init the I2S MSP: this __weak function can be redefined by the application*/
BSP_AUDIO_OUT_MspInit(&hAudioOutI2s, NULL);
}
/* I2S data transfer preparation:
Prepare the Media to be used for the audio transfer from memory to I2S peripheral */
/* Configure the I2S peripheral */
if(I2S3_Init(AudioFreq) != AUDIO_OK)
{
ret = AUDIO_ERROR;
}
if(ret == AUDIO_OK)
{
/* Retieve audio codec identifier */
if(((cs43l22_drv.ReadID(AUDIO_I2C_ADDRESS)) & CS43L22_ID_MASK) == CS43L22_ID)
{
/* Initialize the audio driver structure */
pAudioDrv = &cs43l22_drv;
}
else
{
ret = AUDIO_ERROR;
}
}
if(ret == AUDIO_OK)
{
pAudioDrv->Init(AUDIO_I2C_ADDRESS, OutputDevice, Volume, AudioFreq);
}
return ret;
}
/**
* @brief Starts playing audio stream from a data buffer for a determined size.
* @param pBuffer: Pointer to the buffer
* @param Size: Number of audio data BYTES.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Play(uint16_t* pBuffer, uint32_t Size)
{
/* Call the audio Codec Play function */
if(pAudioDrv->Play(AUDIO_I2C_ADDRESS, pBuffer, Size) != 0)
{
return AUDIO_ERROR;
}
else
{
bsp_audio_out_frequency = bsp_audio_out_actual_frequency;
/* Update the Media layer and enable it for play */
HAL_I2S_Transmit_DMA(&hAudioOutI2s, pBuffer, DMA_MAX(Size/AUDIODATA_SIZE));
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Sends n-Bytes on the I2S interface.
* @param pData: Pointer to data address
* @param Size: Number of data to be written
*/
void BSP_AUDIO_OUT_ChangeBuffer(uint16_t *pData, uint16_t Size)
{
HAL_I2S_Transmit_DMA(&hAudioOutI2s, pData, Size);
}
/**
* @brief Pauses the audio file stream. In case of using DMA, the DMA Pause
* feature is used.
* WARNING: When calling BSP_AUDIO_OUT_Pause() function for pause, only the
* BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play()
* function for resume could lead to unexpected behavior).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Pause(void)
{
/* Call the Audio Codec Pause/Resume function */
if(pAudioDrv->Pause(AUDIO_I2C_ADDRESS) != 0)
{
return AUDIO_ERROR;
}
else
{
/* Call the Media layer pause function */
HAL_I2S_DMAPause(&hAudioOutI2s);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Resumes the audio file streaming.
* WARNING: When calling BSP_AUDIO_OUT_Pause() function for pause, only
* BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play()
* function for resume could lead to unexpected behavior).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Resume(void)
{
/* Call the Audio Codec Pause/Resume function */
if(pAudioDrv->Resume(AUDIO_I2C_ADDRESS) != 0)
{
return AUDIO_ERROR;
}
else
{
/* Call the Media layer resume function */
HAL_I2S_DMAResume(&hAudioOutI2s);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Stops audio playing and Power down the Audio Codec.
* @param Option: could be one of the following parameters
* - CODEC_PDWN_HW: completely shut down the codec (physically).
* Then need to reconfigure the Codec after power on.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_Stop(uint32_t Option)
{
/* Call DMA Stop to disable DMA stream before stopping codec */
HAL_I2S_DMAStop(&hAudioOutI2s);
bsp_audio_out_frequency = 0;
/* Call Audio Codec Stop function */
if(pAudioDrv->Stop(AUDIO_I2C_ADDRESS, Option) != 0)
{
return AUDIO_ERROR;
}
else
{
if(Option == CODEC_PDWN_HW)
{
/* Wait at least 1ms */
HAL_Delay(1);
/* Reset the pin */
HAL_GPIO_WritePin(AUDIO_RESET_GPIO, AUDIO_RESET_PIN, GPIO_PIN_RESET);
}
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Controls the current audio volume level.
* @param Volume: Volume level to be set in percentage from 0% to 100% (0 for
* Mute and 100 for Max volume level).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_SetVolume(uint8_t Volume)
{
/* Call the codec volume control function with converted volume value */
if(pAudioDrv->SetVolume(AUDIO_I2C_ADDRESS, Volume) != 0)
{
return AUDIO_ERROR;
}
else
{
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Enables or disables the MUTE mode by software
* @param Cmd: could be AUDIO_MUTE_ON to mute sound or AUDIO_MUTE_OFF to
* unmute the codec and restore previous volume level.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_SetMute(uint32_t Cmd)
{
/* Call the Codec Mute function */
if(pAudioDrv->SetMute(AUDIO_I2C_ADDRESS, Cmd) != 0)
{
return AUDIO_ERROR;
}
else
{
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Switch dynamically (while audio file is played) the output target
* (speaker or headphone).
* @note This function modifies a global variable of the audio codec driver: OutputDev.
* @param Output: specifies the audio output target: OUTPUT_DEVICE_SPEAKER,
* OUTPUT_DEVICE_HEADPHONE, OUTPUT_DEVICE_BOTH or OUTPUT_DEVICE_AUTO
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_OUT_SetOutputMode(uint8_t Output)
{
/* Call the Codec output Device function */
if(pAudioDrv->SetOutputMode(AUDIO_I2C_ADDRESS, Output) != 0)
{
return AUDIO_ERROR;
}
else
{
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
}
/**
* @brief Update the audio frequency.
* @param AudioFreq: Audio frequency used to play the audio stream.
* @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the
* audio frequency.
*/
void BSP_AUDIO_OUT_SetFrequency(uint32_t AudioFreq)
{
/* PLL clock is set depending by the AudioFreq (44.1khz vs 48khz groups) */
BSP_AUDIO_OUT_ClockConfig(&hAudioOutI2s, AudioFreq, NULL);
/* Update the I2S audio frequency configuration */
I2S3_Init(AudioFreq);
}
/**
* @brief Tx Transfer completed callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s)
{
if(hi2s->Instance == I2S3)
{
/* Call the user function which will manage directly transfer complete */
BSP_AUDIO_OUT_TransferComplete_CallBack();
}
}
/**
* @brief Tx Half Transfer completed callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
if(hi2s->Instance == I2S3)
{
/* Manage the remaining file size and new address offset: This function should
be coded by user (its prototype is already declared in stm32f4_discovery_audio.h) */
BSP_AUDIO_OUT_HalfTransfer_CallBack();
}
}
/**
* @brief Clock Config.
* @param hi2s: might be required to set audio peripheral predivider if any.
* @param AudioFreq: Audio frequency used to play the audio stream.
* @note This API is called by BSP_AUDIO_OUT_Init() and BSP_AUDIO_OUT_SetFrequency()
* Being __weak it can be overwritten by the application
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_OUT_ClockConfig(I2S_HandleTypeDef *hi2s, uint32_t AudioFreq, void *Params)
{
RCC_PeriphCLKInitTypeDef rccclkinit;
i2s_pll_entry_t const *pll_params = i2s_find_pll_params( AudioFreq );
bsp_audio_out_actual_frequency = pll_params->actual;
/* Enable PLLI2S clock */
HAL_RCCEx_GetPeriphCLKConfig(&rccclkinit);
/* PLLI2S_VCO Input = HSE_VALUE/PLL_M */
/* I2S clock config
PLLI2S_VCO = f(VCO clock) = f(PLLI2S clock input) <20> (PLLI2SN/PLLM)
I2SCLK = f(PLLI2S clock output) = f(VCO clock) / PLLI2SR */
rccclkinit.PeriphClockSelection = RCC_PERIPHCLK_I2S;
rccclkinit.PLLI2S.PLLI2SN = pll_params->n;
rccclkinit.PLLI2S.PLLI2SR = pll_params->r;
HAL_RCCEx_PeriphCLKConfig(&rccclkinit);
}
/**
* @brief AUDIO OUT I2S MSP Init.
* @param hi2s: might be required to set audio peripheral predivider if any.
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_OUT_MspInit(I2S_HandleTypeDef *hi2s, void *Params)
{
static DMA_HandleTypeDef hdma_i2sTx;
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable I2S3 clock */
I2S3_CLK_ENABLE();
/*** Configure the GPIOs ***/
/* Enable I2S GPIO clocks */
I2S3_SCK_SD_CLK_ENABLE();
I2S3_WS_CLK_ENABLE();
/* I2S3 pins configuration: WS, SCK and SD pins ----------------------------*/
GPIO_InitStruct.Pin = I2S3_SCK_PIN | I2S3_SD_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
GPIO_InitStruct.Alternate = I2S3_SCK_SD_WS_AF;
HAL_GPIO_Init(I2S3_SCK_SD_GPIO_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = I2S3_WS_PIN ;
HAL_GPIO_Init(I2S3_WS_GPIO_PORT, &GPIO_InitStruct);
/* I2S3 pins configuration: MCK pin */
I2S3_MCK_CLK_ENABLE();
GPIO_InitStruct.Pin = I2S3_MCK_PIN;
HAL_GPIO_Init(I2S3_MCK_GPIO_PORT, &GPIO_InitStruct);
/* Enable the I2S DMA clock */
I2S3_DMAx_CLK_ENABLE();
if(hi2s->Instance == I2S3)
{
/* Configure the hdma_i2sTx handle parameters */
hdma_i2sTx.Init.Channel = I2S3_DMAx_CHANNEL;
hdma_i2sTx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_i2sTx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2sTx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2sTx.Init.PeriphDataAlignment = I2S3_DMAx_PERIPH_DATA_SIZE;
hdma_i2sTx.Init.MemDataAlignment = I2S3_DMAx_MEM_DATA_SIZE;
hdma_i2sTx.Init.Mode = DMA_NORMAL;
// BK: use circular DMA for hal_audio.h
#ifdef HAVE_HAL_AUDIO
hdma_i2sTx.Init.Mode = DMA_CIRCULAR;
#endif
// BK: use circular DMA (end)
hdma_i2sTx.Init.Priority = DMA_PRIORITY_HIGH;
hdma_i2sTx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_i2sTx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_i2sTx.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_i2sTx.Init.PeriphBurst = DMA_PBURST_SINGLE;
hdma_i2sTx.Instance = I2S3_DMAx_STREAM;
/* Associate the DMA handle */
__HAL_LINKDMA(hi2s, hdmatx, hdma_i2sTx);
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(&hdma_i2sTx);
/* Configure the DMA Stream */
HAL_DMA_Init(&hdma_i2sTx);
}
/* I2S DMA IRQ Channel configuration */
HAL_NVIC_SetPriority(I2S3_DMAx_IRQ, AUDIO_OUT_IRQ_PREPRIO, 0);
HAL_NVIC_EnableIRQ(I2S3_DMAx_IRQ);
}
/**
* @brief De-Initializes BSP_AUDIO_OUT MSP.
* @param hi2s: might be required to set audio peripheral predivider if any.
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_OUT_MspDeInit(I2S_HandleTypeDef *hi2s, void *Params)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* I2S DMA IRQ Channel deactivation */
HAL_NVIC_DisableIRQ(I2S3_DMAx_IRQ);
if(hi2s->Instance == I2S3)
{
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(hi2s->hdmatx);
}
/* Disable I2S block */
__HAL_I2S_DISABLE(hi2s);
/* CODEC_I2S pins configuration: SCK and SD pins */
GPIO_InitStruct.Pin = I2S3_SCK_PIN | I2S3_SD_PIN;
HAL_GPIO_DeInit(I2S3_SCK_SD_GPIO_PORT, GPIO_InitStruct.Pin);
/* CODEC_I2S pins configuration: WS pin */
GPIO_InitStruct.Pin = I2S3_WS_PIN;
HAL_GPIO_DeInit(I2S3_WS_GPIO_PORT, GPIO_InitStruct.Pin);
/* CODEC_I2S pins configuration: MCK pin */
GPIO_InitStruct.Pin = I2S3_MCK_PIN;
HAL_GPIO_DeInit(I2S3_MCK_GPIO_PORT, GPIO_InitStruct.Pin);
/* Disable I2S clock */
I2S3_CLK_DISABLE();
/* GPIO pins clock and DMA clock can be shut down in the applic
by surcgarging this __weak function */
}
/**
* @brief Manages the DMA full Transfer complete event.
*/
__weak void BSP_AUDIO_OUT_TransferComplete_CallBack(void)
{
}
/**
* @brief Manages the DMA Half Transfer complete event.
*/
__weak void BSP_AUDIO_OUT_HalfTransfer_CallBack(void)
{
}
/**
* @brief Manages the DMA FIFO error event.
*/
__weak void BSP_AUDIO_OUT_Error_CallBack(void)
{
}
/*******************************************************************************
Static Functions
*******************************************************************************/
/**
* @brief Initializes the Audio Codec audio interface (I2S).
* @param AudioFreq: Audio frequency to be configured for the I2S peripheral.
*/
static uint8_t I2S3_Init(uint32_t AudioFreq)
{
/* Initialize the hAudioOutI2s Instance parameter */
hAudioOutI2s.Instance = I2S3;
/* Disable I2S block */
__HAL_I2S_DISABLE(&hAudioOutI2s);
/* I2S3 peripheral configuration */
hAudioOutI2s.Init.AudioFreq = AudioFreq;
hAudioOutI2s.Init.ClockSource = I2S_CLOCK_PLL;
hAudioOutI2s.Init.CPOL = I2S_CPOL_LOW;
hAudioOutI2s.Init.DataFormat = I2S_DATAFORMAT_16B;
hAudioOutI2s.Init.MCLKOutput = I2S_MCLKOUTPUT_ENABLE;
hAudioOutI2s.Init.Mode = I2S_MODE_MASTER_TX;
hAudioOutI2s.Init.Standard = I2S_STANDARD;
/* Initialize the I2S peripheral with the structure above */
if(HAL_I2S_Init(&hAudioOutI2s) != HAL_OK)
{
return AUDIO_ERROR;
}
else
{
return AUDIO_OK;
}
}
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_IN_Private_Functions STM32F4 DISCOVERY AUDIO IN Private Functions
* @{
*/
/**
* @brief Initializes wave recording.
* @param AudioFreq: Audio frequency to be configured for the I2S peripheral.
* @param BitRes: Audio frequency to be configured for the I2S peripheral.
* @param ChnlNbr: Audio frequency to be configured for the I2S peripheral.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Init(uint32_t AudioFreq, uint32_t BitRes, uint32_t ChnlNbr)
{
#if 0
// BK: only do PLL clock configuration in sink
/* Configure PLL clock */
BSP_AUDIO_IN_ClockConfig(&hAudioInI2s, AudioFreq, NULL);
#endif
/* Configure the PDM library */
PDMDecoder_Init(AudioFreq, ChnlNbr);
/* Configure the I2S peripheral */
hAudioInI2s.Instance = I2S2;
if(HAL_I2S_GetState(&hAudioInI2s) == HAL_I2S_STATE_RESET)
{
/* Initialize the I2S Msp: this __weak function can be rewritten by the application */
BSP_AUDIO_IN_MspInit(&hAudioInI2s, NULL);
}
/* Configure the I2S2 */
I2S2_Init(AudioFreq);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Starts audio recording.
* @param pbuf: Main buffer pointer for the recorded data storing
* @param size: Current size of the recorded buffer
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Record(uint16_t* pbuf, uint32_t size)
{
uint32_t ret = AUDIO_ERROR;
/* Start the process receive DMA */
HAL_I2S_Receive_DMA(&hAudioInI2s, pbuf, size);
/* Return AUDIO_OK when all operations are correctly done */
ret = AUDIO_OK;
return ret;
}
/**
* @brief Stops audio recording.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Stop(void)
{
uint32_t ret = AUDIO_ERROR;
/* Call the Media layer pause function */
HAL_I2S_DMAStop(&hAudioInI2s);
/* Return AUDIO_OK when all operations are correctly done */
ret = AUDIO_OK;
return ret;
}
/**
* @brief Pauses the audio file stream.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Pause(void)
{
/* Call the Media layer pause function */
HAL_I2S_DMAPause(&hAudioInI2s);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Resumes the audio file stream.
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_Resume(void)
{
/* Call the Media layer pause/resume function */
HAL_I2S_DMAResume(&hAudioInI2s);
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Controls the audio in volume level.
* @param Volume: Volume level to be set in percentage from 0% to 100% (0 for
* Mute and 100 for Max volume level).
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_SetVolume(uint8_t Volume)
{
/* Set the Global variable AudioInVolume */
AudioInVolume = Volume;
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Converts audio format from PDM to PCM.
* @param PDMBuf: Pointer to data PDM buffer
* @param PCMBuf: Pointer to data PCM buffer
* @retval AUDIO_OK if correct communication, else wrong communication
*/
uint8_t BSP_AUDIO_IN_PDMToPCM(uint16_t *PDMBuf, uint16_t *PCMBuf)
{
uint16_t AppPDM[INTERNAL_BUFF_SIZE/2];
uint32_t index = 0;
/* PDM Demux */
for(index = 0; index<INTERNAL_BUFF_SIZE/2; index++)
{
AppPDM[index] = HTONS(PDMBuf[index]);
}
for(index = 0; index < DEFAULT_AUDIO_IN_CHANNEL_NBR; index++)
{
/* PDM to PCM filter */
PDM_Filter_64_LSB((uint8_t*)&AppPDM[index], (uint16_t*)&(PCMBuf[index]), AudioInVolume , (PDMFilter_InitStruct *)&Filter[index]);
}
#if 0
// BK - generate mono output
/* Duplicate samples since a single microphone in mounted on STM32F4-Discovery */
for(index = 0; index < PCM_OUT_SIZE; index++)
{
PCMBuf[(index<<1)+1] = PCMBuf[index<<1];
}
#endif
/* Return AUDIO_OK when all operations are correctly done */
return AUDIO_OK;
}
/**
* @brief Rx Transfer completed callbacks
* @param hi2s: I2S handle
*/
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Call the record update function to get the next buffer to fill and its size (size is ignored) */
BSP_AUDIO_IN_TransferComplete_CallBack();
}
/**
* @brief Rx Half Transfer completed callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s)
{
/* Manage the remaining file size and new address offset: This function
should be coded by user (its prototype is already declared in stm32f4_discovery_audio.h) */
BSP_AUDIO_IN_HalfTransfer_CallBack();
}
/**
* @brief Retrive the audio frequency.
* @retval AudioFreq: Audio frequency used to play the audio stream.
* @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the
* audio frequency.
*/
uint32_t BSP_AUDIO_OUT_GetFrequency(uint32_t AudioFreq)
{
return bsp_audio_out_frequency;
}
/**
* @brief Audio In Clock Config.
* @param hi2s: I2S handle
* @param AudioFreq: Audio frequency used to record the audio stream.
* @param Params : pointer on additional configuration parameters, can be NULL.
* @note This API is called by BSP_AUDIO_IN_Init()
* Being __weak it can be overwritten by the application
*/
__weak void BSP_AUDIO_IN_ClockConfig(I2S_HandleTypeDef *hi2s, uint32_t AudioFreq, void *Params)
{
RCC_PeriphCLKInitTypeDef rccclkinit;
/*Enable PLLI2S clock*/
HAL_RCCEx_GetPeriphCLKConfig(&rccclkinit);
i2s_pll_entry_t const *pll_params = i2s_find_pll_params( AudioFreq );
rccclkinit.PeriphClockSelection = RCC_PERIPHCLK_I2S;
rccclkinit.PLLI2S.PLLI2SN = pll_params->n;
rccclkinit.PLLI2S.PLLI2SR = pll_params->r;
HAL_RCCEx_PeriphCLKConfig(&rccclkinit);
}
/**
* @brief BSP AUDIO IN MSP Init.
* @param hi2s: I2S handle
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_IN_MspInit(I2S_HandleTypeDef *hi2s, void *Params)
{
static DMA_HandleTypeDef hdma_i2sRx;
GPIO_InitTypeDef GPIO_InitStruct;
/* Enable the I2S2 peripheral clock */
I2S2_CLK_ENABLE();
/* Enable I2S GPIO clocks */
I2S2_SCK_GPIO_CLK_ENABLE();
I2S2_MOSI_GPIO_CLK_ENABLE();
/* I2S2 pins configuration: SCK and MOSI pins ------------------------------*/
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FAST;
GPIO_InitStruct.Pin = I2S2_SCK_PIN;
GPIO_InitStruct.Alternate = I2S2_SCK_AF;
HAL_GPIO_Init(I2S2_SCK_GPIO_PORT, &GPIO_InitStruct);
GPIO_InitStruct.Pin = I2S2_MOSI_PIN ;
GPIO_InitStruct.Alternate = I2S2_MOSI_AF;
HAL_GPIO_Init(I2S2_MOSI_GPIO_PORT, &GPIO_InitStruct);
/* Enable the DMA clock */
I2S2_DMAx_CLK_ENABLE();
if(hi2s->Instance == I2S2)
{
/* Configure the hdma_i2sRx handle parameters */
hdma_i2sRx.Init.Channel = I2S2_DMAx_CHANNEL;
hdma_i2sRx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_i2sRx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_i2sRx.Init.MemInc = DMA_MINC_ENABLE;
hdma_i2sRx.Init.PeriphDataAlignment = I2S2_DMAx_PERIPH_DATA_SIZE;
hdma_i2sRx.Init.MemDataAlignment = I2S2_DMAx_MEM_DATA_SIZE;
hdma_i2sRx.Init.Mode = DMA_CIRCULAR;
hdma_i2sRx.Init.Priority = DMA_PRIORITY_HIGH;
hdma_i2sRx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
hdma_i2sRx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_i2sRx.Init.MemBurst = DMA_MBURST_SINGLE;
hdma_i2sRx.Init.PeriphBurst = DMA_MBURST_SINGLE;
hdma_i2sRx.Instance = I2S2_DMAx_STREAM;
/* Associate the DMA handle */
__HAL_LINKDMA(hi2s, hdmarx, hdma_i2sRx);
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(&hdma_i2sRx);
/* Configure the DMA Stream */
HAL_DMA_Init(&hdma_i2sRx);
}
/* I2S DMA IRQ Channel configuration */
HAL_NVIC_SetPriority(I2S2_DMAx_IRQ, AUDIO_IN_IRQ_PREPRIO, 0);
HAL_NVIC_EnableIRQ(I2S2_DMAx_IRQ);
}
/**
* @brief DeInitializes BSP_AUDIO_IN MSP.
* @param hi2s: I2S handle
* @param Params : pointer on additional configuration parameters, can be NULL.
*/
__weak void BSP_AUDIO_IN_MspDeInit(I2S_HandleTypeDef *hi2s, void *Params)
{
GPIO_InitTypeDef gpio_init_structure;
/* I2S DMA IRQ Channel deactivation */
HAL_NVIC_DisableIRQ(I2S2_DMAx_IRQ);
if(hi2s->Instance == I2S2)
{
/* Deinitialize the Stream for new transfer */
HAL_DMA_DeInit(hi2s->hdmarx);
}
/* Disable I2S block */
__HAL_I2S_DISABLE(hi2s);
/* Disable pins: SCK and SD pins */
gpio_init_structure.Pin = I2S2_SCK_PIN;
HAL_GPIO_DeInit(I2S2_SCK_GPIO_PORT, gpio_init_structure.Pin);
gpio_init_structure.Pin = I2S2_MOSI_PIN;
HAL_GPIO_DeInit(I2S2_MOSI_GPIO_PORT, gpio_init_structure.Pin);
/* Disable I2S clock */
I2S2_CLK_DISABLE();
/* GPIO pins clock and DMA clock can be shut down in the applic
by surcgarging this __weak function */
}
/**
* @brief User callback when record buffer is filled.
*/
__weak void BSP_AUDIO_IN_TransferComplete_CallBack(void)
{
/* This function should be implemented by the user application.
It is called into this driver when the current buffer is filled
to prepare the next buffer pointer and its size. */
}
/**
* @brief Manages the DMA Half Transfer complete event.
*/
__weak void BSP_AUDIO_IN_HalfTransfer_CallBack(void)
{
/* This function should be implemented by the user application.
It is called into this driver when the current buffer is filled
to prepare the next buffer pointer and its size. */
}
/**
* @brief Audio IN Error callback function.
*/
__weak void BSP_AUDIO_IN_Error_Callback(void)
{
/* This function is called when an Interrupt due to transfer error on or peripheral
error occurs. */
}
/*******************************************************************************
Static Functions
*******************************************************************************/
/**
* @brief Initialize the PDM library.
* @param AudioFreq: Audio sampling frequency
* @param ChnlNbr: Number of audio channels (1: mono; 2: stereo)
*/
static void PDMDecoder_Init(uint32_t AudioFreq, uint32_t ChnlNbr)
{
#if 1
uint32_t i = 0;
/* Enable CRC peripheral to unlock the PDM library */
__CRC_CLK_ENABLE();
for(i = 0; i < ChnlNbr; i++)
{
/* Filter LP and HP Init */
Filter[i].LP_HZ = AudioFreq / 2;
Filter[i].HP_HZ = 10;
Filter[i].Fs = AudioFreq;
/* On STM32F4-Discovery a single microphone is mounted, samples are duplicated
to make stereo audio streams */
// BK - generate mono output
// Filter[i].Out_MicChannels = 2;
Filter[i].Out_MicChannels = 1;
Filter[i].In_MicChannels = ChnlNbr;
PDM_Filter_Init((PDMFilter_InitStruct *)&Filter[i]);
}
#endif
}
/**
* @brief Initializes the Audio Codec audio interface (I2S)
* @note This function assumes that the I2S input clock (through PLL_R in
* Devices RevA/Z and through dedicated PLLI2S_R in Devices RevB/Y)
* is already configured and ready to be used.
* @param AudioFreq: Audio frequency to be configured for the I2S peripheral.
*/
static uint8_t I2S2_Init(uint32_t AudioFreq)
{
/* Initialize the hAudioInI2s Instance parameter */
hAudioInI2s.Instance = I2S2;
/* Disable I2S block */
__HAL_I2S_DISABLE(&hAudioInI2s);
/* I2S2 peripheral configuration */
hAudioInI2s.Init.AudioFreq = 2 * AudioFreq;
hAudioInI2s.Init.ClockSource = I2S_CLOCK_PLL;
hAudioInI2s.Init.CPOL = I2S_CPOL_HIGH;
hAudioInI2s.Init.DataFormat = I2S_DATAFORMAT_16B;
hAudioInI2s.Init.MCLKOutput = I2S_MCLKOUTPUT_DISABLE;
hAudioInI2s.Init.Mode = I2S_MODE_MASTER_RX;
hAudioInI2s.Init.Standard = I2S_STANDARD_LSB;
/* Initialize the I2S peripheral with the structure above */
if(HAL_I2S_Init(&hAudioInI2s) != HAL_OK)
{
return AUDIO_ERROR;
}
else
{
return AUDIO_OK;
}
}
/**
* @}
*/
/** @defgroup STM32F4_DISCOVERY_AUDIO_IN_OUT_Private_Functions STM32F4 DISCOVERY AUDIO IN OUT Private Functions
* @{
*/
/**
* @brief I2S error callbacks.
* @param hi2s: I2S handle
*/
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s)
{
/* Manage the error generated on DMA FIFO: This function
should be coded by user (its prototype is already declared in stm32f4_discovery_audio.h) */
if(hi2s->Instance == I2S3)
{
BSP_AUDIO_OUT_Error_CallBack();
}
if(hi2s->Instance == I2S2)
{
BSP_AUDIO_IN_Error_Callback();
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/