btstack/example/sco_demo_util.c
2023-06-01 17:32:08 +02:00

702 lines
24 KiB
C

/*
* Copyright (C) 2016 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
* GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "sco_demo_util.c"
/*
* sco_demo_util.c - send/receive test data via SCO, used by hfp_*_demo and hsp_*_demo
*/
#include <stdio.h>
#include "sco_demo_util.h"
#include "btstack_audio.h"
#include "btstack_debug.h"
#include "btstack_ring_buffer.h"
#include "classic/btstack_cvsd_plc.h"
#include "classic/btstack_sbc.h"
#include "classic/hfp.h"
#include "classic/hfp_codec.h"
#ifdef ENABLE_HFP_SUPER_WIDE_BAND_SPEECH
#include "btstack_lc3.h"
#include "btstack_lc3_google.h"
#endif
#ifdef _MSC_VER
// ignore deprecated warning for fopen
#pragma warning(disable : 4996)
#endif
#ifdef HAVE_POSIX_FILE_IO
#include "wav_util.h"
#endif
// test modes
#define SCO_DEMO_MODE_SINE 0
#define SCO_DEMO_MODE_MICROPHONE 1
#define SCO_DEMO_MODE_MODPLAYER 2
// SCO demo configuration
#define SCO_DEMO_MODE SCO_DEMO_MODE_MICROPHONE
// number of sco packets until 'report' on console
#define SCO_REPORT_PERIOD 100
#ifdef HAVE_POSIX_FILE_IO
// length and name of wav file on disk
#define SCO_WAV_DURATION_IN_SECONDS 15
#define SCO_WAV_FILENAME "sco_input.wav"
#endif
// constants
#define NUM_CHANNELS 1
#define SAMPLE_RATE_8KHZ 8000
#define SAMPLE_RATE_16KHZ 16000
#define SAMPLE_RATE_32KHZ 32000
#define BYTES_PER_FRAME 2
// audio pre-buffer - also defines latency
#define SCO_PREBUFFER_MS 50
#define PREBUFFER_BYTES_8KHZ (SCO_PREBUFFER_MS * SAMPLE_RATE_8KHZ/1000 * BYTES_PER_FRAME)
#define PREBUFFER_BYTES_16KHZ (SCO_PREBUFFER_MS * SAMPLE_RATE_16KHZ/1000 * BYTES_PER_FRAME)
#define PREBUFFER_BYTES_32KHZ (SCO_PREBUFFER_MS * SAMPLE_RATE_32KHZ/1000 * BYTES_PER_FRAME)
#if defined(ENABLE_HFP_SUPER_WIDE_BAND_SPEECH)
#define PREBUFFER_BYTES_MAX PREBUFFER_BYTES_32KHZ
#define SAMPLES_PER_FRAME_MAX 240
#elif defined(ENABLE_HFP_WIDE_BAND_SPEECH)
#define PREBUFFER_BYTES_MAX PREBUFFER_BYTES_16KHZ
#define SAMPLES_PER_FRAME_MAX 120
#else
#define PREBUFFER_BYTES_MAX PREBUFFER_BYTES_8KHZ
#define SAMPLES_PER_FRAME_MAX 60
#endif
static uint16_t audio_prebuffer_bytes;
// output
static int audio_output_paused = 0;
static uint8_t audio_output_ring_buffer_storage[2 * PREBUFFER_BYTES_MAX];
static btstack_ring_buffer_t audio_output_ring_buffer;
// input
#if SCO_DEMO_MODE == SCO_DEMO_MODE_MICROPHONE
#define USE_AUDIO_INPUT
#else
#define USE_ADUIO_GENERATOR
static void (*sco_demo_audio_generator)(uint16_t num_samples, int16_t * data);
#endif
static int audio_input_paused = 0;
static uint8_t audio_input_ring_buffer_storage[2 * PREBUFFER_BYTES_MAX];
static btstack_ring_buffer_t audio_input_ring_buffer;
// mod player
#if SCO_DEMO_MODE == SCO_DEMO_MODE_MODPLAYER
#include "hxcmod.h"
#include "mods/mod.h"
static modcontext mod_context;
#endif
static int count_sent = 0;
static int count_received = 0;
static btstack_cvsd_plc_state_t cvsd_plc_state;
#ifdef ENABLE_HFP_WIDE_BAND_SPEECH
static btstack_sbc_encoder_state_t msbc_encoder_state;
static btstack_sbc_decoder_state_t msbc_decoder_state;
#endif
#ifdef ENABLE_HFP_SUPER_WIDE_BAND_SPEECH
static const btstack_lc3_decoder_t * lc3_decoder;
static btstack_lc3_decoder_google_t lc3_decoder_context;
static btstack_lc3_encoder_google_t lc3_encoder_context;
static hfp_h2_sync_t hfp_h2_sync;
#endif
int num_samples_to_write;
int num_audio_frames;
// generic codec support
typedef struct {
void (*init)(void);
void(*receive)(const uint8_t * packet, uint16_t size);
void (*fill_payload)(uint8_t * payload_buffer, uint16_t sco_payload_length);
void (*close)(void);
//
uint16_t sample_rate;
} codec_support_t;
// current configuration
static const codec_support_t * codec_current = NULL;
// hfp_codec
#if defined(ENABLE_HFP_WIDE_BAND_SPEECH) || defined(ENABLE_HFP_SUPER_WIDE_BAND_SPEECH)
static hfp_codec_t hfp_codec;
#endif
// Sine Wave
#if SCO_DEMO_MODE == SCO_DEMO_MODE_SINE
static uint16_t sine_wave_phase;
static uint16_t sine_wave_steps_per_sample;
#define SINE_WAVE_SAMPLE_RATE SAMPLE_RATE_32KHZ
// input signal: pre-computed int16 sine wave, 32000 Hz at 266 Hz
static const int16_t sine_int16[] = {
0, 1715, 3425, 5126, 6813, 8481, 10126, 11743, 13328, 14876,
16383, 17846, 19260, 20621, 21925, 23170, 24351, 25465, 26509, 27481,
28377, 29196, 29934, 30591, 31163, 31650, 32051, 32364, 32587, 32722,
32767, 32722, 32587, 32364, 32051, 31650, 31163, 30591, 29934, 29196,
28377, 27481, 26509, 25465, 24351, 23170, 21925, 20621, 19260, 17846,
16383, 14876, 13328, 11743, 10126, 8481, 6813, 5126, 3425, 1715,
0, -1715, -3425, -5126, -6813, -8481, -10126, -11743, -13328, -14876,
-16384, -17846, -19260, -20621, -21925, -23170, -24351, -25465, -26509, -27481,
-28377, -29196, -29934, -30591, -31163, -31650, -32051, -32364, -32587, -32722,
-32767, -32722, -32587, -32364, -32051, -31650, -31163, -30591, -29934, -29196,
-28377, -27481, -26509, -25465, -24351, -23170, -21925, -20621, -19260, -17846,
-16384, -14876, -13328, -11743, -10126, -8481, -6813, -5126, -3425, -1715,
};
static void sco_demo_sine_wave_host_endian(uint16_t num_samples, int16_t * data){
unsigned int i;
for (i=0; i < num_samples; i++){
data[i] = sine_int16[sine_wave_phase];
sine_wave_phase += sine_wave_steps_per_sample;
if (sine_wave_phase >= (sizeof(sine_int16) / sizeof(int16_t))){
sine_wave_phase = 0;
}
}
}
#endif
// Mod Player
#if SCO_DEMO_MODE == SCO_DEMO_MODE_MODPLAYER
#define NUM_SAMPLES_GENERATOR_BUFFER 30
static void sco_demo_modplayer(uint16_t num_samples, int16_t * data){
// mix down stereo
signed short samples[NUM_SAMPLES_GENERATOR_BUFFER * 2];
while (num_samples > 0){
uint16_t next_samples = btstack_min(num_samples, NUM_SAMPLES_GENERATOR_BUFFER);
hxcmod_fillbuffer(&mod_context, (unsigned short *) samples, next_samples, NULL);
num_samples -= next_samples;
uint16_t i;
for (i=0;i<next_samples;i++){
int32_t left = samples[2*i + 0];
int32_t right = samples[2*i + 1];
data[i] = (int16_t)((left + right) / 2);
}
}
}
#endif
// Audio Playback / Recording
static void audio_playback_callback(int16_t * buffer, uint16_t num_samples){
// fill with silence while paused
if (audio_output_paused){
if (btstack_ring_buffer_bytes_available(&audio_output_ring_buffer) < audio_prebuffer_bytes){
memset(buffer, 0, num_samples * BYTES_PER_FRAME);
return;
} else {
// resume playback
audio_output_paused = 0;
}
}
// get data from ringbuffer
uint32_t bytes_read = 0;
btstack_ring_buffer_read(&audio_output_ring_buffer, (uint8_t *) buffer, num_samples * BYTES_PER_FRAME, &bytes_read);
num_samples -= bytes_read / BYTES_PER_FRAME;
buffer += bytes_read / BYTES_PER_FRAME;
// fill with 0 if not enough
if (num_samples){
memset(buffer, 0, num_samples * BYTES_PER_FRAME);
audio_output_paused = 1;
}
}
#ifdef USE_AUDIO_INPUT
static void audio_recording_callback(const int16_t * buffer, uint16_t num_samples){
btstack_ring_buffer_write(&audio_input_ring_buffer, (uint8_t *)buffer, num_samples * 2);
}
#endif
// return 1 if ok
static int audio_initialize(int sample_rate){
// -- output -- //
// init buffers
memset(audio_output_ring_buffer_storage, 0, sizeof(audio_output_ring_buffer_storage));
btstack_ring_buffer_init(&audio_output_ring_buffer, audio_output_ring_buffer_storage, sizeof(audio_output_ring_buffer_storage));
// config and setup audio playback
const btstack_audio_sink_t * audio_sink = btstack_audio_sink_get_instance();
if (audio_sink != NULL){
audio_sink->init(1, sample_rate, &audio_playback_callback);
audio_sink->start_stream();
audio_output_paused = 1;
}
// -- input -- //
// init buffers
memset(audio_input_ring_buffer_storage, 0, sizeof(audio_input_ring_buffer_storage));
btstack_ring_buffer_init(&audio_input_ring_buffer, audio_input_ring_buffer_storage, sizeof(audio_input_ring_buffer_storage));
audio_input_paused = 1;
#ifdef USE_AUDIO_INPUT
// config and setup audio recording
const btstack_audio_source_t * audio_source = btstack_audio_source_get_instance();
if (audio_source != NULL){
audio_source->init(1, sample_rate, &audio_recording_callback);
audio_source->start_stream();
}
#endif
return 1;
}
static void audio_terminate(void){
const btstack_audio_sink_t * audio_sink = btstack_audio_sink_get_instance();
if (!audio_sink) return;
audio_sink->close();
#ifdef USE_AUDIO_INPUT
const btstack_audio_source_t * audio_source= btstack_audio_source_get_instance();
if (!audio_source) return;
audio_source->close();
#endif
}
// CVSD - 8 kHz
static void sco_demo_cvsd_init(void){
printf("SCO Demo: Init CVSD\n");
btstack_cvsd_plc_init(&cvsd_plc_state);
}
static void sco_demo_cvsd_receive(const uint8_t * packet, uint16_t size){
int16_t audio_frame_out[128]; //
if (size > sizeof(audio_frame_out)){
printf("sco_demo_cvsd_receive: SCO packet larger than local output buffer - dropping data.\n");
return;
}
const int audio_bytes_read = size - 3;
const int num_samples = audio_bytes_read / BYTES_PER_FRAME;
// convert into host endian
int16_t audio_frame_in[128];
int i;
for (i=0;i<num_samples;i++){
audio_frame_in[i] = little_endian_read_16(packet, 3 + i * 2);
}
// treat packet as bad frame if controller does not report 'all good'
bool bad_frame = (packet[1] & 0x30) != 0;
btstack_cvsd_plc_process_data(&cvsd_plc_state, bad_frame, audio_frame_in, num_samples, audio_frame_out);
#ifdef SCO_WAV_FILENAME
// Samples in CVSD SCO packet are in little endian, ready for wav files (take shortcut)
const int samples_to_write = btstack_min(num_samples, num_samples_to_write);
wav_writer_write_le_int16(samples_to_write, audio_frame_out);
num_samples_to_write -= samples_to_write;
if (num_samples_to_write == 0){
wav_writer_close();
}
#endif
btstack_ring_buffer_write(&audio_output_ring_buffer, (uint8_t *)audio_frame_out, audio_bytes_read);
}
static void sco_demo_cvsd_fill_payload(uint8_t * payload_buffer, uint16_t sco_payload_length){
uint16_t bytes_to_copy = sco_payload_length;
// get data from ringbuffer
uint16_t pos = 0;
if (!audio_input_paused){
uint16_t samples_to_copy = sco_payload_length / 2;
uint32_t bytes_read = 0;
btstack_ring_buffer_read(&audio_input_ring_buffer, payload_buffer, bytes_to_copy, &bytes_read);
// flip 16 on big endian systems
// @note We don't use (uint16_t *) casts since all sample addresses are odd which causes crahses on some systems
if (btstack_is_big_endian()){
uint16_t i;
for (i=0;i<samples_to_copy/2;i+=2){
uint8_t tmp = payload_buffer[i*2];
payload_buffer[i*2] = payload_buffer[i*2+1];
payload_buffer[i*2+1] = tmp;
}
}
bytes_to_copy -= bytes_read;
pos += bytes_read;
}
// fill with 0 if not enough
if (bytes_to_copy){
memset(payload_buffer + pos, 0, bytes_to_copy);
audio_input_paused = 1;
}
}
static void sco_demo_cvsd_close(void){
printf("Used CVSD with PLC, number of proccesed frames: \n - %d good frames, \n - %d bad frames.\n", cvsd_plc_state.good_frames_nr, cvsd_plc_state.bad_frames_nr);
}
static const codec_support_t codec_cvsd = {
.init = &sco_demo_cvsd_init,
.receive = &sco_demo_cvsd_receive,
.fill_payload = &sco_demo_cvsd_fill_payload,
.close = &sco_demo_cvsd_close,
.sample_rate = SAMPLE_RATE_8KHZ
};
// encode using hfp_codec
#if defined(ENABLE_HFP_WIDE_BAND_SPEECH) || defined(ENABLE_HFP_SUPER_WIDE_BAND_SPEECH)
static void sco_demo_codec_fill_payload(uint8_t * payload_buffer, uint16_t sco_payload_length){
if (!audio_input_paused){
int num_samples = hfp_codec_num_audio_samples_per_frame(&hfp_codec);
btstack_assert(num_samples <= SAMPLES_PER_FRAME_MAX);
uint16_t samples_available = btstack_ring_buffer_bytes_available(&audio_input_ring_buffer) / BYTES_PER_FRAME;
if (hfp_codec_can_encode_audio_frame_now(&hfp_codec) && samples_available >= num_samples){
int16_t sample_buffer[SAMPLES_PER_FRAME_MAX];
uint32_t bytes_read;
btstack_ring_buffer_read(&audio_input_ring_buffer, (uint8_t*) sample_buffer, num_samples * BYTES_PER_FRAME, &bytes_read);
hfp_codec_encode_audio_frame(&hfp_codec, sample_buffer);
num_audio_frames++;
}
}
// get data from encoder, fill with 0 if not enough
if (audio_input_paused || hfp_codec_num_bytes_available(&hfp_codec) < sco_payload_length){
// just send '0's
memset(payload_buffer, 0, sco_payload_length);
audio_input_paused = 1;
} else {
hfp_codec_read_from_stream(&hfp_codec, payload_buffer, sco_payload_length);
}
}
#endif
// mSBC - 16 kHz
#ifdef ENABLE_HFP_WIDE_BAND_SPEECH
static void handle_pcm_data(int16_t * data, int num_samples, int num_channels, int sample_rate, void * context){
UNUSED(context);
UNUSED(sample_rate);
UNUSED(data);
UNUSED(num_samples);
UNUSED(num_channels);
// samples in callback in host endianess, ready for playback
btstack_ring_buffer_write(&audio_output_ring_buffer, (uint8_t *)data, num_samples*num_channels*2);
#ifdef SCO_WAV_FILENAME
if (!num_samples_to_write) return;
num_samples = btstack_min(num_samples, num_samples_to_write);
num_samples_to_write -= num_samples;
wav_writer_write_int16(num_samples, data);
if (num_samples_to_write == 0){
wav_writer_close();
}
#endif /* SCO_WAV_FILENAME */
}
static void sco_demo_msbc_init(void){
printf("SCO Demo: Init mSBC\n");
btstack_sbc_decoder_init(&msbc_decoder_state, SBC_MODE_mSBC, &handle_pcm_data, NULL);
hfp_codec_init_msbc(&hfp_codec, &msbc_encoder_state);
}
static void sco_demo_msbc_receive(const uint8_t * packet, uint16_t size){
btstack_sbc_decoder_process_data(&msbc_decoder_state, (packet[1] >> 4) & 3, packet + 3, size - 3);
}
static void sco_demo_msbc_close(void){
printf("Used mSBC with PLC, number of processed frames: \n - %d good frames, \n - %d zero frames, \n - %d bad frames.\n", msbc_decoder_state.good_frames_nr, msbc_decoder_state.zero_frames_nr, msbc_decoder_state.bad_frames_nr);
}
static const codec_support_t codec_msbc = {
.init = &sco_demo_msbc_init,
.receive = &sco_demo_msbc_receive,
.fill_payload = &sco_demo_codec_fill_payload,
.close = &sco_demo_msbc_close,
.sample_rate = SAMPLE_RATE_16KHZ
};
#endif /* ENABLE_HFP_WIDE_BAND_SPEECH */
#ifdef ENABLE_HFP_SUPER_WIDE_BAND_SPEECH
#define LC3_SWB_SAMPLES_PER_FRAME 240
#define LC3_SWB_OCTETS_PER_FRAME 58
static bool sco_demo_lc3swb_frame_callback(bool bad_frame, const uint8_t * frame_data, uint16_t frame_len){
// skip H2 header for good frames
if (bad_frame == false){
btstack_assert(frame_data != NULL);
frame_data += 2;
}
uint8_t tmp_BEC_detect = 0;
uint8_t BFI = bad_frame ? 1 : 0;
int16_t samples[LC3_SWB_SAMPLES_PER_FRAME];
(void) lc3_decoder->decode_signed_16(&lc3_decoder_context, frame_data, BFI,
samples, 1, &tmp_BEC_detect);
// samples in callback in host endianess, ready for playback
btstack_ring_buffer_write(&audio_output_ring_buffer, (uint8_t *)samples, LC3_SWB_SAMPLES_PER_FRAME*2);
#ifdef SCO_WAV_FILENAME
if (num_samples_to_write > 0){
uint16_t num_samples = btstack_min(LC3_SWB_SAMPLES_PER_FRAME, num_samples_to_write);
num_samples_to_write -= num_samples;
wav_writer_write_int16(num_samples, samples);
if (num_samples_to_write == 0){
wav_writer_close();
}
}
#endif /* SCO_WAV_FILENAME */
// frame is good, if it isn't a bad frame and we didn't detect other errors
return (bad_frame == false) && (tmp_BEC_detect == 0);
}
static void sco_demo_lc3swb_init(void){
printf("SCO Demo: Init LC3-SWB\n");
hfp_codec.lc3_encoder_context = &lc3_encoder_context;
const btstack_lc3_encoder_t * lc3_encoder = btstack_lc3_encoder_google_init_instance((btstack_lc3_encoder_google_t *) hfp_codec.lc3_encoder_context);
hfp_codec_init_lc3_swb(&hfp_codec, lc3_encoder, &lc3_encoder_context);
// init lc3 decoder
lc3_decoder = btstack_lc3_decoder_google_init_instance(&lc3_decoder_context);
lc3_decoder->configure(&lc3_decoder_context, SAMPLE_RATE_32KHZ, BTSTACK_LC3_FRAME_DURATION_7500US, LC3_SWB_OCTETS_PER_FRAME);
// init HPF H2 framing
hfp_h2_sync_init(&hfp_h2_sync, &sco_demo_lc3swb_frame_callback);
}
static void sco_demo_lc3swb_receive(const uint8_t * packet, uint16_t size){
uint8_t packet_status = (packet[1] >> 4) & 3;
bool bad_frame = packet_status != 0;
hfp_h2_sync_process(&hfp_h2_sync, bad_frame, &packet[3], size-3);
}
static void sco_demo_lc3swb_close(void){
// TODO: report
}
static const codec_support_t codec_lc3swb = {
.init = &sco_demo_lc3swb_init,
.receive = &sco_demo_lc3swb_receive,
.fill_payload = &sco_demo_codec_fill_payload,
.close = &sco_demo_lc3swb_close,
.sample_rate = SAMPLE_RATE_32KHZ
};
#endif
void sco_demo_init(void){
#ifdef ENABLE_CLASSIC_LEGACY_CONNECTIONS_FOR_SCO_DEMOS
printf("Disable BR/EDR Secure Connctions due to incompatibilities with SCO connections\n");
gap_secure_connections_enable(false);
#endif
// Set SCO for CVSD (mSBC or other codecs automatically use 8-bit transparent mode)
hci_set_sco_voice_setting(0x60); // linear, unsigned, 16-bit, CVSD
// status
#if SCO_DEMO_MODE == SCO_DEMO_MODE_MICROPHONE
printf("SCO Demo: Sending and receiving audio via btstack_audio.\n");
#endif
#if SCO_DEMO_MODE == SCO_DEMO_MODE_SINE
printf("SCO Demo: Sending sine wave, audio output via btstack_audio.\n");
#endif
#if SCO_DEMO_MODE == SCO_DEMO_MODE_MODPLAYER
printf("SCO Demo: Sending modplayer wave, audio output via btstack_audio.\n");
// init mod
int hxcmod_initialized = hxcmod_init(&mod_context);
btstack_assert(hxcmod_initialized != 0);
#endif
}
void sco_demo_set_codec(uint8_t negotiated_codec){
switch (negotiated_codec){
case HFP_CODEC_CVSD:
codec_current = &codec_cvsd;
break;
#ifdef ENABLE_HFP_WIDE_BAND_SPEECH
case HFP_CODEC_MSBC:
codec_current = &codec_msbc;
break;
#endif
#ifdef ENABLE_HFP_SUPER_WIDE_BAND_SPEECH
case HFP_CODEC_LC3_SWB:
codec_current = &codec_lc3swb;
break;
#endif
default:
btstack_assert(false);
break;
}
codec_current->init();
audio_initialize(codec_current->sample_rate);
audio_prebuffer_bytes = SCO_PREBUFFER_MS * (codec_current->sample_rate/1000) * BYTES_PER_FRAME;
#ifdef SCO_WAV_FILENAME
num_samples_to_write = codec_current->sample_rate * SCO_WAV_DURATION_IN_SECONDS;
wav_writer_open(SCO_WAV_FILENAME, 1, codec_current->sample_rate);
#endif
#if SCO_DEMO_MODE == SCO_DEMO_MODE_SINE
sine_wave_steps_per_sample = SINE_WAVE_SAMPLE_RATE / codec_current->sample_rate;
sco_demo_audio_generator = &sco_demo_sine_wave_host_endian;
#endif
#if SCO_DEMO_MODE == SCO_DEMO_MODE_MODPLAYER
// load mod
hxcmod_setcfg(&mod_context, codec_current->sample_rate, 16, 1, 1, 1);
hxcmod_load(&mod_context, (void *) &mod_data, mod_len);
sco_demo_audio_generator = &sco_demo_modplayer;
#endif
}
void sco_demo_receive(uint8_t * packet, uint16_t size){
static uint32_t packets = 0;
static uint32_t crc_errors = 0;
static uint32_t data_received = 0;
static uint32_t byte_errors = 0;
count_received++;
data_received += size - 3;
packets++;
if (data_received > 100000){
printf("Summary: data %07u, packets %04u, packet with crc errors %0u, byte errors %04u\n", (unsigned int) data_received, (unsigned int) packets, (unsigned int) crc_errors, (unsigned int) byte_errors);
crc_errors = 0;
byte_errors = 0;
data_received = 0;
packets = 0;
}
codec_current->receive(packet, size);
}
void sco_demo_send(hci_con_handle_t sco_handle){
if (sco_handle == HCI_CON_HANDLE_INVALID) return;
int sco_packet_length = hci_get_sco_packet_length();
int sco_payload_length = sco_packet_length - 3;
hci_reserve_packet_buffer();
uint8_t * sco_packet = hci_get_outgoing_packet_buffer();
#ifdef USE_ADUIO_GENERATOR
#define REFILL_SAMPLES 16
// re-fill audio buffer
uint16_t samples_free = btstack_ring_buffer_bytes_free(&audio_input_ring_buffer) / 2;
while (samples_free > 0){
int16_t samples_buffer[REFILL_SAMPLES];
uint16_t samples_to_add = btstack_min(samples_free, REFILL_SAMPLES);
(*sco_demo_audio_generator)(samples_to_add, samples_buffer);
btstack_ring_buffer_write(&audio_input_ring_buffer, (uint8_t *)samples_buffer, samples_to_add * 2);
samples_free -= samples_to_add;
}
#endif
// resume if pre-buffer is filled
if (audio_input_paused){
if (btstack_ring_buffer_bytes_available(&audio_input_ring_buffer) >= audio_prebuffer_bytes){
// resume sending
audio_input_paused = 0;
}
}
// fill payload by codec
codec_current->fill_payload(&sco_packet[3], sco_payload_length);
// set handle + flags
little_endian_store_16(sco_packet, 0, sco_handle);
// set len
sco_packet[2] = sco_payload_length;
// finally send packet
hci_send_sco_packet_buffer(sco_packet_length);
// request another send event
hci_request_sco_can_send_now_event();
count_sent++;
if ((count_sent % SCO_REPORT_PERIOD) == 0) {
printf("SCO: sent %u, received %u\n", count_sent, count_received);
}
}
void sco_demo_close(void){
printf("SCO demo close\n");
printf("SCO demo statistics: ");
codec_current->close();
codec_current = NULL;
#if defined(SCO_WAV_FILENAME)
wav_writer_close();
#endif
audio_terminate();
}