btstack/port/windows-h4
2020-09-11 15:15:24 +02:00
..
.gitignore
btstack_config.h da14585: enable le address resolution in some ports 2020-09-11 14:26:45 +02:00
main.c windows ports: configure for btstack_tlv_posix 2020-06-22 16:27:42 +02:00
Makefile cc256x: update CC256xC to v1.4 2020-09-11 15:15:24 +02:00
README.md windows ports: mention conio.h not found in msys2 32-bit and/or 32-bit toolchain 2020-03-18 10:26:22 +01:00

BTstack Port for Windows Systems with Bluetooth Controller connected via Serial Port

The Windows-H4 port uses the native run loop and allows to use Bluetooth Controllers connected via Serial Port.

Make sure to manually reset the Bluetooth Controller before starting any of the examples.

Toolchain

The port requires a Unix-like toolchain. We successfully used mingw-w64 to compile and run the examples. mingw64-w64 is based on MinGW, which '...provides a complete Open Source programming tool set which is suitable for the development of native MS-Windows applications, and which do not depend on any 3rd-party C-Runtime DLLs.'

We've used the Msys2 package available from the downloads page on Windows 10, 64-bit and use the MSYS2 MinGW 64-bit start menu item to compile 64-bit binaries.

In the MSYS2 shell, you can install everything with pacman:

$ pacman -S git
$ pacman -S make
$ pacman -S mingw-w64-x86_64-toolchain
$ pacman -S python
$ pacman -S winpty

Compilation

With mingw64-w64 installed, just go to the port/windows-winusb directory and run make

$ cd btstack/port/windows-winusb
$ make

Note: When compiling with msys2-32 bit and/or the 32-bit toolchain, compilation fails as conio.h seems to be mission. Please use msys2-64 bit with the 64-bit toolchain for now.

Console Output

When running the examples in the MSYS2 shell, the console input (via btstack_stdin_support) doesn't work. It works in the older MSYS and also the regular CMD.exe environment. Another option is to install WinPTY and then start the example via WinPTY like this:

$ winpty ./spp_and_le_counter.exe