btstack/example/spp_streamer.c

322 lines
11 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "spp_streamer.c"
/*
* spp_streamer.c
*/
// *****************************************************************************
/* EXAMPLE_START(spp_streamer): Send test data via SPP as fast as possible.
*
* @text After RFCOMM connections gets open, request a
* RFCOMM_EVENT_CAN_SEND_NOW via rfcomm_request_can_send_now_event().
* @text When we get the RFCOMM_EVENT_CAN_SEND_NOW, send data and request another one.
*
* @text Note: To test, run the example, pair from a remote
* device, and open the Virtual Serial Port.
*/
// *****************************************************************************
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "btstack.h"
int btstack_main(int argc, const char * argv[]);
#define RFCOMM_SERVER_CHANNEL 1
#define TEST_COD 0x1234
#define NUM_ROWS 25
#define NUM_COLS 40
#define DATA_VOLUME (10 * 1000 * 1000)
static btstack_packet_callback_registration_t hci_event_callback_registration;
static uint8_t test_data[NUM_ROWS * NUM_COLS];
// SPP
static uint8_t spp_service_buffer[150];
static uint16_t spp_test_data_len;
static uint16_t rfcomm_mtu;
static uint16_t rfcomm_cid = 0;
// static uint32_t data_to_send = DATA_VOLUME;
/**
* RFCOMM can make use for ERTM. Due to the need to re-transmit packets,
* a large buffer is needed to still get high throughput
*/
#ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM
static uint8_t ertm_buffer[20000];
static l2cap_ertm_config_t ertm_config = {
0, // ertm mandatory
8, // max transmit
2000,
12000,
1000, // l2cap ertm mtu
8,
8,
0, // No FCS
};
static int ertm_buffer_in_use;
static void rfcomm_ertm_request_handler(rfcomm_ertm_request_t * ertm_request){
printf("ERTM Buffer requested, buffer in use %u\n", ertm_buffer_in_use);
if (ertm_buffer_in_use) return;
ertm_buffer_in_use = 1;
ertm_request->ertm_config = &ertm_config;
ertm_request->ertm_buffer = ertm_buffer;
ertm_request->ertm_buffer_size = sizeof(ertm_buffer);
}
static void rfcomm_ertm_released_handler(uint16_t ertm_id){
printf("ERTM Buffer released, buffer in use %u, ertm_id %x\n", ertm_buffer_in_use, ertm_id);
ertm_buffer_in_use = 0;
}
#endif
/*
* @section Track throughput
* @text We calculate the throughput by setting a start time and measuring the amount of
* data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
* and reset the counter and start time.
*/
/* LISTING_START(tracking): Tracking throughput */
#define REPORT_INTERVAL_MS 3000
static uint32_t test_data_transferred;
static uint32_t test_data_start;
static void test_reset(void){
test_data_start = btstack_run_loop_get_time_ms();
test_data_transferred = 0;
}
static void test_track_transferred(int bytes_sent){
test_data_transferred += bytes_sent;
// evaluate
uint32_t now = btstack_run_loop_get_time_ms();
uint32_t time_passed = now - test_data_start;
if (time_passed < REPORT_INTERVAL_MS) return;
// print speed
int bytes_per_second = test_data_transferred * 1000 / time_passed;
printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
// restart
test_data_start = now;
test_data_transferred = 0;
}
/* LISTING_END(tracking): Tracking throughput */
static void spp_create_test_data(void){
int x,y;
for (y=0;y<NUM_ROWS;y++){
for (x=0;x<NUM_COLS-2;x++){
test_data[y*NUM_COLS+x] = '0' + (x % 10);
}
test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
}
}
static void spp_send_packet(void){
rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
test_track_transferred(spp_test_data_len);
#if 0
if (data_to_send <= spp_test_data_len){
printf("SPP Streamer: enough data send, closing channel\n");
rfcomm_disconnect(rfcomm_cid);
rfcomm_cid = 0;
return;
}
data_to_send -= spp_test_data_len;
#endif
rfcomm_request_can_send_now_event(rfcomm_cid);
}
/*
* @section Packet Handler
*
* @text The packet handler of the combined example is just the combination of the individual packet handlers.
*/
static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
UNUSED(channel);
bd_addr_t event_addr;
uint8_t rfcomm_channel_nr;
switch (packet_type) {
case HCI_EVENT_PACKET:
switch (hci_event_packet_get_type(packet)) {
case HCI_EVENT_PIN_CODE_REQUEST:
// inform about pin code request
printf("Pin code request - using '0000'\n");
hci_event_pin_code_request_get_bd_addr(packet, event_addr);
gap_pin_code_response(event_addr, "0000");
break;
case HCI_EVENT_USER_CONFIRMATION_REQUEST:
// inform about user confirmation request
printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
printf("SSP User Confirmation Auto accept\n");
break;
case RFCOMM_EVENT_INCOMING_CONNECTION:
// data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
rfcomm_accept_connection(rfcomm_cid);
break;
case RFCOMM_EVENT_CHANNEL_OPENED:
// data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
if (rfcomm_event_channel_opened_get_status(packet)) {
printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet));
} else {
rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
spp_test_data_len = rfcomm_mtu;
if (spp_test_data_len > sizeof(test_data)){
spp_test_data_len = sizeof(test_data);
}
// disable page/inquiry scan to get max performance
gap_discoverable_control(0);
gap_connectable_control(0);
test_reset();
rfcomm_request_can_send_now_event(rfcomm_cid);
}
break;
case RFCOMM_EVENT_CAN_SEND_NOW:
spp_send_packet();
break;
case RFCOMM_EVENT_CHANNEL_CLOSED:
printf("RFCOMM channel closed\n");
rfcomm_cid = 0;
// re-enable page/inquiry scan again
gap_discoverable_control(1);
gap_connectable_control(1);
break;
default:
break;
}
break;
case RFCOMM_DATA_PACKET:
test_track_transferred(size);
#if 0
printf("RCV: '");
for (i=0;i<size;i++){
putchar(packet[i]);
}
printf("'\n");
#endif
break;
default:
break;
}
}
/*
* @section Main Application Setup
*
* @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
*/
/* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDP SPP */
int btstack_main(int argc, const char * argv[])
{
(void)argc;
(void)argv;
l2cap_init();
rfcomm_init();
rfcomm_register_service(packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
#ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM
// setup ERTM management
rfcomm_enable_l2cap_ertm(&rfcomm_ertm_request_handler, &rfcomm_ertm_released_handler);
#endif
// init SDP, create record for SPP and register with SDP
sdp_init();
memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
spp_create_sdp_record(spp_service_buffer, 0x10001, RFCOMM_SERVER_CHANNEL, "SPP Streamer");
sdp_register_service(spp_service_buffer);
// printf("SDP service record size: %u\n", de_get_len(spp_service_buffer));
// register for HCI events
hci_event_callback_registration.callback = &packet_handler;
hci_add_event_handler(&hci_event_callback_registration);
// short-cut to find other SPP Streamer
gap_set_class_of_device(TEST_COD);
gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
gap_set_local_name("SPP Streamer 00:00:00:00:00:00");
gap_discoverable_control(1);
spp_create_test_data();
// turn on!
hci_power_control(HCI_POWER_ON);
return 0;
}
/* LISTING_END */
/* EXAMPLE_END */