btstack/src/hci.c
2024-11-02 18:22:32 +01:00

10950 lines
448 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
* GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "hci.c"
/*
* hci.c
*
* Created by Matthias Ringwald on 4/29/09.
*
*/
#include "btstack_config.h"
#ifdef ENABLE_CLASSIC
#ifdef HAVE_EMBEDDED_TICK
#include "btstack_run_loop_embedded.h"
#endif
#endif
#ifdef ENABLE_BLE
#include "gap.h"
#include "ble/le_device_db.h"
#endif
#include <stdarg.h>
#include <string.h>
#include <inttypes.h>
#include "btstack_debug.h"
#include "btstack_event.h"
#include "btstack_linked_list.h"
#include "btstack_memory.h"
#include "bluetooth_company_id.h"
#include "bluetooth_data_types.h"
#include "gap.h"
#include "hci.h"
#include "hci_cmd.h"
#include "hci_dump.h"
#include "ad_parser.h"
#ifdef ENABLE_CONTROLLER_DUMP_PACKETS
#include <stdio.h> // sprintf
#endif
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
#ifndef HCI_HOST_ACL_PACKET_NUM
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_NUM"
#endif
#ifndef HCI_HOST_ACL_PACKET_LEN
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_LEN"
#endif
#ifndef HCI_HOST_SCO_PACKET_NUM
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_NUM"
#endif
#ifndef HCI_HOST_SCO_PACKET_LEN
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_LEN"
#endif
#endif
#ifndef MAX_NR_CONTROLLER_ACL_BUFFERS
#define MAX_NR_CONTROLLER_ACL_BUFFERS 255
#endif
#ifndef MAX_NR_CONTROLLER_SCO_PACKETS
#define MAX_NR_CONTROLLER_SCO_PACKETS 255
#endif
#ifndef HCI_ACL_CHUNK_SIZE_ALIGNMENT
#define HCI_ACL_CHUNK_SIZE_ALIGNMENT 1
#endif
#if defined(ENABLE_SCO_OVER_HCI) && defined(ENABLE_SCO_OVER_PCM)
#error "SCO data can either be routed over HCI or over PCM, but not over both. Please only enable ENABLE_SCO_OVER_HCI or ENABLE_SCO_OVER_PCM."
#endif
#if defined(ENABLE_SCO_OVER_HCI) && defined(HAVE_SCO_TRANSPORT)
#error "SCO data can either be routed over HCI or over PCM, but not over both. Please only enable ENABLE_SCO_OVER_HCI or HAVE_SCO_TRANSPORT."
#endif
#define HCI_CONNECTION_TIMEOUT_MS 10000
#ifndef HCI_RESET_RESEND_TIMEOUT_MS
#define HCI_RESET_RESEND_TIMEOUT_MS 200
#endif
// Names are arbitrarily shortened to 32 bytes if not requested otherwise
#ifndef GAP_INQUIRY_MAX_NAME_LEN
#define GAP_INQUIRY_MAX_NAME_LEN 32
#endif
// GAP inquiry state: 0 = off, 0x01 - 0x30 = requested duration, 0xfe = active, 0xff = stop requested
#define GAP_INQUIRY_DURATION_MIN 0x01
#define GAP_INQUIRY_DURATION_MAX 0x30
#define GAP_INQUIRY_MIN_PERIODIC_LEN_MIN 0x02
#define GAP_INQUIRY_MAX_PERIODIC_LEN_MIN 0x03
#define GAP_INQUIRY_STATE_IDLE 0x00
#define GAP_INQUIRY_STATE_W4_ACTIVE 0x80
#define GAP_INQUIRY_STATE_ACTIVE 0x81
#define GAP_INQUIRY_STATE_W2_CANCEL 0x82
#define GAP_INQUIRY_STATE_W4_CANCELLED 0x83
#define GAP_INQUIRY_STATE_PERIODIC 0x84
#define GAP_INQUIRY_STATE_W2_EXIT_PERIODIC 0x85
// GAP Remote Name Request
#define GAP_REMOTE_NAME_STATE_IDLE 0
#define GAP_REMOTE_NAME_STATE_W2_SEND 1
#define GAP_REMOTE_NAME_STATE_W4_COMPLETE 2
// GAP Pairing
#define GAP_PAIRING_STATE_IDLE 0
#define GAP_PAIRING_STATE_SEND_PIN 1
#define GAP_PAIRING_STATE_SEND_PIN_NEGATIVE 2
#define GAP_PAIRING_STATE_SEND_PASSKEY 3
#define GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE 4
#define GAP_PAIRING_STATE_SEND_CONFIRMATION 5
#define GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE 6
#define GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE 7
//
// compact storage of relevant supported HCI Commands.
// X-Macro below provides enumeration and mapping table into the supported
// commands bitmap (64 bytes) from HCI Read Local Supported Commands
//
// format: command name, byte offset, bit nr in 64-byte supported commands
// currently stored in 32-bit variable
#define SUPPORTED_HCI_COMMANDS \
X( SUPPORTED_HCI_COMMAND_READ_REMOTE_EXTENDED_FEATURES , 2, 6) \
X( SUPPORTED_HCI_COMMAND_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE , 10, 4) \
X( SUPPORTED_HCI_COMMAND_READ_BUFFER_SIZE , 14, 7) \
X( SUPPORTED_HCI_COMMAND_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING, 18, 3) \
X( SUPPORTED_HCI_COMMAND_READ_ENCRYPTION_KEY_SIZE , 20, 4) \
X( SUPPORTED_HCI_COMMAND_SET_EVENT_MASK_PAGE_2 , 22, 2) \
X( SUPPORTED_HCI_COMMAND_WRITE_LE_HOST_SUPPORTED , 24, 6) \
X( SUPPORTED_HCI_COMMAND_LE_READ_REMOTE_FEATURES , 27, 5) \
X( SUPPORTED_HCI_COMMAND_REMOTE_OOB_EXTENDED_DATA_REQUEST_REPLY, 32, 1) \
X( SUPPORTED_HCI_COMMAND_WRITE_SECURE_CONNECTIONS_HOST , 32, 3) \
X( SUPPORTED_HCI_COMMAND_READ_LOCAL_OOB_EXTENDED_DATA_COMMAND , 32, 6) \
X( SUPPORTED_HCI_COMMAND_LE_WRITE_SUGGESTED_DEFAULT_DATA_LENGTH, 34, 0) \
X( SUPPORTED_HCI_COMMAND_LE_SET_ADDRESS_RESOLUTION_ENABLE , 35, 1) \
X( SUPPORTED_HCI_COMMAND_LE_READ_MAXIMUM_DATA_LENGTH , 35, 3) \
X( SUPPORTED_HCI_COMMAND_LE_SET_DEFAULT_PHY , 35, 5) \
X( SUPPORTED_HCI_COMMAND_LE_SET_EXTENDED_ADVERTISING_ENABLE , 36, 5) \
X( SUPPORTED_HCI_COMMAND_LE_READ_BUFFER_SIZE_V2 , 41, 5) \
X( SUPPORTED_HCI_COMMAND_SET_MIN_ENCRYPTION_KEY_SIZE , 45, 7) \
// enumerate supported commands
#define X(name, offset, bit) name,
enum {
SUPPORTED_HCI_COMMANDS
SUPPORTED_HCI_COMMANDS_COUNT
};
#undef X
// prototypes
#ifdef ENABLE_CLASSIC
static void hci_update_scan_enable(void);
static void hci_emit_scan_mode_changed(uint8_t discoverable, uint8_t connectable);
static int hci_local_ssp_activated(void);
static bool hci_remote_ssp_supported(hci_con_handle_t con_handle);
static bool hci_ssp_supported(hci_connection_t * connection);
static void hci_notify_if_sco_can_send_now(void);
static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status);
static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection);
static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level);
static void hci_connection_timeout_handler(btstack_timer_source_t *timer);
static void hci_connection_timestamp(hci_connection_t *connection);
static void hci_emit_l2cap_check_timeout(hci_connection_t *conn);
static void gap_inquiry_explode(uint8_t *packet, uint16_t size);
#endif
static int hci_power_control_on(void);
static void hci_power_control_off(void);
static void hci_state_reset(void);
static void hci_halting_timeout_handler(btstack_timer_source_t * ds);
static void hci_emit_transport_packet_sent(void);
static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason);
static void hci_emit_nr_connections_changed(void);
static void hci_emit_hci_open_failed(void);
static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status);
static void hci_emit_event(uint8_t * event, uint16_t size, int dump);
static void hci_emit_btstack_event(uint8_t * event, uint16_t size, int dump);
static void hci_emit_acl_packet(uint8_t * packet, uint16_t size);
static void hci_run(void);
static bool hci_is_le_connection(hci_connection_t * connection);
static uint8_t hci_send_prepared_cmd_packet(void);
#ifdef ENABLE_CLASSIC
static int hci_have_usb_transport(void);
static void hci_trigger_remote_features_for_connection(hci_connection_t * connection);
#endif
#ifdef ENABLE_BLE
static bool hci_run_general_gap_le(void);
static void gap_privacy_clients_handle_ready(void);
static void gap_privacy_clients_notify(bd_addr_t new_random_address);
#ifdef ENABLE_LE_CENTRAL
// called from test/ble_client/advertising_data_parser.c
void le_handle_advertisement_report(uint8_t *packet, uint16_t size);
static uint8_t hci_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address);
static hci_connection_t * gap_get_outgoing_le_connection(void);
static void hci_le_scan_stop(void);
#endif
#ifdef ENABLE_LE_PERIPHERAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static le_advertising_set_t * hci_advertising_set_for_handle(uint8_t advertising_handle);
static uint8_t hci_le_extended_advertising_operation_for_chunk(uint16_t pos, uint16_t len);
static void le_handle_extended_advertisement_report(uint8_t *packet, uint16_t size);
#endif /* ENABLE_LE_EXTENDED_ADVERTISING */
#endif /* ENABLE_LE_PERIPHERAL */
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
static hci_iso_stream_t * hci_iso_stream_create(hci_iso_type_t iso_type, hci_iso_stream_state_t state, uint8_t group_id, uint8_t stream_id);
static void hci_iso_stream_finalize(hci_iso_stream_t * iso_stream);
static void hci_iso_stream_finalize_by_type_and_group_id(hci_iso_type_t iso_type, uint8_t group_id);
static hci_iso_stream_t * hci_iso_stream_for_con_handle(hci_con_handle_t con_handle);
static void hci_iso_stream_requested_finalize(uint8_t big_handle);
static void hci_iso_stream_requested_confirm(uint8_t big_handle);
static void hci_iso_packet_handler(hci_iso_stream_t *iso_stream, uint8_t *packet, uint16_t size);
static le_audio_big_t * hci_big_for_handle(uint8_t big_handle);
static le_audio_cig_t * hci_cig_for_id(uint8_t cig_id);
static void hci_iso_notify_can_send_now(void);
static void hci_emit_big_created(const le_audio_big_t * big, uint8_t status);
static void hci_emit_big_terminated(const le_audio_big_t * big);
static void hci_emit_big_sync_created(const le_audio_big_sync_t * big_sync, uint8_t status);
static void hci_emit_big_sync_stopped(uint8_t big_handle);
static void hci_emit_cig_created(const le_audio_cig_t * cig, uint8_t status);
static void hci_cis_handle_created(hci_iso_stream_t * iso_stream, uint8_t status);
static le_audio_big_sync_t * hci_big_sync_for_handle(uint8_t big_handle);
#endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */
#endif /* ENABLE_BLE */
// the STACK is here
#ifndef HAVE_MALLOC
static hci_stack_t hci_stack_static;
#endif
static hci_stack_t * hci_stack = NULL;
#ifdef ENABLE_CLASSIC
// default name
static const char * default_classic_name = "BTstack 00:00:00:00:00:00";
// test helper
static uint8_t disable_l2cap_timeouts = 0;
#endif
// reset connection state on create and on reconnect
// don't overwrite addr, con handle, role
static void hci_connection_init(hci_connection_t * conn){
conn->authentication_flags = AUTH_FLAG_NONE;
conn->bonding_flags = 0;
conn->requested_security_level = LEVEL_0;
conn->link_key_type = INVALID_LINK_KEY;
#ifdef ENABLE_CLASSIC
conn->request_role = HCI_ROLE_INVALID;
conn->sniff_subrating_max_latency = 0xffff;
conn->qos_service_type = HCI_SERVICE_TYPE_INVALID;
btstack_run_loop_set_timer_handler(&conn->timeout, hci_connection_timeout_handler);
btstack_run_loop_set_timer_context(&conn->timeout, conn);
hci_connection_timestamp(conn);
#endif
conn->acl_recombination_length = 0;
conn->acl_recombination_pos = 0;
conn->num_packets_sent = 0;
conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
#ifdef ENABLE_BLE
conn->le_phy_update_all_phys = 0xff;
#endif
#ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS
conn->le_max_tx_octets = 27;
#endif
#ifdef ENABLE_CLASSIC_PAIRING_OOB
conn->classic_oob_c_192 = NULL;
conn->classic_oob_r_192 = NULL;
conn->classic_oob_c_256 = NULL;
conn->classic_oob_r_256 = NULL;
#endif
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
conn->le_past_sync_handle = HCI_CON_HANDLE_INVALID;
conn->le_past_advertising_handle = 0xff;
#endif
}
/**
* create connection for given address
*
* @return connection OR NULL, if no memory left
*/
static hci_connection_t *
create_connection_for_bd_addr_and_type(const bd_addr_t addr, bd_addr_type_t addr_type, hci_role_t role) {
log_info("create_connection_for_addr %s, type %x", bd_addr_to_str(addr), addr_type);
hci_connection_t * conn = btstack_memory_hci_connection_get();
if (!conn) return NULL;
hci_connection_init(conn);
bd_addr_copy(conn->address, addr);
conn->address_type = addr_type;
conn->con_handle = HCI_CON_HANDLE_INVALID;
conn->role = role;
btstack_linked_list_add(&hci_stack->connections, (btstack_linked_item_t *) conn);
return conn;
}
/**
* get le connection parameter range
*
* @return le connection parameter range struct
*/
void gap_get_connection_parameter_range(le_connection_parameter_range_t * range){
*range = hci_stack->le_connection_parameter_range;
}
/**
* set le connection parameter range
*
*/
void gap_set_connection_parameter_range(le_connection_parameter_range_t *range){
hci_stack->le_connection_parameter_range = *range;
}
/**
* @brief Test if connection parameters are inside in existing rage
* @param conn_interval_min (unit: 1.25ms)
* @param conn_interval_max (unit: 1.25ms)
* @param conn_latency
* @param supervision_timeout (unit: 10ms)
* @return 1 if included
*/
int gap_connection_parameter_range_included(le_connection_parameter_range_t * existing_range, uint16_t le_conn_interval_min, uint16_t le_conn_interval_max, uint16_t le_conn_latency, uint16_t le_supervision_timeout){
if (le_conn_interval_min < existing_range->le_conn_interval_min) return 0;
if (le_conn_interval_max > existing_range->le_conn_interval_max) return 0;
if (le_conn_latency < existing_range->le_conn_latency_min) return 0;
if (le_conn_latency > existing_range->le_conn_latency_max) return 0;
if (le_supervision_timeout < existing_range->le_supervision_timeout_min) return 0;
if (le_supervision_timeout > existing_range->le_supervision_timeout_max) return 0;
return 1;
}
/**
* @brief Set max number of connections in LE Peripheral role (if Bluetooth Controller supports it)
* @note: default: 1
* @param max_peripheral_connections
*/
#ifdef ENABLE_LE_PERIPHERAL
void gap_set_max_number_peripheral_connections(int max_peripheral_connections){
hci_stack->le_max_number_peripheral_connections = max_peripheral_connections;
}
#endif
/**
* get hci connections iterator
*
* @return hci connections iterator
*/
void hci_connections_get_iterator(btstack_linked_list_iterator_t *it){
btstack_linked_list_iterator_init(it, &hci_stack->connections);
}
/**
* get connection for a given handle
*
* @return connection OR NULL, if not found
*/
hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * item = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if ( item->con_handle == con_handle ) {
return item;
}
}
return NULL;
}
/**
* get connection for given address
*
* @return connection OR NULL, if not found
*/
hci_connection_t * hci_connection_for_bd_addr_and_type(const bd_addr_t addr, bd_addr_type_t addr_type){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if (connection->address_type != addr_type) continue;
if (memcmp(addr, connection->address, 6) != 0) continue;
return connection;
}
return NULL;
}
#ifdef ENABLE_CLASSIC
inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){
conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags);
}
inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){
conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags);
}
#ifdef ENABLE_SCO_OVER_HCI
static int hci_number_sco_connections(void){
int connections = 0;
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if (connection->address_type != BD_ADDR_TYPE_SCO) continue;
connections++;
}
return connections;
}
#endif
static void hci_connection_timeout_handler(btstack_timer_source_t *timer){
hci_connection_t * connection = (hci_connection_t *) btstack_run_loop_get_timer_context(timer);
#ifdef HAVE_EMBEDDED_TICK
if (btstack_run_loop_embedded_get_ticks() > connection->timestamp + btstack_run_loop_embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){
// connections might be timed out
hci_emit_l2cap_check_timeout(connection);
}
#else
if (btstack_run_loop_get_time_ms() > (connection->timestamp + HCI_CONNECTION_TIMEOUT_MS)){
// connections might be timed out
hci_emit_l2cap_check_timeout(connection);
}
#endif
}
static void hci_connection_timestamp(hci_connection_t *connection){
#ifdef HAVE_EMBEDDED_TICK
connection->timestamp = btstack_run_loop_embedded_get_ticks();
#else
connection->timestamp = btstack_run_loop_get_time_ms();
#endif
}
/**
* add authentication flags and reset timer
* @note: assumes classic connection
* @note: bd_addr is passed in as little endian uint8_t * as it is called from parsing packets
*/
static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){
bd_addr_t addr;
reverse_bd_addr(bd_addr, addr);
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (conn) {
connectionSetAuthenticationFlags(conn, flags);
hci_connection_timestamp(conn);
}
}
static bool hci_pairing_active(hci_connection_t * hci_connection){
return (hci_connection->authentication_flags & AUTH_FLAG_PAIRING_ACTIVE_MASK) != 0;
}
static void hci_pairing_started(hci_connection_t * hci_connection, bool ssp){
if (hci_pairing_active(hci_connection)) return;
if (ssp){
hci_connection->authentication_flags |= AUTH_FLAG_SSP_PAIRING_ACTIVE;
} else {
hci_connection->authentication_flags |= AUTH_FLAG_LEGACY_PAIRING_ACTIVE;
}
// if we are initiator, we have sent an HCI Authenticate Request
bool initiator = (hci_connection->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) != 0;
// if we are responder, use minimal service security level as required level
if (!initiator){
hci_connection->requested_security_level = (gap_security_level_t) btstack_max((uint32_t) hci_connection->requested_security_level, (uint32_t) hci_stack->gap_minimal_service_security_level);
}
log_info("pairing started, ssp %u, initiator %u, requested level %u", (int) ssp, (int) initiator, hci_connection->requested_security_level);
uint8_t event[12];
event[0] = GAP_EVENT_PAIRING_STARTED;
event[1] = 10;
little_endian_store_16(event, 2, (uint16_t) hci_connection->con_handle);
reverse_bd_addr(hci_connection->address, &event[4]);
event[10] = (uint8_t) ssp;
event[11] = (uint8_t) initiator;
hci_emit_btstack_event(event, sizeof(event), 1);
}
static void hci_pairing_complete(hci_connection_t * hci_connection, uint8_t status){
hci_connection->requested_security_level = LEVEL_0;
if (!hci_pairing_active(hci_connection)) return;
hci_connection->authentication_flags &= ~AUTH_FLAG_PAIRING_ACTIVE_MASK;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
hci_connection->classic_oob_c_192 = NULL;
hci_connection->classic_oob_r_192 = NULL;
hci_connection->classic_oob_c_256 = NULL;
hci_connection->classic_oob_r_256 = NULL;
#endif
log_info("pairing complete, status %02x", status);
uint8_t event[11];
event[0] = GAP_EVENT_PAIRING_COMPLETE;
event[1] = 9;
little_endian_store_16(event, 2, (uint16_t) hci_connection->con_handle);
reverse_bd_addr(hci_connection->address, &event[4]);
event[10] = status;
hci_emit_btstack_event(event, sizeof(event), 1);
// emit dedicated bonding done on failure, otherwise verify that connection can be encrypted
if ((status != ERROR_CODE_SUCCESS) && ((hci_connection->bonding_flags & BONDING_DEDICATED) != 0)){
hci_connection->bonding_flags &= ~BONDING_DEDICATED;
hci_connection->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE;
hci_connection->bonding_status = status;
}
}
bool hci_authentication_active_for_handle(hci_con_handle_t handle){
hci_connection_t * conn = hci_connection_for_handle(handle);
if (!conn) return false;
return hci_pairing_active(conn);
}
void gap_drop_link_key_for_bd_addr(bd_addr_t addr){
if (!hci_stack->link_key_db) return;
log_info("gap_drop_link_key_for_bd_addr: %s", bd_addr_to_str(addr));
hci_stack->link_key_db->delete_link_key(addr);
}
void gap_store_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t type){
if (!hci_stack->link_key_db) return;
log_info("gap_store_link_key_for_bd_addr: %s, type %u", bd_addr_to_str(addr), type);
hci_stack->link_key_db->put_link_key(addr, link_key, type);
}
bool gap_get_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t * type){
if (!hci_stack->link_key_db) return false;
int result = hci_stack->link_key_db->get_link_key(addr, link_key, type) != 0;
log_info("link key for %s available %u, type %u", bd_addr_to_str(addr), result, (int) *type);
return result;
}
void gap_delete_all_link_keys(void){
bd_addr_t addr;
link_key_t link_key;
link_key_type_t type;
btstack_link_key_iterator_t it;
int ok = gap_link_key_iterator_init(&it);
if (!ok) {
log_error("could not initialize iterator");
return;
}
while (gap_link_key_iterator_get_next(&it, addr, link_key, &type)){
gap_drop_link_key_for_bd_addr(addr);
}
gap_link_key_iterator_done(&it);
}
int gap_link_key_iterator_init(btstack_link_key_iterator_t * it){
if (!hci_stack->link_key_db) return 0;
if (!hci_stack->link_key_db->iterator_init) return 0;
return hci_stack->link_key_db->iterator_init(it);
}
int gap_link_key_iterator_get_next(btstack_link_key_iterator_t * it, bd_addr_t bd_addr, link_key_t link_key, link_key_type_t * type){
if (!hci_stack->link_key_db) return 0;
return hci_stack->link_key_db->iterator_get_next(it, bd_addr, link_key, type);
}
void gap_link_key_iterator_done(btstack_link_key_iterator_t * it){
if (!hci_stack->link_key_db) return;
hci_stack->link_key_db->iterator_done(it);
}
#endif
bool hci_is_le_connection_type(bd_addr_type_t address_type){
switch (address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
return true;
default:
return false;
}
}
bool hci_is_le_identity_address_type(bd_addr_type_t address_type){
switch (address_type){
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
return true;
default:
return false;
}
}
static bool hci_is_le_connection(hci_connection_t * connection){
return hci_is_le_connection_type(connection->address_type);
}
/**
* count connections
*/
static int nr_hci_connections(void){
int count = 0;
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL ; it = it->next){
count++;
}
return count;
}
uint16_t hci_number_free_acl_slots_for_connection_type(bd_addr_type_t address_type){
unsigned int num_packets_sent_classic = 0;
unsigned int num_packets_sent_le = 0;
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (hci_is_le_connection(connection)){
num_packets_sent_le += connection->num_packets_sent;
}
if (connection->address_type == BD_ADDR_TYPE_ACL){
num_packets_sent_classic += connection->num_packets_sent;
}
}
log_debug("ACL classic buffers: %u used of %u", num_packets_sent_classic, hci_stack->acl_packets_total_num);
int free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic;
int free_slots_le = 0;
if (free_slots_classic < 0){
log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num);
return 0;
}
if (hci_stack->le_acl_packets_total_num){
// if we have LE slots, they are used
free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le;
if (free_slots_le < 0){
log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num);
return 0;
}
} else {
// otherwise, classic slots are used for LE, too
free_slots_classic -= num_packets_sent_le;
if (free_slots_classic < 0){
log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num);
return 0;
}
}
switch (address_type){
case BD_ADDR_TYPE_UNKNOWN:
log_error("hci_number_free_acl_slots: unknown address type");
return 0;
case BD_ADDR_TYPE_ACL:
return (uint16_t) free_slots_classic;
default:
if (hci_stack->le_acl_packets_total_num > 0){
return (uint16_t) free_slots_le;
}
return (uint16_t) free_slots_classic;
}
}
int hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){
// get connection type
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection){
log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle);
return 0;
}
return hci_number_free_acl_slots_for_connection_type(connection->address_type);
}
#ifdef ENABLE_CLASSIC
static int hci_number_free_sco_slots(void){
unsigned int num_sco_packets_sent = 0;
btstack_linked_item_t *it;
if (hci_stack->synchronous_flow_control_enabled){
// explicit flow control
for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (connection->address_type != BD_ADDR_TYPE_SCO) continue;
num_sco_packets_sent += connection->num_packets_sent;
}
if (num_sco_packets_sent > hci_stack->sco_packets_total_num){
log_info("hci_number_free_sco_slots:packets (%u) > total packets (%u)", num_sco_packets_sent, hci_stack->sco_packets_total_num);
return 0;
}
return hci_stack->sco_packets_total_num - num_sco_packets_sent;
} else {
// implicit flow control
int num_ready = 0;
for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (connection->address_type != BD_ADDR_TYPE_SCO) continue;
if (connection->sco_tx_ready == 0) continue;
num_ready++;
}
return num_ready;
}
}
#endif
// only used to send HCI Host Number Completed Packets
static int hci_can_send_command_packet_transport(void){
if (hci_stack->hci_packet_buffer_reserved) return 0;
// check for async hci transport implementations
if (hci_stack->hci_transport->can_send_packet_now){
if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){
return 0;
}
}
return 1;
}
// new functions replacing hci_can_send_packet_now[_using_packet_buffer]
bool hci_can_send_command_packet_now(void){
if (hci_can_send_command_packet_transport() == 0) return false;
return hci_stack->num_cmd_packets > 0u;
}
static int hci_transport_can_send_prepared_packet_now(uint8_t packet_type){
// check for async hci transport implementations
if (!hci_stack->hci_transport->can_send_packet_now) return true;
return hci_stack->hci_transport->can_send_packet_now(packet_type);
}
static bool hci_can_send_prepared_acl_packet_for_address_type(bd_addr_type_t address_type){
if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return false;
return hci_number_free_acl_slots_for_connection_type(address_type) > 0;
}
bool hci_can_send_acl_le_packet_now(void){
if (hci_stack->hci_packet_buffer_reserved) return false;
return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_LE_PUBLIC);
}
bool hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) {
if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return false;
return hci_number_free_acl_slots_for_handle(con_handle) > 0;
}
bool hci_can_send_acl_packet_now(hci_con_handle_t con_handle){
if (hci_stack->hci_packet_buffer_reserved) return false;
return hci_can_send_prepared_acl_packet_now(con_handle);
}
#ifdef ENABLE_CLASSIC
bool hci_can_send_acl_classic_packet_now(void){
if (hci_stack->hci_packet_buffer_reserved) return false;
return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_ACL);
}
bool hci_can_send_prepared_sco_packet_now(void){
if (!hci_transport_can_send_prepared_packet_now(HCI_SCO_DATA_PACKET)) return false;
if (hci_have_usb_transport()){
return hci_stack->sco_can_send_now;
} else {
return hci_number_free_sco_slots() > 0;
}
}
bool hci_can_send_sco_packet_now(void){
if (hci_stack->hci_packet_buffer_reserved) return false;
return hci_can_send_prepared_sco_packet_now();
}
void hci_request_sco_can_send_now_event(void){
hci_stack->sco_waiting_for_can_send_now = 1;
hci_notify_if_sco_can_send_now();
}
#endif
// used for internal checks in l2cap.c
bool hci_is_packet_buffer_reserved(void){
return hci_stack->hci_packet_buffer_reserved;
}
void hci_reserve_packet_buffer(void){
btstack_assert(hci_stack->hci_packet_buffer_reserved == false);
hci_stack->hci_packet_buffer_reserved = true;
}
void hci_release_packet_buffer(void){
btstack_assert(hci_stack->hci_packet_buffer_reserved);
hci_stack->hci_packet_buffer_reserved = false;
hci_emit_transport_packet_sent();
}
// assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call
static int hci_transport_synchronous(void){
return hci_stack->hci_transport->can_send_packet_now == NULL;
}
// used for debugging
#ifdef ENABLE_CONTROLLER_DUMP_PACKETS
static void hci_controller_dump_packets(void){
// format: "{handle:04x}:{count:02d} "
char summaries[3][7 * 8 + 1];
uint16_t totals[3];
uint8_t index;
for (index = 0 ; index < 3 ; index++){
summaries[index][0] = 0;
totals[index] = 0;
}
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
switch (connection->address_type){
case BD_ADDR_TYPE_ACL:
index = 0;
break;
case BD_ADDR_TYPE_SCO:
index = 2;
break;
default:
index = 1;
break;
}
totals[index] += connection->num_packets_sent;
char item_text[10];
sprintf(item_text, "%04x:%02d ", connection->con_handle,connection->num_packets_sent);
btstack_strcat(summaries[index], sizeof(summaries[0]), item_text);
}
for (index = 0 ; index < 3 ; index++){
if (summaries[index][0] == 0){
summaries[index][0] = '-';
summaries[index][1] = 0;
}
}
log_info("Controller ACL BR/EDR: %s total %u / LE: %s total %u / SCO: %s total %u", summaries[0], totals[0], summaries[1], totals[1], summaries[2], totals[2]);
}
#endif
static uint8_t hci_send_acl_packet_fragments(hci_connection_t *connection){
// log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle);
// max ACL data packet length depends on connection type (LE vs. Classic) and available buffers
uint16_t max_acl_data_packet_length = hci_stack->acl_data_packet_length;
if (hci_is_le_connection(connection) && (hci_stack->le_data_packets_length > 0u)){
max_acl_data_packet_length = hci_stack->le_data_packets_length;
}
#ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS
if (hci_is_le_connection(connection) && (connection->le_max_tx_octets < max_acl_data_packet_length)){
max_acl_data_packet_length = connection->le_max_tx_octets;
}
#endif
log_debug("hci_send_acl_packet_fragments entered");
uint8_t status = ERROR_CODE_SUCCESS;
// multiple packets could be sent on a synchronous HCI transport
while (true){
log_debug("hci_send_acl_packet_fragments loop entered");
// get current data
const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4u;
int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos;
bool more_fragments = false;
// if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length
if (current_acl_data_packet_length > max_acl_data_packet_length){
more_fragments = true;
current_acl_data_packet_length = max_acl_data_packet_length & (~(HCI_ACL_CHUNK_SIZE_ALIGNMENT-1));
}
// copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragment)
if (acl_header_pos > 0u){
uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
handle_and_flags = (handle_and_flags & 0xcfffu) | (1u << 12u);
little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags);
}
// update header len
little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2u, current_acl_data_packet_length);
// count packet
connection->num_packets_sent++;
log_debug("hci_send_acl_packet_fragments loop before send (more fragments %d)", (int) more_fragments);
// update state for next fragment (if any) as "transport done" might be sent during send_packet already
if (more_fragments){
// update start of next fragment to send
hci_stack->acl_fragmentation_pos += current_acl_data_packet_length;
} else {
// done
hci_stack->acl_fragmentation_pos = 0;
hci_stack->acl_fragmentation_total_size = 0;
}
// send packet
uint8_t * packet = &hci_stack->hci_packet_buffer[acl_header_pos];
const int size = current_acl_data_packet_length + 4;
hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size);
hci_stack->acl_fragmentation_tx_active = 1;
int err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size);
if (err != 0){
// no error from HCI Transport expected
status = ERROR_CODE_HARDWARE_FAILURE;
break;
}
#ifdef ENABLE_CONTROLLER_DUMP_PACKETS
hci_controller_dump_packets();
#endif
log_debug("hci_send_acl_packet_fragments loop after send (more fragments %d)", (int) more_fragments);
// done yet?
if (!more_fragments) break;
// can send more?
if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return status;
}
log_debug("hci_send_acl_packet_fragments loop over");
// release buffer now for synchronous transport
if (hci_transport_synchronous()){
hci_stack->acl_fragmentation_tx_active = 0;
hci_release_packet_buffer();
}
return status;
}
// pre: caller has reserved the packet buffer
uint8_t hci_send_acl_packet_buffer(int size){
btstack_assert(hci_stack->hci_packet_buffer_reserved);
uint8_t * packet = hci_stack->hci_packet_buffer;
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet);
hci_connection_t *connection = hci_connection_for_handle( con_handle);
if (!connection) {
log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle);
hci_release_packet_buffer();
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
// check for free places on Bluetooth module
if (!hci_can_send_prepared_acl_packet_now(con_handle)) {
log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller");
hci_release_packet_buffer();
return BTSTACK_ACL_BUFFERS_FULL;
}
#ifdef ENABLE_CLASSIC
hci_connection_timestamp(connection);
#endif
// hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size);
// setup data
hci_stack->acl_fragmentation_total_size = size;
hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet
return hci_send_acl_packet_fragments(connection);
}
#ifdef ENABLE_CLASSIC
// pre: caller has reserved the packet buffer
uint8_t hci_send_sco_packet_buffer(int size){
btstack_assert(hci_stack->hci_packet_buffer_reserved);
uint8_t * packet = hci_stack->hci_packet_buffer;
// skip checks in loopback mode
if (!hci_stack->loopback_mode){
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); // same for ACL and SCO
// check for free places on Bluetooth module
if (!hci_can_send_prepared_sco_packet_now()) {
log_error("hci_send_sco_packet_buffer called but no free SCO buffers on controller");
hci_release_packet_buffer();
return BTSTACK_ACL_BUFFERS_FULL;
}
// track send packet in connection struct
hci_connection_t *connection = hci_connection_for_handle( con_handle);
if (!connection) {
log_error("hci_send_sco_packet_buffer called but no connection for handle 0x%04x", con_handle);
hci_release_packet_buffer();
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
if (hci_have_usb_transport()){
// token used
hci_stack->sco_can_send_now = false;
} else {
if (hci_stack->synchronous_flow_control_enabled){
connection->num_packets_sent++;
} else {
connection->sco_tx_ready--;
}
}
}
hci_dump_packet( HCI_SCO_DATA_PACKET, 0, packet, size);
#ifdef HAVE_SCO_TRANSPORT
hci_stack->sco_transport->send_packet(packet, size);
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
return 0;
#else
int err = hci_stack->hci_transport->send_packet(HCI_SCO_DATA_PACKET, packet, size);
uint8_t status;
if (err == 0){
status = ERROR_CODE_SUCCESS;
} else {
status = ERROR_CODE_HARDWARE_FAILURE;
}
if ((status != ERROR_CODE_SUCCESS) || hci_transport_synchronous()){
hci_release_packet_buffer();
}
return status;
#endif
}
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
static uint8_t hci_send_iso_packet_fragments(void){
uint16_t max_iso_data_packet_length = hci_stack->le_iso_packets_length;
uint8_t status = ERROR_CODE_SUCCESS;
// multiple packets could be send on a synchronous HCI transport
while (true){
// get current data
const uint16_t iso_header_pos = hci_stack->iso_fragmentation_pos - 4u;
int current_iso_data_packet_length = hci_stack->iso_fragmentation_total_size - hci_stack->iso_fragmentation_pos;
bool more_fragments = false;
// if ISO packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length
if (current_iso_data_packet_length > max_iso_data_packet_length){
more_fragments = true;
current_iso_data_packet_length = max_iso_data_packet_length;
}
// copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent)
uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
uint8_t pb_flags;
if (iso_header_pos == 0u){
// first fragment, keep TS field
pb_flags = more_fragments ? 0x00 : 0x02;
handle_and_flags = (handle_and_flags & 0x4fffu) | (pb_flags << 12u);
} else {
// later fragment, drop TS field
pb_flags = more_fragments ? 0x01 : 0x03;
handle_and_flags = (handle_and_flags & 0x0fffu) | (pb_flags << 12u);
}
little_endian_store_16(hci_stack->hci_packet_buffer, iso_header_pos, handle_and_flags);
// update header len
little_endian_store_16(hci_stack->hci_packet_buffer, iso_header_pos + 2u, current_iso_data_packet_length);
// update state for next fragment (if any) as "transport done" might be sent during send_packet already
if (more_fragments){
// update start of next fragment to send
hci_stack->iso_fragmentation_pos += current_iso_data_packet_length;
} else {
// done
hci_stack->iso_fragmentation_pos = 0;
hci_stack->iso_fragmentation_total_size = 0;
}
// send packet
uint8_t * packet = &hci_stack->hci_packet_buffer[iso_header_pos];
const int size = current_iso_data_packet_length + 4;
hci_dump_packet(HCI_ISO_DATA_PACKET, 0, packet, size);
hci_stack->iso_fragmentation_tx_active = true;
int err = hci_stack->hci_transport->send_packet(HCI_ISO_DATA_PACKET, packet, size);
if (err != 0){
// no error from HCI Transport expected
status = ERROR_CODE_HARDWARE_FAILURE;
}
// done yet?
if (!more_fragments) break;
// can send more?
if (!hci_transport_can_send_prepared_packet_now(HCI_ISO_DATA_PACKET)) return false;
}
// release buffer now for synchronous transport
if (hci_transport_synchronous()){
hci_stack->iso_fragmentation_tx_active = false;
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
}
return status;
}
uint8_t hci_send_iso_packet_buffer(uint16_t size){
btstack_assert(hci_stack->hci_packet_buffer_reserved);
hci_con_handle_t con_handle = (hci_con_handle_t) little_endian_read_16(hci_stack->hci_packet_buffer, 0) & 0xfff;
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(con_handle);
if (iso_stream == NULL){
hci_release_packet_buffer();
hci_iso_notify_can_send_now();
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
// TODO: check for space on controller
// skip iso packets if needed
if (iso_stream->num_packets_to_skip > 0){
iso_stream->num_packets_to_skip--;
// pretend it was processed and trigger next one
hci_release_packet_buffer();
hci_iso_notify_can_send_now();
return ERROR_CODE_SUCCESS;
}
// track outgoing packet sent
log_info("Outgoing ISO packet for con handle 0x%04x", con_handle);
iso_stream->num_packets_sent++;
// setup data
hci_stack->iso_fragmentation_total_size = size;
hci_stack->iso_fragmentation_pos = 4; // start of L2CAP packet
return hci_send_iso_packet_fragments();
}
#endif
static void acl_handler(uint8_t *packet, uint16_t size){
// get info
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet);
hci_connection_t *conn = hci_connection_for_handle(con_handle);
uint8_t acl_flags = READ_ACL_FLAGS(packet);
uint16_t acl_length = READ_ACL_LENGTH(packet);
// ignore non-registered handle
if (!conn){
log_error("acl_handler called with non-registered handle %u!" , con_handle);
return;
}
// assert packet is complete
if ((acl_length + 4u) != size){
log_error("acl_handler called with ACL packet of wrong size %d, expected %u => dropping packet", size, acl_length + 4);
return;
}
#ifdef ENABLE_CLASSIC
// update idle timestamp
hci_connection_timestamp(conn);
#endif
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
hci_stack->host_completed_packets = 1;
conn->num_packets_completed++;
#endif
// handle different packet types
switch (acl_flags & 0x03u) {
case 0x01: // continuation fragment
// sanity checks
if (conn->acl_recombination_pos == 0u) {
log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle);
return;
}
if ((conn->acl_recombination_pos + acl_length) > (4u + HCI_ACL_BUFFER_SIZE)){
log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x",
conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle);
conn->acl_recombination_pos = 0;
return;
}
// append fragment payload (header already stored)
(void)memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos],
&packet[4], acl_length);
conn->acl_recombination_pos += acl_length;
// forward complete L2CAP packet if complete.
if (conn->acl_recombination_pos >= (conn->acl_recombination_length + 4u + 4u)){ // pos already incl. ACL header
hci_emit_acl_packet(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos);
// reset recombination buffer
conn->acl_recombination_length = 0;
conn->acl_recombination_pos = 0;
}
break;
case 0x02: { // first fragment
// sanity check
if (conn->acl_recombination_pos) {
// we just received the first fragment, but still have data. Only warn if the packet wasn't a flushable packet
if ((conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE+1] >> 4) != 0x02){
log_error( "ACL First Fragment but %u bytes in buffer for handle 0x%02x, dropping stale fragments", conn->acl_recombination_pos, con_handle);
}
conn->acl_recombination_pos = 0;
}
// peek into L2CAP packet!
uint16_t l2cap_length = READ_L2CAP_LENGTH( packet );
// compare fragment size to L2CAP packet size
if (acl_length >= (l2cap_length + 4u)){
// forward fragment as L2CAP packet
hci_emit_acl_packet(packet, l2cap_length + 8u);
} else {
if (acl_length > HCI_ACL_BUFFER_SIZE){
log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x",
4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle);
return;
}
// store first fragment and tweak acl length for complete package
(void)memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE],
packet, acl_length + 4u);
conn->acl_recombination_pos = acl_length + 4u;
conn->acl_recombination_length = l2cap_length;
little_endian_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2u, l2cap_length +4u);
}
break;
}
default:
log_error( "acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03);
return;
}
// execute main loop
hci_run();
}
static void hci_connection_stop_timer(hci_connection_t * conn){
btstack_run_loop_remove_timer(&conn->timeout);
#ifdef ENABLE_CLASSIC
btstack_run_loop_remove_timer(&conn->timeout_sco);
#endif
}
static void hci_shutdown_connection(hci_connection_t *conn){
log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address));
#ifdef ENABLE_CLASSIC
#if defined(ENABLE_SCO_OVER_HCI) || defined(HAVE_SCO_TRANSPORT)
bd_addr_type_t addr_type = conn->address_type;
#endif
#ifdef HAVE_SCO_TRANSPORT
hci_con_handle_t con_handle = conn->con_handle;
#endif
#endif
hci_connection_stop_timer(conn);
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
// now it's gone
hci_emit_nr_connections_changed();
#ifdef ENABLE_CLASSIC
#ifdef ENABLE_SCO_OVER_HCI
// update SCO
if ((addr_type == BD_ADDR_TYPE_SCO) && (hci_stack->hci_transport != NULL) && (hci_stack->hci_transport->set_sco_config != NULL)){
hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections());
}
#endif
#ifdef HAVE_SCO_TRANSPORT
if ((addr_type == BD_ADDR_TYPE_SCO) && (hci_stack->sco_transport != NULL)){
hci_stack->sco_transport->close(con_handle);
}
#endif
#endif
}
#ifdef ENABLE_CLASSIC
static const uint16_t hci_acl_packet_type_sizes[] = {
0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE,
HCI_ACL_DH1_SIZE, 0, 0, 0,
HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE,
HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE
};
static const uint8_t hci_acl_packet_type_feature_requirement_bit[] = {
0, // 3 slot packets
1, // 5 slot packets
25, // EDR 2 mpbs
26, // EDR 3 mbps
39, // 3 slot EDR packtes
40, // 5 slot EDR packet
};
static const uint16_t hci_acl_packet_type_feature_packet_mask[] = {
0x0f00, // 3 slot packets
0xf000, // 5 slot packets
0x1102, // EDR 2 mpbs
0x2204, // EDR 3 mbps
0x0300, // 3 slot EDR packtes
0x3000, // 5 slot EDR packet
};
static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){
// enable packet types based on size
uint16_t packet_types = 0;
unsigned int i;
for (i=0;i<16;i++){
if (hci_acl_packet_type_sizes[i] == 0) continue;
if (hci_acl_packet_type_sizes[i] <= buffer_size){
packet_types |= 1 << i;
}
}
// disable packet types due to missing local supported features
for (i=0;i<sizeof(hci_acl_packet_type_feature_requirement_bit); i++){
unsigned int bit_idx = hci_acl_packet_type_feature_requirement_bit[i];
int feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0;
if (feature_set) continue;
log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, hci_acl_packet_type_feature_packet_mask[i]);
packet_types &= ~hci_acl_packet_type_feature_packet_mask[i];
}
return packet_types;
}
uint16_t hci_usable_acl_packet_types(void){
uint16_t active_packet_types = (hci_stack->usable_packet_types_acl & hci_stack->enabled_packet_types_acl);
// flip bits for "may not be used"
return active_packet_types ^ 0x3306;
}
void hci_enable_acl_packet_types(uint16_t packet_types){
hci_stack->enabled_packet_types_acl = packet_types;
}
static const struct {
uint8_t feature_index;
uint16_t feature_packet_mask;
} hci_sco_packet_type_feature_requirements[] = {
{ 12, SCO_PACKET_TYPES_HV2 }, // HV2 packets
{ 13, SCO_PACKET_TYPES_HV3 }, // HV3 packets
{ 31, SCO_PACKET_TYPES_ESCO }, // eSCO links (EV3 packets)
{ 32, SCO_PACKET_TYPES_EV4 }, // EV4 packets
{ 45, SCO_PACKET_TYPES_2EV3 | SCO_PACKET_TYPES_2EV5 }, // EDR eSCO 2 Mb/s
{ 46, SCO_PACKET_TYPES_3EV3 | SCO_PACKET_TYPES_3EV5 }, // EDR eSCO 3 Mb/s
{ 47, SCO_PACKET_TYPES_2EV5 | SCO_PACKET_TYPES_3EV5 }, // 3-slot EDR eSCO packets, 2-EV3/3-EV3 use single slot
};
// map packet types to payload length, prefer eSCO over SCO and large over small packets
static const struct {
uint16_t type;
uint16_t payload_length;
} hci_sco_packet_type_to_payload_length[] = {
{SCO_PACKET_TYPES_3EV5, HCI_SCO_3EV5_SIZE}, // 540
{SCO_PACKET_TYPES_2EV5, HCI_SCO_2EV5_SIZE}, // 360
{SCO_PACKET_TYPES_EV5, HCI_SCO_EV5_SIZE}, // 180
{SCO_PACKET_TYPES_EV4, HCI_SCO_EV4_SIZE}, // 120
{SCO_PACKET_TYPES_3EV3, HCI_SCO_3EV3_SIZE}, // 90
{SCO_PACKET_TYPES_2EV3, HCI_SCO_2EV3_SIZE}, // 60
{SCO_PACKET_TYPES_EV3, HCI_SCO_EV3_SIZE}, // 30
{SCO_PACKET_TYPES_HV3, HCI_SCO_HV3_SIZE}, // 30
{SCO_PACKET_TYPES_HV2, HCI_SCO_HV2_SIZE}, // 20
{SCO_PACKET_TYPES_HV1, HCI_SCO_HV1_SIZE} // 10
};
static uint16_t hci_sco_packet_types_for_features(const uint8_t * local_supported_features){
uint16_t packet_types = SCO_PACKET_TYPES_ALL;
unsigned int i;
// disable packet types due to missing local supported features
for (i=0;i<(sizeof(hci_sco_packet_type_feature_requirements)/sizeof(hci_sco_packet_type_feature_requirements[0])); i++){
unsigned int bit_idx = hci_sco_packet_type_feature_requirements[i].feature_index;
bool feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0;
if (feature_set) continue;
log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, hci_sco_packet_type_feature_requirements[i].feature_packet_mask);
packet_types &= ~hci_sco_packet_type_feature_requirements[i].feature_packet_mask;
}
return packet_types;
}
uint16_t hci_usable_sco_packet_types(void){
return hci_stack->usable_packet_types_sco;
}
static uint16_t hci_sco_payload_length_for_packet_types(uint16_t packet_types){
uint8_t i;
for (i=0;i<sizeof(hci_sco_packet_type_to_payload_length)/sizeof(hci_sco_packet_type_to_payload_length[0]);i++){
if ((hci_sco_packet_type_to_payload_length[i].type & packet_types) != 0){
return hci_sco_packet_type_to_payload_length[i].payload_length;
}
}
return 0;
}
#endif
uint8_t* hci_get_outgoing_packet_buffer(void){
// hci packet buffer is >= acl data packet length
return hci_stack->hci_packet_buffer;
}
uint16_t hci_max_acl_data_packet_length(void){
return hci_stack->acl_data_packet_length;
}
#ifdef ENABLE_CLASSIC
bool hci_extended_sco_link_supported(void){
// No. 31, byte 3, bit 7
return (hci_stack->local_supported_features[3] & (1 << 7)) != 0;
}
#endif
bool hci_non_flushable_packet_boundary_flag_supported(void){
// No. 54, byte 6, bit 6
return (hci_stack->local_supported_features[6u] & (1u << 6u)) != 0u;
}
#ifdef ENABLE_CLASSIC
static bool gap_ssp_supported(void){
// No. 51, byte 6, bit 3
return (hci_stack->local_supported_features[6u] & (1u << 3u)) != 0u;
}
#endif
bool hci_classic_supported(void){
#ifdef ENABLE_CLASSIC
// No. 37, byte 4, bit 5, = No BR/EDR Support
return (hci_stack->local_supported_features[4] & (1 << 5)) == 0;
#else
return false;
#endif
}
bool hci_le_supported(void){
#ifdef ENABLE_BLE
// No. 37, byte 4, bit 6 = LE Supported (Controller)
return (hci_stack->local_supported_features[4u] & (1u << 6u)) != 0u;
#else
return false;
#endif
}
static bool hci_command_supported(uint8_t command_index){
return (hci_stack->local_supported_commands & (1LU << command_index)) != 0;
}
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
bool hci_le_extended_advertising_supported(void){
return hci_command_supported(SUPPORTED_HCI_COMMAND_LE_SET_EXTENDED_ADVERTISING_ENABLE);
}
#endif
static void hci_get_own_address_for_addr_type(uint8_t own_addr_type, bd_addr_t own_addr){
if (own_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
(void)memcpy(own_addr, hci_stack->local_bd_addr, 6);
} else {
(void)memcpy(own_addr, hci_stack->le_random_address, 6);
}
}
void gap_le_get_own_address(uint8_t * addr_type, bd_addr_t addr){
*addr_type = hci_stack->le_own_addr_type;
hci_get_own_address_for_addr_type(hci_stack->le_own_addr_type, addr);
}
#ifdef ENABLE_LE_PERIPHERAL
void gap_le_get_own_advertisements_address(uint8_t * addr_type, bd_addr_t addr){
*addr_type = hci_stack->le_advertisements_own_addr_type;
hci_get_own_address_for_addr_type(hci_stack->le_advertisements_own_addr_type, addr);
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
void gap_le_get_own_advertising_set_address(uint8_t * addr_type, bd_addr_t addr, uint8_t advertising_handle){
if (advertising_handle == 0){
gap_le_get_own_advertisements_address(addr_type, addr);
} else {
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set != NULL){
switch (advertising_set->extended_params.own_address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
*addr_type = BD_ADDR_TYPE_LE_PUBLIC;
memcpy(addr, hci_stack->local_bd_addr, 6);
break;
case BD_ADDR_TYPE_LE_RANDOM:
*addr_type = BD_ADDR_TYPE_LE_RANDOM;
memcpy(addr, advertising_set->random_address, 6);
break;
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
// do nothing as random address was already set from enhanced connection complete
break;
default:
break;
}
}
}
}
#endif
#endif
#ifdef ENABLE_LE_CENTRAL
/**
* @brief Get own addr type and address used for LE connections (Central)
*/
void gap_le_get_own_connection_address(uint8_t * addr_type, bd_addr_t addr){
*addr_type = hci_stack->le_connection_own_addr_type;
hci_get_own_address_for_addr_type(hci_stack->le_connection_own_addr_type, addr);
}
void le_handle_advertisement_report(uint8_t *packet, uint16_t size){
uint16_t offset = 3;
uint8_t num_reports = packet[offset];
offset += 1;
uint16_t i;
uint8_t event[12 + LE_ADVERTISING_DATA_SIZE]; // use upper bound to avoid var size automatic var
for (i=0; (i<num_reports) && (offset < size);i++){
// sanity checks on data_length:
uint8_t data_length = packet[offset + 8];
if (data_length > LE_ADVERTISING_DATA_SIZE) return;
if ((offset + 9u + data_length + 1u) > size) return;
// setup event
uint8_t event_size = 10u + data_length;
uint16_t pos = 0;
event[pos++] = GAP_EVENT_ADVERTISING_REPORT;
event[pos++] = event_size;
(void)memcpy(&event[pos], &packet[offset], 1 + 1 + 6); // event type + address type + address
offset += 8;
pos += 8;
event[pos++] = packet[offset + 1 + data_length]; // rssi
event[pos++] = data_length;
offset++;
(void)memcpy(&event[pos], &packet[offset], data_length);
pos += data_length;
offset += data_length + 1u; // rssi
hci_emit_btstack_event(event, pos, 1);
}
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static void le_handle_extended_advertisement_report(uint8_t *packet, uint16_t size) {
uint16_t offset = 3;
uint8_t num_reports = packet[offset++];
uint8_t event[2 + 255]; // use upper bound to avoid var size automatic var
uint8_t i;
for (i=0; (i<num_reports) && (offset < size);i++){
// sanity checks on data_length:
uint16_t data_length = packet[offset + 23];
if (data_length > LE_EXTENDED_ADVERTISING_DATA_SIZE) return;
if ((offset + 24u + data_length) > size) return;
uint16_t event_type = little_endian_read_16(packet, offset);
offset += 2;
if ((event_type & 0x10) != 0) {
// setup legacy event
uint8_t legacy_event_type;
switch (event_type){
case 0x13: // 0b0010011
// ADV_IND
legacy_event_type = 0;
break;
case 0x15: // 0b0010101
// ADV_DIRECT_IND
legacy_event_type = 1;
break;
case 0x12: // 0b0010010
// ADV_SCAN_IND
legacy_event_type = 2;
break;
case 0x10: // 0b0010000:
// ADV_NONCONN_IND
legacy_event_type = 3;
break;
case 0x1B: // 0b0011011
case 0x1A: // 0b0011010
// SCAN_RSP
legacy_event_type = 4;
break;
default:
legacy_event_type = 0;
break;
}
uint16_t pos = 0;
event[pos++] = GAP_EVENT_ADVERTISING_REPORT;
event[pos++] = 10u + data_length;
event[pos++] = legacy_event_type;
// copy address type + address
(void) memcpy(&event[pos], &packet[offset], 1 + 6);
offset += 7;
pos += 7;
// skip primary_phy, secondary_phy, advertising_sid, tx_power
offset += 4;
// copy rssi
event[pos++] = packet[offset++];
// skip periodic advertising interval and direct address
offset += 9;
// copy data len + data;
(void) memcpy(&event[pos], &packet[offset], 1 + data_length);
pos += 1 +data_length;
offset += 1+ data_length;
hci_emit_btstack_event(event, pos, 1);
} else {
event[0] = GAP_EVENT_EXTENDED_ADVERTISING_REPORT;
uint8_t report_len = 24 + data_length;
event[1] = report_len;
little_endian_store_16(event, 2, event_type);
memcpy(&event[4], &packet[offset], report_len);
offset += report_len;
hci_emit_btstack_event(event, 2 + report_len, 1);
}
}
}
#endif
#endif
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_PERIPHERAL
static void hci_update_advertisements_enabled_for_current_roles(void){
if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ENABLED) != 0){
// get number of active le slave connections
int num_slave_connections = 0;
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
log_info("state %u, role %u, le_con %u", con->state, con->role, hci_is_le_connection(con));
if (con->state != OPEN) continue;
if (con->role != HCI_ROLE_SLAVE) continue;
if (!hci_is_le_connection(con)) continue;
num_slave_connections++;
}
log_info("Num LE Peripheral roles: %u of %u", num_slave_connections, hci_stack->le_max_number_peripheral_connections);
hci_stack->le_advertisements_enabled_for_current_roles = num_slave_connections < hci_stack->le_max_number_peripheral_connections;
} else {
hci_stack->le_advertisements_enabled_for_current_roles = false;
}
}
#endif
#endif
#ifdef ENABLE_CLASSIC
static void gap_run_set_local_name(void){
hci_reserve_packet_buffer();
uint8_t * packet = hci_stack->hci_packet_buffer;
// construct HCI Command and send
uint16_t opcode = hci_write_local_name.opcode;
packet[0] = opcode & 0xff;
packet[1] = opcode >> 8;
packet[2] = DEVICE_NAME_LEN;
memset(&packet[3], 0, DEVICE_NAME_LEN);
uint16_t name_len = (uint16_t) strlen(hci_stack->local_name);
uint16_t bytes_to_copy = btstack_min(name_len, DEVICE_NAME_LEN);
// if shorter than DEVICE_NAME_LEN, it's implicitly NULL-terminated by memset call
(void)memcpy(&packet[3], hci_stack->local_name, bytes_to_copy);
// expand '00:00:00:00:00:00' in name with bd_addr
btstack_replace_bd_addr_placeholder(&packet[3], bytes_to_copy, hci_stack->local_bd_addr);
hci_send_prepared_cmd_packet();
}
static void gap_run_set_eir_data(void){
hci_reserve_packet_buffer();
uint8_t * packet = hci_stack->hci_packet_buffer;
// construct HCI Command in-place and send
uint16_t opcode = hci_write_extended_inquiry_response.opcode;
uint16_t offset = 0;
packet[offset++] = opcode & 0xff;
packet[offset++] = opcode >> 8;
packet[offset++] = 1 + EXTENDED_INQUIRY_RESPONSE_DATA_LEN;
packet[offset++] = 0; // FEC not required
memset(&packet[offset], 0, EXTENDED_INQUIRY_RESPONSE_DATA_LEN);
if (hci_stack->eir_data){
// copy items and expand '00:00:00:00:00:00' in name with bd_addr
ad_context_t context;
for (ad_iterator_init(&context, EXTENDED_INQUIRY_RESPONSE_DATA_LEN, hci_stack->eir_data) ; ad_iterator_has_more(&context) ; ad_iterator_next(&context)) {
uint8_t data_type = ad_iterator_get_data_type(&context);
uint8_t size = ad_iterator_get_data_len(&context);
const uint8_t *data = ad_iterator_get_data(&context);
// copy item
packet[offset++] = size + 1;
packet[offset++] = data_type;
memcpy(&packet[offset], data, size);
// update name item
if ((data_type == BLUETOOTH_DATA_TYPE_SHORTENED_LOCAL_NAME) || (data_type == BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME)){
btstack_replace_bd_addr_placeholder(&packet[offset], size, hci_stack->local_bd_addr);
}
offset += size;
}
} else {
uint16_t name_len = (uint16_t) strlen(hci_stack->local_name);
uint16_t bytes_to_copy = btstack_min(name_len, EXTENDED_INQUIRY_RESPONSE_DATA_LEN - 2);
packet[offset++] = bytes_to_copy + 1;
packet[offset++] = BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME;
(void)memcpy(&packet[6], hci_stack->local_name, bytes_to_copy);
// expand '00:00:00:00:00:00' in name with bd_addr
btstack_replace_bd_addr_placeholder(&packet[offset], bytes_to_copy, hci_stack->local_bd_addr);
}
hci_send_prepared_cmd_packet();
}
static void hci_run_gap_tasks_classic(void){
if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_CLASS_OF_DEVICE) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_CLASS_OF_DEVICE;
hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device);
return;
}
if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_LOCAL_NAME) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_LOCAL_NAME;
gap_run_set_local_name();
return;
}
if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_EIR_DATA) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_EIR_DATA;
gap_run_set_eir_data();
return;
}
if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_DEFAULT_LINK_POLICY) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_DEFAULT_LINK_POLICY;
hci_send_cmd(&hci_write_default_link_policy_setting, hci_stack->default_link_policy_settings);
return;
}
// write page scan activity
if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_PAGE_SCAN_ACTIVITY) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_PAGE_SCAN_ACTIVITY;
hci_send_cmd(&hci_write_page_scan_activity, hci_stack->new_page_scan_interval, hci_stack->new_page_scan_window);
return;
}
// write page scan type
if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_PAGE_SCAN_TYPE) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_PAGE_SCAN_TYPE;
hci_send_cmd(&hci_write_page_scan_type, hci_stack->new_page_scan_type);
return;
}
// write page timeout
if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_PAGE_TIMEOUT) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_PAGE_TIMEOUT;
hci_send_cmd(&hci_write_page_timeout, hci_stack->page_timeout);
return;
}
// send scan enable
if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_SCAN_ENABLE) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_SCAN_ENABLE;
hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value);
return;
}
// send write scan activity
if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_INQUIRY_SCAN_ACTIVITY) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_INQUIRY_SCAN_ACTIVITY;
hci_send_cmd(&hci_write_inquiry_scan_activity, hci_stack->inquiry_scan_interval, hci_stack->inquiry_scan_window);
return;
}
// send write inquiry transmit power level
if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_INQUIRY_TX_POWER_LEVEL) != 0) {
hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_INQUIRY_TX_POWER_LEVEL;
hci_send_cmd(&hci_write_inquiry_transmit_power_level, hci_stack->inquiry_tx_power_level);
return;
}
}
#endif
#ifndef HAVE_HOST_CONTROLLER_API
static uint32_t hci_transport_uart_get_main_baud_rate(void){
if (!hci_stack->config) return 0;
uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main;
return baud_rate;
}
static void hci_initialization_timeout_handler(btstack_timer_source_t * ds){
UNUSED(ds);
switch (hci_stack->substate){
case HCI_INIT_W4_SEND_RESET:
log_info("Resend HCI Reset");
hci_stack->substate = HCI_INIT_SEND_RESET;
hci_stack->num_cmd_packets = 1;
hci_run();
break;
case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET:
log_info("Resend HCI Reset - CSR Warm Boot with Link Reset");
if (hci_stack->hci_transport->reset_link){
hci_stack->hci_transport->reset_link();
}
/* fall through */
case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT:
log_info("Resend HCI Reset - CSR Warm Boot");
hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT;
hci_stack->num_cmd_packets = 1;
hci_run();
break;
case HCI_INIT_W4_SEND_BAUD_CHANGE:
if (hci_stack->hci_transport->set_baudrate){
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
log_info("Local baud rate change to %" PRIu32 "(timeout handler)", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
// For CSR, HCI Reset is sent on new baud rate. Don't forget to reset link for H5/BCSP
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){
if (hci_stack->hci_transport->reset_link){
log_info("Link Reset");
hci_stack->hci_transport->reset_link();
}
hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT;
hci_run();
}
break;
case HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY:
// otherwise continue
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS;
hci_send_cmd(&hci_read_local_supported_commands);
break;
default:
break;
}
}
#endif
static void hci_initializing_next_state(void){
hci_stack->substate = (hci_substate_t )( ((int) hci_stack->substate) + 1);
}
static void hci_init_done(void){
// done. tell the app
log_info("hci_init_done -> HCI_STATE_WORKING");
hci_stack->state = HCI_STATE_WORKING;
hci_emit_state();
}
// assumption: hci_can_send_command_packet_now() == true
static void hci_initializing_run(void){
log_debug("hci_initializing_run: substate %u, can send %u", hci_stack->substate, hci_can_send_command_packet_now());
if (!hci_can_send_command_packet_now()) return;
#ifndef HAVE_HOST_CONTROLLER_API
bool need_baud_change = hci_stack->config
&& hci_stack->chipset
&& hci_stack->chipset->set_baudrate_command
&& hci_stack->hci_transport->set_baudrate
&& ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main;
#endif
switch (hci_stack->substate){
case HCI_INIT_SEND_RESET:
hci_state_reset();
#ifndef HAVE_HOST_CONTROLLER_API
// prepare reset if command complete not received in 100ms
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
#endif
// send command
hci_stack->substate = HCI_INIT_W4_SEND_RESET;
hci_send_cmd(&hci_reset);
break;
case HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION:
hci_send_cmd(&hci_read_local_version_information);
hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION;
break;
#ifndef HAVE_HOST_CONTROLLER_API
case HCI_INIT_SEND_RESET_CSR_WARM_BOOT:
hci_state_reset();
// prepare reset if command complete not received in 100ms
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
// send command
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT;
hci_send_cmd(&hci_reset);
break;
case HCI_INIT_SEND_RESET_ST_WARM_BOOT:
hci_state_reset();
hci_stack->substate = HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT;
hci_send_cmd(&hci_reset);
break;
case HCI_INIT_SEND_BAUD_CHANGE_BCM: {
hci_reserve_packet_buffer();
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer);
hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE_BCM;
hci_send_prepared_cmd_packet();
break;
}
case HCI_INIT_SET_BD_ADDR:
hci_reserve_packet_buffer();
log_info("Set Public BD ADDR to %s", bd_addr_to_str(hci_stack->custom_bd_addr));
hci_stack->chipset->set_bd_addr_command(hci_stack->custom_bd_addr, hci_stack->hci_packet_buffer);
hci_stack->substate = HCI_INIT_W4_SET_BD_ADDR;
hci_send_prepared_cmd_packet();
break;
case HCI_INIT_SEND_READ_LOCAL_NAME:
#ifdef ENABLE_CLASSIC
hci_send_cmd(&hci_read_local_name);
hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_NAME;
break;
#endif
/* fall through */
case HCI_INIT_SEND_BAUD_CHANGE:
if (need_baud_change) {
hci_reserve_packet_buffer();
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer);
hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE;
hci_send_prepared_cmd_packet();
// STLC25000D: baudrate change happens within 0.5 s after command was send,
// use timer to update baud rate after 100 ms (knowing exactly, when command was sent is non-trivial)
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS){
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_add_timer(&hci_stack->timeout);
}
break;
}
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
/* fall through */
case HCI_INIT_CUSTOM_INIT:
case HCI_INIT_CUSTOM_PRE_INIT:
// Custom initialization
if (hci_stack->chipset && hci_stack->chipset->next_command){
hci_reserve_packet_buffer();
hci_stack->chipset_result = (*hci_stack->chipset->next_command)(hci_stack->hci_packet_buffer);
bool send_cmd = false;
switch (hci_stack->chipset_result){
case BTSTACK_CHIPSET_VALID_COMMAND:
send_cmd = true;
switch (hci_stack->substate){
case HCI_INIT_CUSTOM_INIT:
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT;
break;
case HCI_INIT_CUSTOM_PRE_INIT:
hci_stack->substate = HCI_INIT_W4_CUSTOM_PRE_INIT;
break;
default:
btstack_assert(false);
break;
}
break;
case BTSTACK_CHIPSET_WARMSTART_REQUIRED:
send_cmd = true;
// CSR Warm Boot: Wait a bit, then send HCI Reset until HCI Command Complete
log_info("CSR Warm Boot");
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO)
&& hci_stack->config
&& hci_stack->chipset
// && hci_stack->chipset->set_baudrate_command -- there's no such command
&& hci_stack->hci_transport->set_baudrate
&& hci_transport_uart_get_main_baud_rate()){
hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE;
} else {
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET;
}
break;
default:
break;
}
if (send_cmd){
hci_send_prepared_cmd_packet();
break;
} else {
hci_release_packet_buffer();
}
log_info("Init script done");
// Custom Pre-Init complete, start regular init with HCI Reset
if (hci_stack->substate == HCI_INIT_CUSTOM_PRE_INIT){
hci_stack->substate = HCI_INIT_W4_SEND_RESET;
hci_send_cmd(&hci_reset);
break;
}
// Init script download on Broadcom chipsets causes:
if ( (hci_stack->chipset_result != BTSTACK_CHIPSET_NO_INIT_SCRIPT) &&
( (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)
|| (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA)) ){
// - baud rate to reset, restore UART baud rate if needed
if (need_baud_change) {
uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_init;
log_info("Local baud rate change to %" PRIu32 " after init script (bcm)", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
uint16_t bcm_delay_ms = 300;
// - UART may or may not be disabled during update and Controller RTS may or may not be high during this time
// -> Work around: wait here.
log_info("BCM delay (%u ms) after init script", bcm_delay_ms);
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY;
btstack_run_loop_set_timer(&hci_stack->timeout, bcm_delay_ms);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
break;
}
}
#endif
/* fall through */
case HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS:
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS;
hci_send_cmd(&hci_read_local_supported_commands);
break;
case HCI_INIT_READ_BD_ADDR:
hci_stack->substate = HCI_INIT_W4_READ_BD_ADDR;
hci_send_cmd(&hci_read_bd_addr);
break;
case HCI_INIT_READ_BUFFER_SIZE:
// only read buffer size if supported
if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_BUFFER_SIZE)){
hci_stack->substate = HCI_INIT_W4_READ_BUFFER_SIZE;
hci_send_cmd(&hci_read_buffer_size);
break;
}
/* fall through */
case HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES:
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_FEATURES;
hci_send_cmd(&hci_read_local_supported_features);
break;
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
case HCI_INIT_SET_CONTROLLER_TO_HOST_FLOW_CONTROL:
hci_stack->substate = HCI_INIT_W4_SET_CONTROLLER_TO_HOST_FLOW_CONTROL;
hci_send_cmd(&hci_set_controller_to_host_flow_control, 3); // ACL + SCO Flow Control
break;
case HCI_INIT_HOST_BUFFER_SIZE:
hci_stack->substate = HCI_INIT_W4_HOST_BUFFER_SIZE;
hci_send_cmd(&hci_host_buffer_size, HCI_HOST_ACL_PACKET_LEN, HCI_HOST_SCO_PACKET_LEN,
HCI_HOST_ACL_PACKET_NUM, HCI_HOST_SCO_PACKET_NUM);
break;
#endif
case HCI_INIT_SET_EVENT_MASK:
hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK;
if (hci_le_supported()){
hci_send_cmd(&hci_set_event_mask,0xFFFFFFFFU, 0x3FFFFFFFU);
} else {
// Kensington Bluetooth 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff...
hci_send_cmd(&hci_set_event_mask,0xFFFFFFFFU, 0x1FFFFFFFU);
}
break;
case HCI_INIT_SET_EVENT_MASK_2:
// On Bluetooth PTS dongle (BL 654) with PacketCraft HCI Firmware (LMP subversion) 0x5244,
// setting Event Mask 2 causes Controller to drop Encryption Change events.
if (hci_command_supported(SUPPORTED_HCI_COMMAND_SET_EVENT_MASK_PAGE_2)
&& (hci_stack->manufacturer != BLUETOOTH_COMPANY_ID_PACKETCRAFT_INC)){
hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK_2;
// Encryption Change Event v2 - bit 25
hci_send_cmd(&hci_set_event_mask_2,0x02000000U, 0x0);
break;
}
#ifdef ENABLE_CLASSIC
/* fall through */
case HCI_INIT_WRITE_SIMPLE_PAIRING_MODE:
if (hci_classic_supported() && gap_ssp_supported()){
hci_stack->substate = HCI_INIT_W4_WRITE_SIMPLE_PAIRING_MODE;
hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable);
break;
}
/* fall through */
case HCI_INIT_WRITE_INQUIRY_MODE:
if (hci_classic_supported()){
hci_stack->substate = HCI_INIT_W4_WRITE_INQUIRY_MODE;
hci_send_cmd(&hci_write_inquiry_mode, (int) hci_stack->inquiry_mode);
break;
}
/* fall through */
case HCI_INIT_WRITE_SECURE_CONNECTIONS_HOST_ENABLE:
// skip write secure connections host support if not supported or disabled
if (hci_classic_supported() && hci_stack->secure_connections_enable
&& hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_SECURE_CONNECTIONS_HOST)) {
hci_stack->secure_connections_active = true;
hci_stack->substate = HCI_INIT_W4_WRITE_SECURE_CONNECTIONS_HOST_ENABLE;
hci_send_cmd(&hci_write_secure_connections_host_support, 1);
break;
}
/* fall through */
case HCI_INIT_SET_MIN_ENCRYPTION_KEY_SIZE:
// skip set min encryption key size
if (hci_classic_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_SET_MIN_ENCRYPTION_KEY_SIZE)) {
hci_stack->substate = HCI_INIT_W4_SET_MIN_ENCRYPTION_KEY_SIZE;
hci_send_cmd(&hci_set_min_encryption_key_size, hci_stack->gap_required_encyrption_key_size);
break;
}
#ifdef ENABLE_SCO_OVER_HCI
/* fall through */
// only sent if ENABLE_SCO_OVER_HCI is defined
case HCI_INIT_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE:
// skip write synchronous flow control if not supported
if (hci_classic_supported()
&& hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE)) {
hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE;
hci_send_cmd(&hci_write_synchronous_flow_control_enable, 1); // SCO tracking enabled
break;
}
/* fall through */
case HCI_INIT_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING:
// skip write default erroneous data reporting if not supported
if (hci_classic_supported()
&& hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING)) {
hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING;
hci_send_cmd(&hci_write_default_erroneous_data_reporting, 1);
break;
}
#endif
#if defined(ENABLE_SCO_OVER_HCI) || defined(ENABLE_SCO_OVER_PCM)
/* fall through */
// only sent if manufacturer is Broadcom and ENABLE_SCO_OVER_HCI or ENABLE_SCO_OVER_PCM is defined
case HCI_INIT_BCM_WRITE_SCO_PCM_INT:
if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)){
hci_stack->substate = HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT;
#ifdef ENABLE_SCO_OVER_HCI
log_info("BCM: Route SCO data via HCI transport");
hci_send_cmd(&hci_bcm_write_sco_pcm_int, 1, 0, 0, 0, 0);
#endif
#ifdef ENABLE_SCO_OVER_PCM
log_info("BCM: Route SCO data via PCM interface");
#ifdef ENABLE_BCM_PCM_WBS
// 512 kHz bit clock for 2 channels x 16 bit x 16 kHz
hci_send_cmd(&hci_bcm_write_sco_pcm_int, 0, 2, 0, 1, 1);
#else
// 256 kHz bit clock for 2 channels x 16 bit x 8 kHz
hci_send_cmd(&hci_bcm_write_sco_pcm_int, 0, 1, 0, 1, 1);
#endif
#endif
break;
}
#endif
#ifdef ENABLE_SCO_OVER_PCM
/* fall through */
case HCI_INIT_BCM_WRITE_I2SPCM_INTERFACE_PARAM:
if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)){
hci_stack->substate = HCI_INIT_W4_BCM_WRITE_I2SPCM_INTERFACE_PARAM;
log_info("BCM: Config PCM interface for I2S");
#ifdef ENABLE_BCM_PCM_WBS
// 512 kHz bit clock for 2 channels x 16 bit x 8 kHz
hci_send_cmd(&hci_bcm_write_i2spcm_interface_param, 1, 1, 0, 2);
#else
// 256 kHz bit clock for 2 channels x 16 bit x 8 kHz
hci_send_cmd(&hci_bcm_write_i2spcm_interface_param, 1, 1, 0, 1);
#endif
break;
}
case HCI_INIT_BCM_WRITE_PCM_DATA_FORMAT_PARAM:
if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)){
hci_stack->substate = HCI_INIT_W4_BCM_WRITE_PCM_DATA_FORMAT_PARAM;
log_info("BCM: Config PCM Data format");
// msb first, fill bits 0, left justified
hci_send_cmd(&hci_bcm_write_pcm_data_format_param, 0, 0, 3, 3, 0);
break;
}
#ifdef HAVE_BCM_PCM2
case HCI_INIT_BCM_PCM2_SETUP:
if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)) {
hci_stack->substate = HCI_INIT_W4_BCM_PCM2_SETUP;
uint8_t op_mode = 0; // Op_Mode = 0 = PCM, 1 = I2S
uint32_t pcm_clock_freq;
uint8_t ch_0_period;
#ifdef ENABLE_BCM_PCM_WBS
// 512 kHz, resample 8 kHz to 16 khz
pcm_clock_freq = 512000;
ch_0_period = 1;
#else
// 256 khz, 8 khz output
pcm_clock_freq = 256000;
ch_0_period = 0;
#endif
log_info("BCM: Config PCM2 - op mode %u, pcm clock %" PRIu32 ", ch0_period %u", op_mode, pcm_clock_freq, ch_0_period);
hci_send_cmd(&hci_bcm_pcm2_setup,
0x00, // Action = Write
0x00, // Test_Options = None
op_mode, // Op_Mode
0x1D, // Sync_and_Clock_Options Sync = Signal | Sync Output Enable | Generate PCM_CLK | Tristate When Idle
pcm_clock_freq, // PCM_Clock_Freq
0x01, // Sync_Signal_Width
0x0F, // Slot_Width
0x01, // NumberOfSlots
0x00, // Bank_0_Fill_Mode = 0s
0x00, // Bank_0_Number_of_Fill_Bits
0x00, // Bank_0_Programmable_Fill_Data
0x00, // Bank_1_Fill_Mode = 0s
0x00, // Bank_1_Number_of_Fill_Bits
0x00, // Bank_1_Programmable_Fill_Data
0x00, // Data_Justify_And_Bit_Order_Options = Left Justify
0x00, // Ch_0_Slot_Number
0x01, // Ch_1_Slot_Number
0x02, // Ch_2_Slot_Number
0x03, // Ch_3_Slot_Number
0x04, // Ch_4_Slot_Number
ch_0_period, // Ch_0_Period
0x00, // Ch_1_Period
0x00 // Ch_2_Period
);
break;
}
#endif
#endif /* ENABLE_SCO_OVER_PCM */
#endif /* ENABLE_CLASSIC */
#ifdef ENABLE_BLE
/* fall through */
// LE INIT
case HCI_INIT_LE_READ_BUFFER_SIZE:
if (hci_le_supported()){
hci_stack->substate = HCI_INIT_W4_LE_READ_BUFFER_SIZE;
if (hci_command_supported(SUPPORTED_HCI_COMMAND_LE_READ_BUFFER_SIZE_V2)){
hci_send_cmd(&hci_le_read_buffer_size_v2);
} else {
hci_send_cmd(&hci_le_read_buffer_size);
}
break;
}
/* fall through */
case HCI_INIT_WRITE_LE_HOST_SUPPORTED:
// skip write le host if not supported (e.g. on LE only EM9301)
if (hci_le_supported()
&& hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_LE_HOST_SUPPORTED)) {
// LE Supported Host = 1, Simultaneous Host = 0
hci_stack->substate = HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED;
hci_send_cmd(&hci_write_le_host_supported, 1, 0);
break;
}
/* fall through */
case HCI_INIT_LE_SET_EVENT_MASK:
if (hci_le_supported()){
hci_stack->substate = HCI_INIT_W4_LE_SET_EVENT_MASK;
#ifdef ENABLE_LE_ENHANCED_CONNECTION_COMPLETE_EVENT
hci_send_cmd(&hci_le_set_event_mask, 0xffffffff, 0x0107); // all events from core v5.3
#else
hci_send_cmd(&hci_le_set_event_mask, 0xfffffdff, 0x0007); // all events from core v5.3 without LE Enhanced Connection Complete
#endif
break;
}
#endif
#ifdef ENABLE_LE_DATA_LENGTH_EXTENSION
/* fall through */
case HCI_INIT_LE_READ_MAX_DATA_LENGTH:
if (hci_le_supported()
&& hci_command_supported(SUPPORTED_HCI_COMMAND_LE_READ_MAXIMUM_DATA_LENGTH)) {
hci_stack->substate = HCI_INIT_W4_LE_READ_MAX_DATA_LENGTH;
hci_send_cmd(&hci_le_read_maximum_data_length);
break;
}
/* fall through */
case HCI_INIT_LE_WRITE_SUGGESTED_DATA_LENGTH:
if (hci_le_supported()
&& hci_command_supported(SUPPORTED_HCI_COMMAND_LE_WRITE_SUGGESTED_DEFAULT_DATA_LENGTH)) {
hci_stack->substate = HCI_INIT_W4_LE_WRITE_SUGGESTED_DATA_LENGTH;
hci_send_cmd(&hci_le_write_suggested_default_data_length, hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time);
break;
}
#endif
#ifdef ENABLE_LE_CENTRAL
/* fall through */
case HCI_INIT_READ_WHITE_LIST_SIZE:
if (hci_le_supported()){
hci_stack->substate = HCI_INIT_W4_READ_WHITE_LIST_SIZE;
hci_send_cmd(&hci_le_read_white_list_size);
break;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
/* fall through */
case HCI_INIT_LE_READ_MAX_ADV_DATA_LEN:
if (hci_le_extended_advertising_supported()){
hci_stack->substate = HCI_INIT_W4_LE_READ_MAX_ADV_DATA_LEN;
hci_send_cmd(&hci_le_read_maximum_advertising_data_length);
break;
}
#endif
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
/* fall through */
case HCI_INIT_LE_SET_HOST_FEATURE_CONNECTED_ISO_STREAMS:
if (hci_le_supported()) {
hci_stack->substate = HCI_INIT_W4_LE_SET_HOST_FEATURE_CONNECTED_ISO_STREAMS;
hci_send_cmd(&hci_le_set_host_feature, 32, 1);
break;
}
#endif
#ifdef ENABLE_BLE
/* fall through */
case HCI_INIT_LE_SET_HOST_FEATURE_CONNECTION_SUBRATING:
if (hci_le_supported()) {
hci_stack->substate = HCI_INIT_W4_LE_SET_HOST_FEATURE_CONNECTION_SUBRATING;
hci_send_cmd(&hci_le_set_host_feature, 38, 1);
break;
}
#endif
/* fall through */
case HCI_INIT_DONE:
hci_stack->substate = HCI_INIT_DONE;
// main init sequence complete
#ifdef ENABLE_CLASSIC
// check if initial Classic GAP Tasks are completed
if (hci_classic_supported() && (hci_stack->gap_tasks_classic != 0)) {
hci_run_gap_tasks_classic();
break;
}
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
// check if initial LE GAP Tasks are completed
if (hci_le_supported() && hci_stack->le_scanning_param_update) {
hci_run_general_gap_le();
break;
}
#endif
#endif
hci_init_done();
break;
default:
return;
}
}
static bool hci_initializing_event_handler_command_completed(const uint8_t * packet){
bool command_completed = false;
if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE){
uint16_t opcode = little_endian_read_16(packet,3);
if (opcode == hci_stack->last_cmd_opcode){
command_completed = true;
log_debug("Command complete for expected opcode %04x at substate %u", opcode, hci_stack->substate);
} else {
log_info("Command complete for different opcode %04x, expected %04x, at substate %u", opcode, hci_stack->last_cmd_opcode, hci_stack->substate);
}
}
if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_STATUS){
uint8_t status = packet[2];
uint16_t opcode = little_endian_read_16(packet,4);
if (opcode == hci_stack->last_cmd_opcode){
if (status){
command_completed = true;
log_debug("Command status error 0x%02x for expected opcode %04x at substate %u", status, opcode, hci_stack->substate);
} else {
log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode);
}
} else {
log_debug("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode);
}
}
#ifndef HAVE_HOST_CONTROLLER_API
// Vendor == CSR
if ((hci_stack->substate == HCI_INIT_W4_CUSTOM_INIT) && (hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC)){
// TODO: track actual command
command_completed = true;
}
// Vendor == Toshiba
if ((hci_stack->substate == HCI_INIT_W4_SEND_BAUD_CHANGE) && (hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC)){
// TODO: track actual command
command_completed = true;
// Fix: no HCI Command Complete received, so num_cmd_packets not reset
hci_stack->num_cmd_packets = 1;
}
#endif
return command_completed;
}
static void hci_initializing_event_handler(const uint8_t * packet, uint16_t size){
UNUSED(size); // ok: less than 6 bytes are read from our buffer
bool command_completed = hci_initializing_event_handler_command_completed(packet);
#ifndef HAVE_HOST_CONTROLLER_API
// Late response (> 100 ms) for HCI Reset e.g. on Toshiba TC35661:
// Command complete for HCI Reset arrives after we've resent the HCI Reset command
//
// HCI Reset
// Timeout 100 ms
// HCI Reset
// Command Complete Reset
// HCI Read Local Version Information
// Command Complete Reset - but we expected Command Complete Read Local Version Information
// hang...
//
// Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend
if (!command_completed
&& (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE)
&& (hci_stack->substate == HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION)){
uint16_t opcode = little_endian_read_16(packet,3);
if (opcode == hci_reset.opcode){
hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION;
return;
}
}
// CSR & H5
// Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend
if (!command_completed
&& (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE)
&& (hci_stack->substate == HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS)){
uint16_t opcode = little_endian_read_16(packet,3);
if (opcode == hci_reset.opcode){
hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS;
return;
}
}
// on CSR with BCSP/H5, the reset resend timeout leads to substate == HCI_INIT_SEND_RESET or HCI_INIT_SEND_RESET_CSR_WARM_BOOT
// fix: Correct substate and behave as command below
if (command_completed){
switch (hci_stack->substate){
case HCI_INIT_SEND_RESET:
hci_stack->substate = HCI_INIT_W4_SEND_RESET;
break;
case HCI_INIT_SEND_RESET_CSR_WARM_BOOT:
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT;
break;
default:
break;
}
}
#endif
if (!command_completed) return;
bool need_baud_change = false;
bool need_addr_change = false;
#ifndef HAVE_HOST_CONTROLLER_API
need_baud_change = hci_stack->config
&& hci_stack->chipset
&& hci_stack->chipset->set_baudrate_command
&& hci_stack->hci_transport->set_baudrate
&& ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main;
need_addr_change = hci_stack->custom_bd_addr_set
&& hci_stack->chipset
&& hci_stack->chipset->set_bd_addr_command;
#endif
switch(hci_stack->substate){
#ifndef HAVE_HOST_CONTROLLER_API
case HCI_INIT_SEND_RESET:
// on CSR with BCSP/H5, resend triggers resend of HCI Reset and leads to substate == HCI_INIT_SEND_RESET
// fix: just correct substate and behave as command below
/* fall through */
#endif
case HCI_INIT_W4_SEND_RESET:
btstack_run_loop_remove_timer(&hci_stack->timeout);
hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION;
return;
#ifndef HAVE_HOST_CONTROLLER_API
case HCI_INIT_W4_SEND_BAUD_CHANGE:
// for STLC2500D, baud rate change already happened.
// for others, baud rate gets changed now
if ((hci_stack->manufacturer != BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS) && need_baud_change){
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
log_info("Local baud rate change to %" PRIu32 "(w4_send_baud_change)", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT:
btstack_run_loop_remove_timer(&hci_stack->timeout);
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
case HCI_INIT_W4_CUSTOM_INIT:
// repeat custom init
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
case HCI_INIT_W4_CUSTOM_PRE_INIT:
// repeat custom init
hci_stack->substate = HCI_INIT_CUSTOM_PRE_INIT;
return;
#endif
case HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS:
if (need_baud_change && (hci_stack->chipset_result != BTSTACK_CHIPSET_NO_INIT_SCRIPT) &&
((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) ||
(hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA))) {
hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE_BCM;
return;
}
if (need_addr_change){
hci_stack->substate = HCI_INIT_SET_BD_ADDR;
return;
}
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
#ifndef HAVE_HOST_CONTROLLER_API
case HCI_INIT_W4_SEND_BAUD_CHANGE_BCM:
if (need_baud_change){
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
log_info("Local baud rate change to %" PRIu32 "(w4_send_baud_change_bcm))", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
if (need_addr_change){
hci_stack->substate = HCI_INIT_SET_BD_ADDR;
return;
}
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
case HCI_INIT_W4_SET_BD_ADDR:
// for STLC2500D + ATWILC3000, bd addr change only gets active after sending reset command
if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS)
|| (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ATMEL_CORPORATION)){
hci_stack->substate = HCI_INIT_SEND_RESET_ST_WARM_BOOT;
return;
}
// skipping st warm boot
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
case HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT:
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
#endif
case HCI_INIT_DONE:
// set state if we came here by fall through
hci_stack->substate = HCI_INIT_DONE;
return;
default:
break;
}
hci_initializing_next_state();
}
static void hci_handle_connection_failed(hci_connection_t * conn, uint8_t status){
// CC2564C might emit Connection Complete for rejected incoming SCO connection
// To prevent accidentally freeing the HCI connection for the ACL connection,
// check if we have been aware of the HCI connection
switch (conn->state){
case SENT_CREATE_CONNECTION:
case RECEIVED_CONNECTION_REQUEST:
case ACCEPTED_CONNECTION_REQUEST:
break;
default:
return;
}
log_info("Outgoing connection to %s failed", bd_addr_to_str(conn->address));
bd_addr_t bd_address;
(void)memcpy(&bd_address, conn->address, 6);
#ifdef ENABLE_CLASSIC
// cache needed data
int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED;
#endif
// connection failed, remove entry
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
#ifdef ENABLE_CLASSIC
// notify client if dedicated bonding
if (notify_dedicated_bonding_failed){
log_info("hci notify_dedicated_bonding_failed");
hci_emit_dedicated_bonding_result(bd_address, status);
}
// if authentication error, also delete link key
if (status == ERROR_CODE_AUTHENTICATION_FAILURE) {
gap_drop_link_key_for_bd_addr(bd_address);
}
#else
UNUSED(status);
#endif
}
#ifdef ENABLE_CLASSIC
static void hci_handle_remote_features_page_0(hci_connection_t * conn, const uint8_t * features){
// SSP Controller
if (features[6] & (1 << 3)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP_CONTROLLER;
}
// eSCO
if (features[3] & (1<<7)){
conn->remote_supported_features[0] |= 1;
}
// Extended features
if (features[7] & (1<<7)){
conn->remote_supported_features[0] |= 2;
}
// SCO packet types
conn->remote_supported_sco_packets = hci_sco_packet_types_for_features(features);
}
static void hci_handle_remote_features_page_1(hci_connection_t * conn, const uint8_t * features){
// SSP Host
if (features[0] & (1 << 0)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP_HOST;
}
// SC Host
if (features[0] & (1 << 3)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_HOST;
}
}
static void hci_handle_remote_features_page_2(hci_connection_t * conn, const uint8_t * features){
// SC Controller
if (features[1] & (1 << 0)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_CONTROLLER;
}
}
static void hci_handle_remote_features_received(hci_connection_t * conn){
conn->bonding_flags &= ~BONDING_REMOTE_FEATURES_QUERY_ACTIVE;
conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES;
log_info("Remote features %02x, bonding flags %" PRIx32, conn->remote_supported_features[0], conn->bonding_flags);
if (conn->bonding_flags & BONDING_DEDICATED){
conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST;
}
}
static bool hci_remote_sc_enabled(hci_connection_t * connection){
const uint16_t sc_enabled_mask = BONDING_REMOTE_SUPPORTS_SC_HOST | BONDING_REMOTE_SUPPORTS_SC_CONTROLLER;
return (connection->bonding_flags & sc_enabled_mask) == sc_enabled_mask;
}
#endif
static void handle_event_for_current_stack_state(const uint8_t * packet, uint16_t size) {
// handle BT initialization
if (hci_stack->state == HCI_STATE_INITIALIZING) {
hci_initializing_event_handler(packet, size);
}
// help with BT sleep
if ((hci_stack->state == HCI_STATE_FALLING_ASLEEP)
&& (hci_stack->substate == HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE)
&& (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE)
&& (hci_event_command_complete_get_command_opcode(packet) == HCI_OPCODE_HCI_WRITE_SCAN_ENABLE)){
hci_initializing_next_state();
}
}
#ifdef ENABLE_CLASSIC
static void hci_handle_mutual_authentication_completed(hci_connection_t * conn){
// bonding complete if connection is authenticated (either initiated or BR/EDR SC)
conn->requested_security_level = LEVEL_0;
gap_security_level_t security_level = gap_security_level_for_connection(conn);
hci_emit_security_level(conn->con_handle, security_level);
// dedicated bonding
if ((conn->bonding_flags & BONDING_DEDICATED) != 0){
conn->bonding_flags &= ~BONDING_DEDICATED;
conn->bonding_status = security_level == 0 ? ERROR_CODE_INSUFFICIENT_SECURITY : ERROR_CODE_SUCCESS;
#ifdef ENABLE_EXPLICIT_DEDICATED_BONDING_DISCONNECT
// emit dedicated bonding complete, don't disconnect
hci_emit_dedicated_bonding_result(conn->address, conn->bonding_status);
#else
// request disconnect, event is emitted after disconnect
conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE;
#endif
}
}
static void hci_handle_read_encryption_key_size_complete(hci_connection_t * conn, uint8_t encryption_key_size) {
conn->authentication_flags |= AUTH_FLAG_CONNECTION_ENCRYPTED;
conn->encryption_key_size = encryption_key_size;
// mutual authentication complete if authenticated and we have retrieved the encryption key size
if ((conn->authentication_flags & AUTH_FLAG_CONNECTION_AUTHENTICATED) != 0) {
hci_handle_mutual_authentication_completed(conn);
} else {
// otherwise trigger remote feature request and send authentication request
hci_trigger_remote_features_for_connection(conn);
if ((conn->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) == 0) {
conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST;
}
}
}
#endif
static void hci_store_local_supported_commands(const uint8_t * packet){
// create mapping table
#define X(name, offset, bit) { offset, bit },
static struct {
uint8_t byte_offset;
uint8_t bit_position;
} supported_hci_commands_map [] = {
SUPPORTED_HCI_COMMANDS
};
#undef X
// create names for debug purposes
#ifdef ENABLE_LOG_DEBUG
#define X(name, offset, bit) #name,
static const char * command_names[] = {
SUPPORTED_HCI_COMMANDS
};
#undef X
#endif
hci_stack->local_supported_commands = 0;
const uint8_t * commands_map = &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1];
uint16_t i;
for (i = 0 ; i < SUPPORTED_HCI_COMMANDS_COUNT ; i++){
if ((commands_map[supported_hci_commands_map[i].byte_offset] & (1 << supported_hci_commands_map[i].bit_position)) != 0){
#ifdef ENABLE_LOG_DEBUG
log_debug("Command %s (%u) supported %u/%u", command_names[i], i, supported_hci_commands_map[i].byte_offset, supported_hci_commands_map[i].bit_position);
#else
log_info("Command 0x%02x supported %u/%u", i, supported_hci_commands_map[i].byte_offset, supported_hci_commands_map[i].bit_position);
#endif
hci_stack->local_supported_commands |= (1LU << i);
}
}
log_info("Local supported commands summary %08" PRIx32, hci_stack->local_supported_commands);
}
static void handle_command_complete_event(uint8_t * packet, uint16_t size){
UNUSED(size);
uint8_t status = 0;
if( size > OFFSET_OF_DATA_IN_COMMAND_COMPLETE ) {
status = hci_event_command_complete_get_return_parameters(packet)[0];
}
uint16_t manufacturer;
#ifdef ENABLE_CLASSIC
hci_connection_t * conn;
#endif
#if defined(ENABLE_CLASSIC)
hci_con_handle_t handle;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
le_audio_cig_t * cig;
#endif
#if defined(ENABLE_BLE) && defined(ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND)
hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID;
#endif
// get num cmd packets - limit to 1 to reduce complexity
hci_stack->num_cmd_packets = packet[2] ? 1 : 0;
uint16_t opcode = hci_event_command_complete_get_command_opcode(packet);
switch (opcode){
case HCI_OPCODE_HCI_READ_LOCAL_NAME:
if (status) break;
// terminate, name 248 chars
packet[6+248] = 0;
log_info("local name: %s", &packet[6]);
break;
case HCI_OPCODE_HCI_READ_BUFFER_SIZE:
// "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets"
if (hci_stack->state == HCI_STATE_INITIALIZING) {
uint16_t acl_len = little_endian_read_16(packet, 6);
uint16_t sco_len = packet[8];
// determine usable ACL/SCO payload size
hci_stack->acl_data_packet_length = btstack_min(acl_len, HCI_ACL_PAYLOAD_SIZE);
hci_stack->sco_data_packet_length = btstack_min(sco_len, HCI_ACL_PAYLOAD_SIZE);
hci_stack->acl_packets_total_num = (uint8_t) btstack_min(little_endian_read_16(packet, 9), MAX_NR_CONTROLLER_ACL_BUFFERS);
hci_stack->sco_packets_total_num = (uint8_t) btstack_min(little_endian_read_16(packet, 11), MAX_NR_CONTROLLER_SCO_PACKETS);
log_info("hci_read_buffer_size: ACL size module %u -> used %u, count %u / SCO size %u, count %u",
acl_len, hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num,
hci_stack->sco_data_packet_length, hci_stack->sco_packets_total_num);
}
break;
case HCI_OPCODE_HCI_READ_RSSI:
if (status == ERROR_CODE_SUCCESS){
uint8_t event[5];
event[0] = GAP_EVENT_RSSI_MEASUREMENT;
event[1] = 3;
(void)memcpy(&event[2], &packet[6], 3);
hci_emit_btstack_event(event, sizeof(event), 1);
}
break;
#ifdef ENABLE_BLE
case HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE_V2:
hci_stack->le_iso_packets_length = little_endian_read_16(packet, 9);
hci_stack->le_iso_packets_total_num = packet[11];
log_info("hci_le_read_buffer_size_v2: iso size %u, iso count %u",
hci_stack->le_iso_packets_length, hci_stack->le_iso_packets_total_num);
/* fall through */
case HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE:
hci_stack->le_data_packets_length = little_endian_read_16(packet, 6);
hci_stack->le_acl_packets_total_num = packet[8];
// determine usable ACL payload size
if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){
hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE;
}
log_info("hci_le_read_buffer_size: acl size %u, acl count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num);
break;
#endif
#ifdef ENABLE_LE_DATA_LENGTH_EXTENSION
case HCI_OPCODE_HCI_LE_READ_MAXIMUM_DATA_LENGTH:
hci_stack->le_supported_max_tx_octets = little_endian_read_16(packet, 6);
hci_stack->le_supported_max_tx_time = little_endian_read_16(packet, 8);
log_info("hci_le_read_maximum_data_length: tx octets %u, tx time %u us", hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time);
break;
#endif
#ifdef ENABLE_LE_CENTRAL
case HCI_OPCODE_HCI_LE_READ_WHITE_LIST_SIZE:
hci_stack->le_whitelist_capacity = packet[6];
log_info("hci_le_read_white_list_size: size %u", hci_stack->le_whitelist_capacity);
break;
#endif
#ifdef ENABLE_LE_PERIPHERAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
case HCI_OPCODE_HCI_LE_READ_MAXIMUM_ADVERTISING_DATA_LENGTH:
hci_stack->le_maximum_advertising_data_length = little_endian_read_16(packet, 6);
break;
case HCI_OPCODE_HCI_LE_SET_EXTENDED_ADVERTISING_PARAMETERS:
if (hci_stack->le_advertising_set_in_current_command != 0) {
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(hci_stack->le_advertising_set_in_current_command);
hci_stack->le_advertising_set_in_current_command = 0;
if (advertising_set == NULL) break;
uint8_t adv_status = packet[6];
uint8_t tx_power = packet[7];
uint8_t event[] = { HCI_EVENT_META_GAP, 4, GAP_SUBEVENT_ADVERTISING_SET_INSTALLED, hci_stack->le_advertising_set_in_current_command, adv_status, tx_power };
if (adv_status == 0){
advertising_set->state |= LE_ADVERTISEMENT_STATE_PARAMS_SET;
}
hci_emit_btstack_event(event, sizeof(event), 1);
}
break;
case HCI_OPCODE_HCI_LE_REMOVE_ADVERTISING_SET:
if (hci_stack->le_advertising_set_in_current_command != 0) {
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(hci_stack->le_advertising_set_in_current_command);
hci_stack->le_advertising_set_in_current_command = 0;
if (advertising_set == NULL) break;
uint8_t event[] = { HCI_EVENT_META_GAP, 3, GAP_SUBEVENT_ADVERTISING_SET_REMOVED, hci_stack->le_advertising_set_in_current_command, status };
if (status == 0){
btstack_linked_list_remove(&hci_stack->le_advertising_sets, (btstack_linked_item_t *) advertising_set);
}
hci_emit_btstack_event(event, sizeof(event), 1);
}
break;
#endif
#endif
case HCI_OPCODE_HCI_READ_BD_ADDR:
reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], hci_stack->local_bd_addr);
log_info("Local Address, Status: 0x%02x: Addr: %s", status, bd_addr_to_str(hci_stack->local_bd_addr));
#ifdef ENABLE_CLASSIC
if (hci_stack->link_key_db){
hci_stack->link_key_db->set_local_bd_addr(hci_stack->local_bd_addr);
}
#endif
break;
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_WRITE_SCAN_ENABLE:
hci_emit_scan_mode_changed(hci_stack->discoverable, hci_stack->connectable);
break;
case HCI_OPCODE_HCI_PERIODIC_INQUIRY_MODE:
if (status == ERROR_CODE_SUCCESS) {
hci_stack->inquiry_state = GAP_INQUIRY_STATE_PERIODIC;
} else {
hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE;
}
break;
case HCI_OPCODE_HCI_INQUIRY_CANCEL:
case HCI_OPCODE_HCI_EXIT_PERIODIC_INQUIRY_MODE:
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W4_CANCELLED){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE;
uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0};
hci_emit_btstack_event(event, sizeof(event), 1);
}
break;
#endif
case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_FEATURES:
(void)memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], 8);
#ifdef ENABLE_CLASSIC
// determine usable ACL packet types based on host buffer size and supported features
hci_stack->usable_packet_types_acl = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]);
log_info("ACL Packet types %04x", hci_stack->usable_packet_types_acl);
// determine usable SCO packet types based on supported features
hci_stack->usable_packet_types_sco = hci_sco_packet_types_for_features(
&hci_stack->local_supported_features[0]);
log_info("SCO Packet types %04x - eSCO %u", hci_stack->usable_packet_types_sco, hci_extended_sco_link_supported());
#endif
// Classic/LE
log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported());
break;
case HCI_OPCODE_HCI_READ_LOCAL_VERSION_INFORMATION:
manufacturer = little_endian_read_16(packet, 10);
// map Cypress & Infineon to Broadcom
switch (manufacturer){
case BLUETOOTH_COMPANY_ID_CYPRESS_SEMICONDUCTOR:
case BLUETOOTH_COMPANY_ID_INFINEON_TECHNOLOGIES_AG:
log_info("Treat Cypress/Infineon as Broadcom");
manufacturer = BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION;
little_endian_store_16(packet, 10, manufacturer);
break;
default:
break;
}
hci_stack->manufacturer = manufacturer;
log_info("Manufacturer: 0x%04x", hci_stack->manufacturer);
break;
case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_COMMANDS:
hci_store_local_supported_commands(packet);
break;
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE:
if (status) return;
hci_stack->synchronous_flow_control_enabled = 1;
break;
case HCI_OPCODE_HCI_READ_ENCRYPTION_KEY_SIZE:
handle = little_endian_read_16(packet, OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1);
conn = hci_connection_for_handle(handle);
if (conn != NULL) {
uint8_t key_size = 0;
if (status == 0){
key_size = packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+3];
log_info("Handle %04x key Size: %u", handle, key_size);
} else {
key_size = 1;
log_info("Read Encryption Key Size failed 0x%02x-> assuming insecure connection with key size of 1", status);
}
hci_handle_read_encryption_key_size_complete(conn, key_size);
}
break;
// assert pairing complete event is emitted.
// note: for SSP, Simple Pairing Complete Event is sufficient, but we want to be more robust
case HCI_OPCODE_HCI_PIN_CODE_REQUEST_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_USER_PASSKEY_REQUEST_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_USER_CONFIRMATION_REQUEST_NEGATIVE_REPLY:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE;
// lookup connection by gap pairing addr
conn = hci_connection_for_bd_addr_and_type(hci_stack->gap_pairing_addr, BD_ADDR_TYPE_ACL);
if (conn == NULL) break;
hci_pairing_complete(conn, ERROR_CODE_AUTHENTICATION_FAILURE);
break;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
case HCI_OPCODE_HCI_READ_LOCAL_OOB_DATA:
case HCI_OPCODE_HCI_READ_LOCAL_EXTENDED_OOB_DATA:{
uint8_t event[67];
event[0] = GAP_EVENT_LOCAL_OOB_DATA;
event[1] = 65;
(void)memset(&event[2], 0, 65);
if (status == ERROR_CODE_SUCCESS){
(void)memcpy(&event[3], &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 32);
if (opcode == HCI_OPCODE_HCI_READ_LOCAL_EXTENDED_OOB_DATA){
event[2] = 3;
(void)memcpy(&event[35], &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+33], 32);
} else {
event[2] = 1;
}
}
hci_emit_btstack_event(event, sizeof(event), 0);
break;
}
// note: only needed if user does not provide OOB data
case HCI_OPCODE_HCI_REMOTE_OOB_DATA_REQUEST_NEGATIVE_REPLY:
conn = hci_connection_for_handle(hci_stack->classic_oob_con_handle);
hci_stack->classic_oob_con_handle = HCI_CON_HANDLE_INVALID;
if (conn == NULL) break;
hci_pairing_complete(conn, ERROR_CODE_AUTHENTICATION_FAILURE);
break;
#endif
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
case HCI_OPCODE_HCI_LE_SET_CIG_PARAMETERS:
// lookup CIG
cig = hci_cig_for_id(hci_stack->iso_active_operation_group_id);
if (cig != NULL){
uint8_t i = 0;
if (status == ERROR_CODE_SUCCESS){
// assign CIS handles to pre-allocated CIS
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it) && (i < cig->num_cis)) {
hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->group_id == hci_stack->iso_active_operation_group_id) &&
(iso_stream->iso_type == HCI_ISO_TYPE_CIS)){
hci_con_handle_t cis_handle = little_endian_read_16(packet, OFFSET_OF_DATA_IN_COMMAND_COMPLETE+3+(2*i));
iso_stream->cis_handle = cis_handle;
cig->cis_con_handles[i] = cis_handle;
i++;
}
}
cig->state = LE_AUDIO_CIG_STATE_W4_CIS_REQUEST;
hci_emit_cig_created(cig, status);
} else {
hci_emit_cig_created(cig, status);
btstack_linked_list_remove(&hci_stack->le_audio_cigs, (btstack_linked_item_t *) cig);
}
}
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
break;
case HCI_OPCODE_HCI_LE_CREATE_CIS:
if (status != ERROR_CODE_SUCCESS){
hci_iso_stream_requested_finalize(HCI_ISO_GROUP_ID_INVALID);
}
break;
case HCI_OPCODE_HCI_LE_ACCEPT_CIS_REQUEST:
if (status != ERROR_CODE_SUCCESS){
hci_iso_stream_requested_finalize(HCI_ISO_GROUP_ID_INVALID);
}
break;
case HCI_OPCODE_HCI_LE_SETUP_ISO_DATA_PATH: {
// lookup BIG by state
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs);
while (btstack_linked_list_iterator_has_next(&it)) {
le_audio_big_t *big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it);
if (big->state == LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH){
if (status == ERROR_CODE_SUCCESS){
big->state_vars.next_bis++;
if (big->state_vars.next_bis == big->num_bis){
big->state = LE_AUDIO_BIG_STATE_ACTIVE;
hci_emit_big_created(big, ERROR_CODE_SUCCESS);
} else {
big->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH;
}
} else {
big->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED;
big->state_vars.status = status;
}
return;
}
}
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs);
while (btstack_linked_list_iterator_has_next(&it)) {
le_audio_big_sync_t *big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it);
if (big_sync->state == LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH){
if (status == ERROR_CODE_SUCCESS){
big_sync->state_vars.next_bis++;
if (big_sync->state_vars.next_bis == big_sync->num_bis){
big_sync->state = LE_AUDIO_BIG_STATE_ACTIVE;
hci_emit_big_sync_created(big_sync, ERROR_CODE_SUCCESS);
} else {
big_sync->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH;
}
} else {
big_sync->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED;
big_sync->state_vars.status = status;
}
return;
}
}
// Lookup CIS via active group operation
if (hci_stack->iso_active_operation_type == HCI_ISO_TYPE_CIS){
if (hci_stack->iso_active_operation_group_id == HCI_ISO_GROUP_ID_SINGLE_CIS){
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
// lookup CIS by state
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
bool emit_cis_created = false;
switch (iso_stream->state){
case HCI_ISO_STREAM_STATE_W4_ISO_SETUP_INPUT:
if (status != ERROR_CODE_SUCCESS){
emit_cis_created = true;
break;
}
if (iso_stream->max_sdu_c_to_p > 0){
iso_stream->state = HCI_ISO_STREAM_STATE_W2_SETUP_ISO_OUTPUT;
} else {
emit_cis_created = true;
}
break;
case HCI_ISO_STREAM_STATE_W4_ISO_SETUP_OUTPUT:
emit_cis_created = true;
break;
default:
break;
}
if (emit_cis_created){
hci_cis_handle_created(iso_stream, status);
}
}
} else {
cig = hci_cig_for_id(hci_stack->iso_active_operation_group_id);
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
if (cig != NULL) {
// emit cis created if all ISO Paths have been created
// assume we are central
uint8_t cis_index = cig->state_vars.next_cis >> 1;
uint8_t cis_direction = cig->state_vars.next_cis & 1;
bool outgoing_needed = cig->params->cis_params[cis_index].max_sdu_p_to_c > 0;
// if outgoing has been setup, or incoming was setup but outgoing not required
if ((cis_direction == 1) || (outgoing_needed == false)){
// lookup iso stream by cig/cis
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)) {
hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->group_id == cig->cig_id) && (iso_stream->stream_id == cis_index)){
hci_cis_handle_created(iso_stream, status);
}
}
}
// next state
cig->state_vars.next_cis++;
cig->state = LE_AUDIO_CIG_STATE_SETUP_ISO_PATH;
}
}
}
break;
}
case HCI_OPCODE_HCI_LE_BIG_TERMINATE_SYNC: {
// lookup BIG by state
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs);
while (btstack_linked_list_iterator_has_next(&it)) {
le_audio_big_sync_t *big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it);
uint8_t big_handle = big_sync->big_handle;
switch (big_sync->state){
case LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED:
btstack_linked_list_iterator_remove(&it);
hci_emit_big_sync_created(big_sync, big_sync->state_vars.status);
return;
default:
btstack_linked_list_iterator_remove(&it);
hci_emit_big_sync_stopped(big_handle);
return;
}
}
break;
}
#endif
#endif
default:
break;
}
}
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
static void
hci_iso_create_big_failed(const le_audio_big_t *big, uint8_t status) {
hci_iso_stream_finalize_by_type_and_group_id(HCI_ISO_TYPE_BIS, big->big_handle);
btstack_linked_list_remove(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big);
if (big->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED){
hci_emit_big_created(big, status);
} else {
hci_emit_big_terminated(big);
}
}
static void hci_iso_big_sync_failed(const le_audio_big_sync_t *big_sync, uint8_t status) {
btstack_linked_list_remove(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync);
if (big_sync->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED) {
hci_emit_big_sync_created(big_sync, status);
} else {
hci_emit_big_sync_stopped(big_sync->big_handle);
}
}
#endif
static void handle_command_status_event(uint8_t * packet, uint16_t size) {
UNUSED(size);
// get num cmd packets - limit to 1 to reduce complexity
hci_stack->num_cmd_packets = packet[3] ? 1 : 0;
// get opcode and command status
uint16_t opcode = hci_event_command_status_get_command_opcode(packet);
#if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_CENTRAL) || defined(ENABLE_LE_ISOCHRONOUS_STREAMS)
uint8_t status = hci_event_command_status_get_status(packet);
#endif
#if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_CENTRAL)
bd_addr_type_t addr_type;
bd_addr_t addr;
#endif
#if defined(ENABLE_BLE) && defined (ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND)
hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID;
#endif
switch (opcode){
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_CREATE_CONNECTION:
case HCI_OPCODE_HCI_SETUP_SYNCHRONOUS_CONNECTION:
case HCI_OPCODE_HCI_ACCEPT_SYNCHRONOUS_CONNECTION:
#endif
#ifdef ENABLE_LE_CENTRAL
case HCI_OPCODE_HCI_LE_CREATE_CONNECTION:
#endif
#if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_CENTRAL)
addr_type = hci_stack->outgoing_addr_type;
memcpy(addr, hci_stack->outgoing_addr, 6);
// reset outgoing address info
memset(hci_stack->outgoing_addr, 0, 6);
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_UNKNOWN;
// on error
if (status != ERROR_CODE_SUCCESS){
#ifdef ENABLE_LE_CENTRAL
if (hci_is_le_connection_type(addr_type)){
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
}
#endif
// error => outgoing connection failed
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (conn != NULL){
hci_handle_connection_failed(conn, status);
}
}
break;
#endif
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_INQUIRY:
if (status == ERROR_CODE_SUCCESS) {
hci_stack->inquiry_state = GAP_INQUIRY_STATE_ACTIVE;
} else {
hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE;
}
break;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
case HCI_OPCODE_HCI_LE_CREATE_CIS:
case HCI_OPCODE_HCI_LE_ACCEPT_CIS_REQUEST:
if (status == ERROR_CODE_SUCCESS){
hci_iso_stream_requested_confirm(HCI_ISO_GROUP_ID_INVALID);
} else {
hci_iso_stream_requested_finalize(HCI_ISO_GROUP_ID_INVALID);
}
break;
case HCI_OPCODE_HCI_LE_CREATE_BIG:
if (status != ERROR_CODE_SUCCESS){
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
// get current big
le_audio_big_t * big = hci_big_for_handle(hci_stack->iso_active_operation_group_id);
if (big != NULL){
hci_iso_create_big_failed(big, status);
}
}
break;
case HCI_OPCODE_HCI_LE_BIG_CREATE_SYNC:
if (status != ERROR_CODE_SUCCESS){
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
// get current big sync
le_audio_big_sync_t * big_sync = hci_big_sync_for_handle(hci_stack->iso_active_operation_group_id);
if (big_sync != NULL){
hci_iso_big_sync_failed(big_sync, status);
}
}
break;
#endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */
default:
break;
}
}
#ifdef ENABLE_BLE
static void hci_create_gap_connection_complete_event(const uint8_t * hci_event, uint8_t * gap_event) {
gap_event[0] = HCI_EVENT_META_GAP;
gap_event[1] = 36 - 2;
gap_event[2] = GAP_SUBEVENT_LE_CONNECTION_COMPLETE;
switch (hci_event_le_meta_get_subevent_code(hci_event)){
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
memcpy(&gap_event[3], &hci_event[3], 11);
memset(&gap_event[14], 0, 12);
memcpy(&gap_event[26], &hci_event[14], 7);
memset(&gap_event[33], 0xff, 3);
// Some Controllers incorrectly report a resolved identity address in HCI_SUBEVENT_LE_CONNECTION_COMPLETE.
// If an address is resolved, we're working with it, but this event does not provide it.
// As a workaround, we map identity addresses to regular addresses.
gap_event[7] = gap_event[7] & 1;
break;
case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V1:
memcpy(&gap_event[3], &hci_event[3], 30);
memset(&gap_event[33], 0xff, 3);
break;
case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V2:
memcpy(&gap_event[3], &hci_event[3], 33);
break;
default:
btstack_unreachable();
break;
}
}
static void hci_handle_le_connection_complete_event(const uint8_t * hci_event){
// create GAP_SUBEVENT_LE_CONNECTION_COMPLETE
uint8_t gap_event[36];
hci_create_gap_connection_complete_event(hci_event, gap_event);
// read fields
uint8_t status = gap_subevent_le_connection_complete_get_status(gap_event);
hci_role_t role = (hci_role_t) gap_subevent_le_connection_complete_get_role(gap_event);
uint16_t conn_interval = gap_subevent_le_connection_complete_get_conn_interval(gap_event);
// Connection management
bd_addr_t addr;
gap_subevent_le_connection_complete_get_peer_address(gap_event, addr);
bd_addr_type_t addr_type = (bd_addr_type_t) gap_subevent_le_connection_complete_get_peer_address_type(gap_event);
hci_con_handle_t con_handle = gap_subevent_le_connection_complete_get_connection_handle(gap_event);
log_info("LE Connection_complete (status=%u) type %u, %s", status, addr_type, bd_addr_to_str(addr));
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
#ifdef ENABLE_LE_CENTRAL
// handle error: error is reported only to the initiator -> outgoing connection
if (status){
// handle cancelled outgoing connection
// "If the cancellation was successful then, after the Command Complete event for the LE_Create_Connection_Cancel command,
// either an LE Connection Complete or an LE Enhanced Connection Complete event shall be generated.
// In either case, the event shall be sent with the error code Unknown Connection Identifier (0x02)."
bool connection_was_cancelled = false;
if (status == ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER){
connection_was_cancelled = true;
// reset state
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
// get outgoing connection conn struct for direct connect
conn = gap_get_outgoing_le_connection();
// prepare restart if still active
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){
conn->state = SEND_CREATE_CONNECTION;
}
}
// free connection if cancelled by user (request == IDLE)
bool cancelled_by_user = hci_stack->le_connecting_request == LE_CONNECTING_IDLE;
if ((conn != NULL) && cancelled_by_user){
// remove entry
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
}
// emit GAP_SUBEVENT_LE_CONNECTION_COMPLETE for:
// - outgoing error not caused by connection cancel
// - connection cancelled by user
// by this, no event is emitted for intermediate connection cancel required filterlist modification
if ((connection_was_cancelled == false) || cancelled_by_user){
hci_emit_btstack_event(gap_event, sizeof(gap_event), 1);
}
return;
}
#endif
// on success, both hosts receive connection complete event
if (role == HCI_ROLE_MASTER){
#ifdef ENABLE_LE_CENTRAL
// if we're master, it was an outgoing connection
// note: no hci_connection_t object exists yet for connect with whitelist
// if an identity addresses was used without enhanced connection complete event,
// the connection complete event contains the current random address of the peer device.
// This random address is needed in the case of a re-pairing
if (hci_event_le_meta_get_subevent_code(hci_event) == HCI_SUBEVENT_LE_CONNECTION_COMPLETE){
conn = gap_get_outgoing_le_connection();
// if outgoing connection object is available, check if identity address was used.
// if yes, track resolved random address and provide rpa
// note: we don't update hci le subevent connection complete
if (conn != NULL){
if (hci_is_le_identity_address_type(conn->address_type)){
memcpy(&gap_event[20], &gap_event[8], 6);
gap_event[7] = conn->address_type;
reverse_bd_addr(conn->address, &gap_event[8]);
}
}
}
// we're done with it
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
#endif
} else {
#ifdef ENABLE_LE_PERIPHERAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()) {
// advertisement state managed with HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED
// if advertisement set terminated event arrives before connection complete, connection struct has been prepared
// set missing peer address + address type
conn = hci_connection_for_handle(con_handle);
if (conn != NULL){
memcpy(conn->address, addr, 6);
conn->address_type = addr_type;
}
}
else
#endif
{
// if we're slave, it was an incoming connection and advertisements have stopped
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
}
#endif
}
// LE connections are auto-accepted, so just create a connection if there isn't one already
if (!conn){
conn = create_connection_for_bd_addr_and_type(addr, addr_type, role);
}
// no memory, sorry.
if (!conn){
return;
}
conn->state = OPEN;
conn->con_handle = con_handle;
conn->le_connection_interval = conn_interval;
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
// workaround: PAST doesn't work without LE Read Remote Features on PacketCraft Controller with LMP 568B
if (hci_command_supported(SUPPORTED_HCI_COMMAND_LE_READ_REMOTE_FEATURES)){
conn->gap_connection_tasks = GAP_CONNECTION_TASK_LE_READ_REMOTE_FEATURES;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
if (role == HCI_ROLE_SLAVE){
hci_update_advertisements_enabled_for_current_roles();
}
#endif
// init unenhanced att bearer mtu
conn->att_connection.mtu = ATT_DEFAULT_MTU;
conn->att_connection.mtu_exchanged = false;
// TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock
// restart timer
// btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS);
// btstack_run_loop_add_timer(&conn->timeout);
log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address));
// emit GAP_SUBEVENT_LE_CONNECTION_COMPLETE
hci_emit_btstack_event(gap_event, sizeof(gap_event), 1);
// emit BTSTACK_EVENT_NR_CONNECTIONS_CHANGED;
hci_emit_nr_connections_changed();
}
#endif
#ifdef ENABLE_CLASSIC
static bool hci_ssp_security_level_possible_for_io_cap(gap_security_level_t level, uint8_t io_cap_local, uint8_t io_cap_remote){
if (io_cap_local == SSP_IO_CAPABILITY_UNKNOWN) return false;
// LEVEL_4 is tested by l2cap
// LEVEL 3 requires MITM protection -> check io capabilities if Authenticated is possible
// @see: Core Spec v5.3, Vol 3, Part C, Table 5.7
if (level >= LEVEL_3){
// MITM not possible without keyboard or display
if (io_cap_remote >= SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT) return false;
if (io_cap_local >= SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT) return false;
// MITM possible if one side has keyboard and the other has keyboard or display
if (io_cap_remote == SSP_IO_CAPABILITY_KEYBOARD_ONLY) return true;
if (io_cap_local == SSP_IO_CAPABILITY_KEYBOARD_ONLY) return true;
// MITM not possible if one side has only display and other side has no keyboard
if (io_cap_remote == SSP_IO_CAPABILITY_DISPLAY_ONLY) return false;
if (io_cap_local == SSP_IO_CAPABILITY_DISPLAY_ONLY) return false;
}
// LEVEL 2 requires SSP, which is a given
return true;
}
static void hci_ssp_assess_security_on_io_cap_request(hci_connection_t * conn){
// get requested security level
gap_security_level_t requested_security_level = conn->requested_security_level;
if (hci_stack->gap_secure_connections_only_mode){
requested_security_level = LEVEL_4;
}
// assess security: LEVEL 4 requires SC
// skip this preliminary test if remote features are not available yet to work around potential issue in ESP32 controller
if ((requested_security_level == LEVEL_4) &&
((conn->bonding_flags & BONDING_RECEIVED_REMOTE_FEATURES) != 0) &&
!hci_remote_sc_enabled(conn)){
log_info("Level 4 required, but SC not supported -> abort");
hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY);
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
return;
}
// assess bonding requirements: abort if remote in dedicated bonding mode but we are non-bonding
// - GAP/MOD/NBON/BV-02-C
// - GAP/DM/NBON/BV-01-C
if (conn->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE){
switch (conn->io_cap_response_auth_req){
case SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING:
case SSP_IO_AUTHREQ_MITM_PROTECTION_REQUIRED_DEDICATED_BONDING:
if (hci_stack->bondable == false){
log_info("Dedicated vs. non-bondable -> abort");
hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY);
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
return;
}
default:
break;
}
}
// assess security based on io capabilities
if (conn->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE){
// responder: fully validate io caps of both sides as well as OOB data
bool security_possible = false;
security_possible = hci_ssp_security_level_possible_for_io_cap(requested_security_level, hci_stack->ssp_io_capability, conn->io_cap_response_io);
#ifdef ENABLE_CLASSIC_PAIRING_OOB
// We assume that both Controller can reach LEVEL 4, if one side has received P-192 and the other has received P-256,
// so we merge the OOB data availability
uint8_t have_oob_data = conn->io_cap_response_oob_data;
if (conn->classic_oob_c_192 != NULL){
have_oob_data |= 1;
}
if (conn->classic_oob_c_256 != NULL){
have_oob_data |= 2;
}
// for up to Level 3, either P-192 as well as P-256 will do
// if we don't support SC, then a) conn->classic_oob_c_256 will be NULL and b) remote should not report P-256 available
// if remote does not SC, we should not receive P-256 data either
if ((requested_security_level <= LEVEL_3) && (have_oob_data != 0)){
security_possible = true;
}
// for Level 4, P-256 is needed
if ((requested_security_level == LEVEL_4 && ((have_oob_data & 2) != 0))){
security_possible = true;
}
#endif
if (security_possible == false){
log_info("IOCap/OOB insufficient for level %u -> abort", requested_security_level);
hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY);
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
return;
}
} else {
// initiator: remote io cap not yet, only check if we have ability for MITM protection if requested and OOB is not supported
#ifndef ENABLE_CLASSIC_PAIRING_OOB
#ifndef ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY
if ((conn->requested_security_level >= LEVEL_3) && (hci_stack->ssp_io_capability >= SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT)){
log_info("Level 3+ required, but no input/output -> abort");
hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY);
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
return;
}
#endif
#endif
}
#ifndef ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY
if (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN){
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY);
} else {
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
}
#endif
}
#endif
static void event_handler(uint8_t *packet, uint16_t size){
uint16_t event_length = packet[1];
// assert packet is complete
if (size != (event_length + 2u)){
log_error("event_handler called with packet of wrong size %d, expected %u => dropping packet", size, event_length + 2);
return;
}
hci_con_handle_t handle;
hci_connection_t * conn;
int i;
#ifdef ENABLE_CLASSIC
hci_link_type_t link_type;
bd_addr_t addr;
bd_addr_type_t addr_type;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
hci_iso_stream_t * iso_stream;
le_audio_big_t * big;
le_audio_big_sync_t * big_sync;
#endif
#if defined(ENABLE_LE_ISOCHRONOUS_STREAMS) || defined(ENABLE_LE_EXTENDED_ADVERTISING)
btstack_linked_list_iterator_t it;
#endif
#if defined(ENABLE_LE_EXTENDED_ADVERTISING) && defined(ENABLE_LE_CENTRAL)
uint8_t advertising_handle;
#endif
// log_info("HCI:EVENT:%02x", hci_event_packet_get_type(packet));
switch (hci_event_packet_get_type(packet)) {
case HCI_EVENT_COMMAND_COMPLETE:
handle_command_complete_event(packet, size);
break;
case HCI_EVENT_COMMAND_STATUS:
handle_command_status_event(packet, size);
break;
case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{
if (size < 3) return;
uint16_t num_handles = packet[2];
if (size != (3u + num_handles * 4u)) return;
#ifdef ENABLE_CLASSIC
bool notify_sco = false;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
bool notify_iso = false;
#endif
uint16_t offset = 3;
for (i=0; i<num_handles;i++){
handle = little_endian_read_16(packet, offset) & 0x0fffu;
offset += 2u;
uint16_t num_packets = little_endian_read_16(packet, offset);
offset += 2u;
conn = hci_connection_for_handle(handle);
if (conn != NULL) {
if (conn->num_packets_sent >= num_packets) {
conn->num_packets_sent -= num_packets;
} else {
log_error("hci_number_completed_packets, more packet slots freed then sent.");
conn->num_packets_sent = 0;
}
// log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_packets_sent);
#ifdef ENABLE_CLASSIC
if (conn->address_type == BD_ADDR_TYPE_SCO){
notify_sco = true;
}
#endif
}
#ifdef ENABLE_CONTROLLER_DUMP_PACKETS
hci_controller_dump_packets();
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
if (conn == NULL){
iso_stream = hci_iso_stream_for_con_handle(handle);
if (iso_stream != NULL){
if (iso_stream->num_packets_sent >= num_packets) {
iso_stream->num_packets_sent -= num_packets;
} else {
log_error("hci_number_completed_packets, more packet slots freed then sent.");
iso_stream->num_packets_sent = 0;
}
if (iso_stream->iso_type == HCI_ISO_TYPE_BIS){
big = hci_big_for_handle(iso_stream->group_id);
if (big != NULL){
big->num_completed_timestamp_current_valid = true;
big->num_completed_timestamp_current_ms = btstack_run_loop_get_time_ms();
}
}
log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u",
num_packets, handle, iso_stream->num_packets_sent);
notify_iso = true;
}
}
#endif
}
#ifdef ENABLE_CLASSIC
if (notify_sco){
hci_notify_if_sco_can_send_now();
}
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
if (notify_iso){
hci_iso_notify_can_send_now();
}
#endif
break;
}
#ifdef ENABLE_CLASSIC
case HCI_EVENT_FLUSH_OCCURRED:
// flush occurs only if automatic flush has been enabled by gap_enable_link_watchdog()
handle = hci_event_flush_occurred_get_handle(packet);
conn = hci_connection_for_handle(handle);
if (conn) {
log_info("Flush occurred, disconnect 0x%04x", handle);
conn->state = SEND_DISCONNECT;
}
break;
case HCI_EVENT_INQUIRY_COMPLETE:
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_ACTIVE){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE;
uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0};
hci_emit_btstack_event(event, sizeof(event), 1);
}
break;
case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE:
if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W4_COMPLETE){
hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_IDLE;
}
break;
case HCI_EVENT_CONNECTION_REQUEST:
reverse_bd_addr(&packet[2], addr);
link_type = (hci_link_type_t) packet[11];
// CVE-2020-26555: reject incoming connection from device with same BD ADDR
if (memcmp(hci_stack->local_bd_addr, addr, 6) == 0){
hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR;
bd_addr_copy(hci_stack->decline_addr, addr);
break;
}
if (hci_stack->gap_classic_accept_callback != NULL){
if ((*hci_stack->gap_classic_accept_callback)(addr, link_type) == 0){
hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_SECURITY_REASONS;
bd_addr_copy(hci_stack->decline_addr, addr);
break;
}
}
// TODO: eval COD 8-10
log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), (unsigned int) link_type);
addr_type = (link_type == HCI_LINK_TYPE_ACL) ? BD_ADDR_TYPE_ACL : BD_ADDR_TYPE_SCO;
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (!conn) {
conn = create_connection_for_bd_addr_and_type(addr, addr_type, HCI_ROLE_SLAVE);
}
if (!conn) {
// CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D)
hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_LIMITED_RESOURCES;
bd_addr_copy(hci_stack->decline_addr, addr);
hci_run();
// avoid event to higher layer
return;
}
conn->state = RECEIVED_CONNECTION_REQUEST;
// store info about eSCO
if (link_type == HCI_LINK_TYPE_ESCO){
conn->remote_supported_features[0] |= 1;
}
// propagate remote supported sco packet packets from existing ACL to new SCO connection
if (addr_type == BD_ADDR_TYPE_SCO){
const hci_connection_t * acl_conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
// ACL exists unless fuzzing
if (acl_conn != NULL) {
conn->remote_supported_sco_packets = acl_conn->remote_supported_sco_packets;
}
}
hci_run();
break;
case HCI_EVENT_CONNECTION_COMPLETE:
// Connection management
reverse_bd_addr(&packet[5], addr);
log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr));
addr_type = BD_ADDR_TYPE_ACL;
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (conn) {
switch (conn->state){
// expected states
case ACCEPTED_CONNECTION_REQUEST:
case SENT_CREATE_CONNECTION:
break;
// unexpected state -> ignore
default:
// don't forward event to app
return;
}
if (!packet[2]){
conn->state = OPEN;
conn->con_handle = little_endian_read_16(packet, 3);
// trigger write supervision timeout if we're master
if ((hci_stack->link_supervision_timeout != HCI_LINK_SUPERVISION_TIMEOUT_DEFAULT) && (conn->role == HCI_ROLE_MASTER)){
conn->gap_connection_tasks |= GAP_CONNECTION_TASK_WRITE_SUPERVISION_TIMEOUT;
}
// trigger write automatic flush timeout
if (hci_stack->automatic_flush_timeout != 0){
conn->gap_connection_tasks |= GAP_CONNECTION_TASK_WRITE_AUTOMATIC_FLUSH_TIMEOUT;
}
// restart timer
btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS);
btstack_run_loop_add_timer(&conn->timeout);
// trigger remote features for dedicated bonding
if ((conn->bonding_flags & BONDING_DEDICATED) != 0){
hci_trigger_remote_features_for_connection(conn);
}
log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address));
hci_emit_nr_connections_changed();
} else {
// connection failed
hci_handle_connection_failed(conn, packet[2]);
}
}
break;
case HCI_EVENT_SYNCHRONOUS_CONNECTION_COMPLETE:
reverse_bd_addr(&packet[5], addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO);
log_info("Synchronous Connection Complete for %p (status=%u) %s", conn, packet[2], bd_addr_to_str(addr));
// SCO exists unless fuzzer
if (conn == NULL) break;
if (packet[2] != ERROR_CODE_SUCCESS){
// connection failed, remove entry
hci_handle_connection_failed(conn, packet[2]);
break;
}
conn->state = OPEN;
conn->con_handle = little_endian_read_16(packet, 3);
// update sco payload length for eSCO connections
if (hci_event_synchronous_connection_complete_get_tx_packet_length(packet) > 0){
conn->sco_payload_length = hci_event_synchronous_connection_complete_get_tx_packet_length(packet);
log_info("eSCO Complete, set payload len %u", conn->sco_payload_length);
}
#ifdef ENABLE_SCO_OVER_HCI
// update SCO
if (conn->address_type == BD_ADDR_TYPE_SCO && hci_stack->hci_transport && hci_stack->hci_transport->set_sco_config){
hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections());
}
// trigger can send now
if (hci_have_usb_transport()){
hci_stack->sco_can_send_now = true;
}
// setup implicit sco flow control
conn->sco_tx_ready = 0;
conn->sco_tx_active = 0;
conn->sco_established_ms = btstack_run_loop_get_time_ms();
#endif
#ifdef HAVE_SCO_TRANSPORT
// configure sco transport
if (hci_stack->sco_transport != NULL){
sco_format_t sco_format = ((hci_stack->sco_voice_setting_active & 0x03) == 0x03) ? SCO_FORMAT_8_BIT : SCO_FORMAT_16_BIT;
hci_stack->sco_transport->open(conn->con_handle, sco_format);
}
#endif
break;
case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE:
handle = little_endian_read_16(packet, 3);
conn = hci_connection_for_handle(handle);
if (!conn) break;
if (!packet[2]){
const uint8_t * features = &packet[5];
hci_handle_remote_features_page_0(conn, features);
// read extended features if possible
if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_REMOTE_EXTENDED_FEATURES)
&& ((conn->remote_supported_features[0] & 2) != 0)) {
conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_1;
break;
}
}
hci_handle_remote_features_received(conn);
break;
case HCI_EVENT_READ_REMOTE_EXTENDED_FEATURES_COMPLETE:
handle = little_endian_read_16(packet, 3);
conn = hci_connection_for_handle(handle);
if (!conn) break;
// status = ok, page = 1
if (!packet[2]) {
uint8_t page_number = packet[5];
uint8_t maximum_page_number = packet[6];
const uint8_t * features = &packet[7];
bool done = false;
switch (page_number){
case 1:
hci_handle_remote_features_page_1(conn, features);
if (maximum_page_number >= 2){
// get Secure Connections (Controller) from Page 2 if available
conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_2;
} else {
// otherwise, assume SC (Controller) == SC (Host)
if ((conn->bonding_flags & BONDING_REMOTE_SUPPORTS_SC_HOST) != 0){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_CONTROLLER;
}
done = true;
}
break;
case 2:
hci_handle_remote_features_page_2(conn, features);
done = true;
break;
default:
break;
}
if (!done) break;
}
hci_handle_remote_features_received(conn);
break;
case HCI_EVENT_LINK_KEY_REQUEST:
#ifndef ENABLE_EXPLICIT_LINK_KEY_REPLY
hci_event_link_key_request_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
// lookup link key in db if not cached
if ((conn->link_key_type == INVALID_LINK_KEY) && (hci_stack->link_key_db != NULL)){
hci_stack->link_key_db->get_link_key(conn->address, conn->link_key, &conn->link_key_type);
}
// response sent by hci_run()
conn->authentication_flags |= AUTH_FLAG_HANDLE_LINK_KEY_REQUEST;
#endif
break;
case HCI_EVENT_LINK_KEY_NOTIFICATION: {
hci_event_link_key_request_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
hci_pairing_complete(conn, ERROR_CODE_SUCCESS);
// CVE-2020-26555: ignore NULL link key
// default link_key_type = INVALID_LINK_KEY asserts that NULL key won't be used for encryption
if (btstack_is_null(&packet[8], 16)) break;
link_key_type_t link_key_type = (link_key_type_t)packet[24];
// Change Connection Encryption keeps link key type
if (link_key_type != CHANGED_COMBINATION_KEY){
conn->link_key_type = link_key_type;
}
// cache link key. link keys stored in little-endian format for legacy reasons
memcpy(&conn->link_key, &packet[8], 16);
// only store link key:
// - if bondable enabled
if (hci_stack->bondable == false) break;
// - if at least one side requests bonding during the IO Capabilities exchange.
// Note: we drop bonding flag in acceptor role if remote doesn't request it
bool bonding_local = conn->io_cap_request_auth_req >= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING;
bool bonding_remote = conn->io_cap_response_auth_req >= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING;
if ((bonding_local == false) && (bonding_remote == false)) break;
// - if security level sufficient
if (gap_security_level_for_link_key_type(link_key_type) < conn->requested_security_level) break;
gap_store_link_key_for_bd_addr(addr, &packet[8], conn->link_key_type);
break;
}
case HCI_EVENT_PIN_CODE_REQUEST:
hci_event_pin_code_request_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
hci_pairing_started(conn, false);
// abort pairing if: non-bondable mode (pin code request is not forwarded to app)
if (!hci_stack->bondable ){
conn->authentication_flags |= AUTH_FLAG_DENY_PIN_CODE_REQUEST;
hci_pairing_complete(conn, ERROR_CODE_PAIRING_NOT_ALLOWED);
hci_run();
return;
}
// abort pairing if: LEVEL_4 required (pin code request is not forwarded to app)
if ((hci_stack->gap_secure_connections_only_mode) || (conn->requested_security_level == LEVEL_4)){
log_info("Level 4 required, but SC not supported -> abort");
conn->authentication_flags |= AUTH_FLAG_DENY_PIN_CODE_REQUEST;
hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY);
hci_run();
return;
}
break;
case HCI_EVENT_IO_CAPABILITY_RESPONSE:
hci_event_io_capability_response_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE);
hci_pairing_started(conn, true);
conn->io_cap_response_auth_req = hci_event_io_capability_response_get_authentication_requirements(packet);
conn->io_cap_response_io = hci_event_io_capability_response_get_io_capability(packet);
#ifdef ENABLE_CLASSIC_PAIRING_OOB
conn->io_cap_response_oob_data = hci_event_io_capability_response_get_oob_data_present(packet);
#endif
break;
case HCI_EVENT_IO_CAPABILITY_REQUEST:
hci_event_io_capability_response_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_RECV_IO_CAPABILITIES_REQUEST);
hci_connection_timestamp(conn);
hci_pairing_started(conn, true);
break;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
case HCI_EVENT_REMOTE_OOB_DATA_REQUEST:
hci_event_remote_oob_data_request_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
hci_connection_timestamp(conn);
hci_pairing_started(conn, true);
connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_REMOTE_OOB_DATA_REPLY);
break;
#endif
case HCI_EVENT_USER_CONFIRMATION_REQUEST:
hci_event_user_confirmation_request_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
if (hci_ssp_security_level_possible_for_io_cap(conn->requested_security_level, hci_stack->ssp_io_capability, conn->io_cap_response_io)) {
if (hci_stack->ssp_auto_accept){
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_SEND_USER_CONFIRM_REPLY);
};
} else {
hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY);
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_SEND_USER_CONFIRM_NEGATIVE_REPLY);
// don't forward event to app
hci_run();
return;
}
break;
case HCI_EVENT_USER_PASSKEY_REQUEST:
// Pairing using Passkey results in MITM protection. If Level 4 is required, support for SC is validated on IO Cap Request
if (hci_stack->ssp_auto_accept){
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_SEND_USER_PASSKEY_REPLY);
};
break;
case HCI_EVENT_MODE_CHANGE:
handle = hci_event_mode_change_get_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
conn->connection_mode = hci_event_mode_change_get_mode(packet);
log_info("HCI_EVENT_MODE_CHANGE, handle 0x%04x, mode %u", handle, conn->connection_mode);
break;
#endif
case HCI_EVENT_ENCRYPTION_CHANGE:
case HCI_EVENT_ENCRYPTION_CHANGE_V2:
handle = hci_event_encryption_change_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
if (hci_event_encryption_change_get_status(packet) == ERROR_CODE_SUCCESS) {
uint8_t encryption_enabled = hci_event_encryption_change_get_encryption_enabled(packet);
if (encryption_enabled){
if (hci_is_le_connection(conn)){
// For LE, we accept connection as encrypted
conn->authentication_flags |= AUTH_FLAG_CONNECTION_ENCRYPTED;
}
#ifdef ENABLE_CLASSIC
else {
// Detect Secure Connection -> Legacy Connection Downgrade Attack (BIAS)
bool sc_used_during_pairing = gap_secure_connection_for_link_key_type(conn->link_key_type);
bool connected_uses_aes_ccm = encryption_enabled == 2;
if (hci_stack->secure_connections_active && sc_used_during_pairing && !connected_uses_aes_ccm){
#ifdef ENABLE_TESTING_SUPPORT
// The following tests require to reject L2CAP connection as SC has been disabled on the remote
// - GAP/SEC/SEM/BI-31-C
// - GAP/SEC/SEM/BI-32-C
// - GAP/SEC/SEM/BI-33-C
// Our release code (aggressively) disconnects the HCI connection, without a chance to respond to PTS
// To pass the tests, we only downgrade the link key type instead of the more secure disconnect
link_key_type_t new_link_key_type = UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192;
if (conn->link_key_type == AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256){
new_link_key_type = AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192;
}
log_info("SC during pairing, but only E0 now -> downgrade link key type from %u to %u",
conn->link_key_type, new_link_key_type);
conn->link_key_type = new_link_key_type;
#else
log_info("SC during pairing, but only E0 now -> abort");
conn->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK;
break;
#endif
}
#ifdef ENABLE_MUTUAL_AUTHENTICATION_FOR_LEGACY_SECURE_CONNECTIONS
// if AES-CCM is used, authentication used SC -> authentication was mutual and we can skip explicit authentication
if (connected_uses_aes_ccm){
conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED;
}
#else
// We consider even Legacy Secure Connections as authenticated as BTstack mandates encryption
// with encryption key size > hci_stack->gap_required_encryption_key_size
// for all operations that require any security. See BIAS attacks.
conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED;
#endif
// validate encryption key size
if (hci_event_packet_get_type(packet) == HCI_EVENT_ENCRYPTION_CHANGE_V2) {
uint8_t encryption_key_size = hci_event_encryption_change_v2_get_encryption_key_size(packet);
// already got encryption key size
hci_handle_read_encryption_key_size_complete(conn, encryption_key_size);
} else {
if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_ENCRYPTION_KEY_SIZE)) {
// For Classic, we need to validate encryption key size first, if possible (== supported by Controller)
conn->bonding_flags |= BONDING_SEND_READ_ENCRYPTION_KEY_SIZE;
} else {
// if not, pretend everything is perfect
hci_handle_read_encryption_key_size_complete(conn, 16);
}
}
}
#endif
} else {
conn->authentication_flags &= ~AUTH_FLAG_CONNECTION_ENCRYPTED;
}
} else {
#ifdef ENABLE_CLASSIC
if (!hci_is_le_connection(conn)){
uint8_t status = hci_event_encryption_change_get_status(packet);
if ((conn->bonding_flags & BONDING_DEDICATED) != 0){
conn->bonding_flags &= ~BONDING_DEDICATED;
conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE;
conn->bonding_status = status;
}
// trigger security update -> level 0
hci_handle_mutual_authentication_completed(conn);
}
#endif
}
break;
#ifdef ENABLE_CLASSIC
case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT:
handle = hci_event_authentication_complete_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
// clear authentication active flag
conn->bonding_flags &= ~BONDING_SENT_AUTHENTICATE_REQUEST;
hci_pairing_complete(conn, hci_event_authentication_complete_get_status(packet));
// authenticated only if auth status == 0
if (hci_event_authentication_complete_get_status(packet) == 0){
// authenticated
conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED;
// If not already encrypted, start encryption
if ((conn->authentication_flags & AUTH_FLAG_CONNECTION_ENCRYPTED) == 0){
conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST;
break;
}
}
// emit updated security level (will be 0 if not authenticated)
hci_handle_mutual_authentication_completed(conn);
break;
case HCI_EVENT_SIMPLE_PAIRING_COMPLETE:
hci_event_simple_pairing_complete_get_bd_addr(packet, addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
// treat successfully paired connection as authenticated
if (hci_event_simple_pairing_complete_get_status(packet) == ERROR_CODE_SUCCESS){
conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED;
}
hci_pairing_complete(conn, hci_event_simple_pairing_complete_get_status(packet));
break;
#endif
// HCI_EVENT_DISCONNECTION_COMPLETE
// has been split, to first notify stack before shutting connection down
// see end of function, too.
case HCI_EVENT_DISCONNECTION_COMPLETE:
if (packet[2]) break; // status != 0
handle = little_endian_read_16(packet, 3);
// drop outgoing ACL fragments if it is for closed connection and release buffer if tx not active
if (hci_stack->acl_fragmentation_total_size > 0u) {
if (handle == READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer)){
int release_buffer = hci_stack->acl_fragmentation_tx_active == 0u;
log_info("drop fragmented ACL data for closed connection, release buffer %u", release_buffer);
hci_stack->acl_fragmentation_total_size = 0;
hci_stack->acl_fragmentation_pos = 0;
if (release_buffer){
hci_release_packet_buffer();
}
}
}
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
// drop outgoing ISO fragments if it is for closed connection and release buffer if tx not active
if (hci_stack->iso_fragmentation_total_size > 0u) {
if (handle == READ_ISO_CONNECTION_HANDLE(hci_stack->hci_packet_buffer)){
int release_buffer = hci_stack->iso_fragmentation_tx_active == 0u;
log_info("drop fragmented ISO data for closed connection, release buffer %u", release_buffer);
hci_stack->iso_fragmentation_total_size = 0;
hci_stack->iso_fragmentation_pos = 0;
if (release_buffer){
hci_release_packet_buffer();
}
}
}
// finalize iso stream for CIS handle
iso_stream = hci_iso_stream_for_con_handle(handle);
if (iso_stream != NULL){
hci_iso_stream_finalize(iso_stream);
break;
}
#endif
#if defined(ENABLE_BLE) && defined (ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND)
if ((handle != HCI_CON_HANDLE_INVALID) && (handle == hci_stack->hci_command_con_handle)){
// we did not receive a HCI Command Complete or HCI Command Status event for the disconnected connection
// if needed, we could also track the hci command opcode and simulate a hci command complete with status
// but the connection has failed anyway, so for now, we only set the num hci commands back to 1
log_info("Disconnect for conn handle 0x%04x in pending HCI command, assume command failed", handle);
hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID;
hci_stack->num_cmd_packets = 1;
}
#endif
conn = hci_connection_for_handle(handle);
if (!conn) break;
#ifdef ENABLE_CLASSIC
// pairing failed if it was ongoing
hci_pairing_complete(conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
#endif
// emit dedicated bonding event
if (conn->bonding_flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){
hci_emit_dedicated_bonding_result(conn->address, conn->bonding_status);
}
// mark connection for shutdown, stop timers, reset state
conn->state = RECEIVED_DISCONNECTION_COMPLETE;
hci_connection_stop_timer(conn);
hci_connection_init(conn);
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_PERIPHERAL
// re-enable advertisements for le connections if active
if (hci_is_le_connection(conn)){
hci_update_advertisements_enabled_for_current_roles();
}
#endif
#endif
break;
case HCI_EVENT_HARDWARE_ERROR:
log_error("Hardware Error: 0x%02x", packet[2]);
if (hci_stack->hardware_error_callback){
(*hci_stack->hardware_error_callback)(packet[2]);
} else {
// if no special requests, just reboot stack
hci_power_control_off();
hci_power_control_on();
}
break;
#ifdef ENABLE_CLASSIC
case HCI_EVENT_ROLE_CHANGE:
if (packet[2]) break; // status != 0
reverse_bd_addr(&packet[3], addr);
addr_type = BD_ADDR_TYPE_ACL;
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (!conn) break;
conn->role = (hci_role_t) packet[9];
break;
#endif
case HCI_EVENT_TRANSPORT_PACKET_SENT:
// release packet buffer only for asynchronous transport and if there are not further fragments
if (hci_transport_synchronous()) {
log_error("Synchronous HCI Transport shouldn't send HCI_EVENT_TRANSPORT_PACKET_SENT");
return; // instead of break: to avoid re-entering hci_run()
}
hci_stack->acl_fragmentation_tx_active = 0;
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
hci_stack->iso_fragmentation_tx_active = 0;
if (hci_stack->iso_fragmentation_total_size) break;
#endif
if (hci_stack->acl_fragmentation_total_size) break;
// release packet buffer without HCI_EVENT_TRANSPORT_PACKET_SENT (as it will be later)
hci_stack->hci_packet_buffer_reserved = false;
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
hci_iso_notify_can_send_now();
#endif
// L2CAP receives this event via the hci_emit_event below
#ifdef ENABLE_CLASSIC
// For SCO, we do the can_send_now_check here
hci_notify_if_sco_can_send_now();
#endif
break;
#ifdef ENABLE_CLASSIC
case HCI_EVENT_SCO_CAN_SEND_NOW:
// For SCO, we do the can_send_now_check here
hci_stack->sco_can_send_now = true;
hci_notify_if_sco_can_send_now();
return;
// explode inquiry results for easier consumption
case HCI_EVENT_INQUIRY_RESULT:
case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:
case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE:
gap_inquiry_explode(packet, size);
break;
#endif
#ifdef ENABLE_BLE
case HCI_EVENT_LE_META:
switch (packet[2]){
#ifdef ENABLE_LE_CENTRAL
case HCI_SUBEVENT_LE_ADVERTISING_REPORT:
if (!hci_stack->le_scanning_enabled) break;
le_handle_advertisement_report(packet, size);
break;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
case HCI_SUBEVENT_LE_EXTENDED_ADVERTISING_REPORT:
if (!hci_stack->le_scanning_enabled) break;
le_handle_extended_advertisement_report(packet, size);
break;
case HCI_SUBEVENT_LE_PERIODIC_ADVERTISING_SYNC_ESTABLISHMENT:
hci_stack->le_periodic_sync_request = LE_CONNECTING_IDLE;
hci_stack->le_periodic_sync_state = LE_CONNECTING_IDLE;
break;
case HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED:
advertising_handle = hci_subevent_le_advertising_set_terminated_get_advertising_handle(packet);
if (advertising_handle == LE_EXTENDED_ADVERTISING_LEGACY_HANDLE){
// legacy advertisements
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
hci_update_advertisements_enabled_for_current_roles();
} else {
btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets);
while (btstack_linked_list_iterator_has_next(&it)) {
le_advertising_set_t *advertising_set = (le_advertising_set_t *) btstack_linked_list_iterator_next(&it);
if (advertising_set->advertising_handle == advertising_handle){
advertising_set->state &= ~(LE_ADVERTISEMENT_STATE_ACTIVE | LE_ADVERTISEMENT_STATE_ENABLED);
}
}
}
// event may come before le connection complete and announces new connection
if (hci_subevent_le_advertising_set_terminated_get_status(packet) == ERROR_CODE_SUCCESS){
handle = hci_subevent_le_advertising_set_terminated_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (conn == NULL){
// use placeholder address for peer, will be overwritten in hci_handle_le_connection_complete_event()
bd_addr_t addr;
memset(addr, 0, 6);
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_UNKNOWN, HCI_ROLE_SLAVE);
if (conn != NULL){
conn->state = ANNOUNCED;
conn->con_handle = handle;
}
}
}
break;
#endif
#endif
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V1:
case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V2:
hci_handle_le_connection_complete_event(packet);
break;
// log_info("LE buffer size: %u, count %u", little_endian_read_16(packet,6), packet[8]);
case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE:
handle = hci_subevent_le_connection_update_complete_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
conn->le_connection_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet);
break;
case HCI_SUBEVENT_LE_REMOTE_CONNECTION_PARAMETER_REQUEST:
// connection
handle = hci_subevent_le_remote_connection_parameter_request_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (conn) {
// read arguments
uint16_t le_conn_interval_min = hci_subevent_le_remote_connection_parameter_request_get_interval_min(packet);
uint16_t le_conn_interval_max = hci_subevent_le_remote_connection_parameter_request_get_interval_max(packet);
uint16_t le_conn_latency = hci_subevent_le_remote_connection_parameter_request_get_latency(packet);
uint16_t le_supervision_timeout = hci_subevent_le_remote_connection_parameter_request_get_timeout(packet);
// validate against current connection parameter range
le_connection_parameter_range_t existing_range;
gap_get_connection_parameter_range(&existing_range);
int update_parameter = gap_connection_parameter_range_included(&existing_range, le_conn_interval_min, le_conn_interval_max, le_conn_latency, le_supervision_timeout);
if (update_parameter){
conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_REPLY;
conn->le_conn_interval_min = le_conn_interval_min;
conn->le_conn_interval_max = le_conn_interval_max;
conn->le_conn_latency = le_conn_latency;
conn->le_supervision_timeout = le_supervision_timeout;
} else {
conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NEGATIVE_REPLY;
}
}
break;
#ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS
case HCI_SUBEVENT_LE_DATA_LENGTH_CHANGE:
handle = hci_subevent_le_data_length_change_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (conn) {
conn->le_max_tx_octets = hci_subevent_le_data_length_change_get_max_tx_octets(packet);
}
break;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
case HCI_SUBEVENT_LE_CIS_REQUEST:
// incoming CIS request, allocate iso stream object and cache metadata
iso_stream = hci_iso_stream_create(HCI_ISO_TYPE_CIS, HCI_ISO_STREAM_W4_USER,
hci_subevent_le_cis_request_get_cig_id(packet),
hci_subevent_le_cis_request_get_cis_id(packet));
// if there's no memory, gap_cis_accept/gap_cis_reject will fail
if (iso_stream != NULL){
iso_stream->cis_handle = hci_subevent_le_cis_request_get_cis_connection_handle(packet);
iso_stream->acl_handle = hci_subevent_le_cis_request_get_acl_connection_handle(packet);
}
break;
case HCI_SUBEVENT_LE_CIS_ESTABLISHED:
if (hci_stack->iso_active_operation_type == HCI_ISO_TYPE_CIS){
handle = hci_subevent_le_cis_established_get_connection_handle(packet);
uint8_t status = hci_subevent_le_cis_established_get_status(packet);
iso_stream = hci_iso_stream_for_con_handle(handle);
btstack_assert(iso_stream != NULL);
// track connection info
iso_stream->number_of_subevents = hci_subevent_le_cis_established_get_nse(packet);
iso_stream->burst_number_c_to_p = hci_subevent_le_cis_established_get_bn_c_to_p(packet);
iso_stream->burst_number_p_to_c = hci_subevent_le_cis_established_get_bn_p_to_c(packet);
iso_stream->flush_timeout_c_to_p = hci_subevent_le_cis_established_get_ft_c_to_p(packet);
iso_stream->flush_timeout_p_to_c = hci_subevent_le_cis_established_get_ft_p_to_c(packet);
iso_stream->max_sdu_c_to_p = hci_subevent_le_cis_established_get_max_pdu_c_to_p(packet);
iso_stream->max_sdu_p_to_c = hci_subevent_le_cis_established_get_max_pdu_p_to_c(packet);
iso_stream->iso_interval_1250us = hci_subevent_le_cis_established_get_iso_interval(packet);
if (hci_stack->iso_active_operation_group_id == HCI_ISO_GROUP_ID_SINGLE_CIS){
// CIS Accept by Peripheral
if (status == ERROR_CODE_SUCCESS){
if (iso_stream->max_sdu_p_to_c > 0){
// we're peripheral and we will send data
iso_stream->state = HCI_ISO_STREAM_STATE_W2_SETUP_ISO_INPUT;
} else {
// we're peripheral and we will only receive data
iso_stream->state = HCI_ISO_STREAM_STATE_W2_SETUP_ISO_OUTPUT;
}
} else {
hci_cis_handle_created(iso_stream, status);
}
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
} else {
// CIG Setup by Central
le_audio_cig_t * cig = hci_cig_for_id(hci_stack->iso_active_operation_group_id);
btstack_assert(cig != NULL);
// update iso stream state
if (status == ERROR_CODE_SUCCESS){
iso_stream->state = HCI_ISO_STREAM_STATE_ESTABLISHED;
} else {
iso_stream->state = HCI_ISO_STREAM_STATE_IDLE;
}
// update cig state
for (i=0;i<cig->num_cis;i++){
if (cig->cis_con_handles[i] == handle){
cig->cis_setup_active[i] = false;
if (status == ERROR_CODE_SUCCESS){
cig->cis_established[i] = true;
} else {
hci_cis_handle_created(iso_stream, status);
}
}
}
// trigger iso path setup if complete
bool cis_setup_active = false;
for (i=0;i<cig->num_cis;i++){
cis_setup_active |= cig->cis_setup_active[i];
}
if (cis_setup_active == false){
cig->state_vars.next_cis = 0;
cig->state = LE_AUDIO_CIG_STATE_SETUP_ISO_PATH;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
}
}
}
break;
case HCI_SUBEVENT_LE_CREATE_BIG_COMPLETE:
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
big = hci_big_for_handle(packet[4]);
if (big != NULL){
uint8_t status = packet[3];
if (status == ERROR_CODE_SUCCESS){
// store bis_con_handles and trigger iso path setup
uint8_t num_bis = btstack_min(big->num_bis, packet[20]);
for (i=0;i<num_bis;i++){
hci_con_handle_t bis_handle = (hci_con_handle_t) little_endian_read_16(packet, 21 + (2 * i));
big->bis_con_handles[i] = bis_handle;
// assign bis handle
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) &&
(iso_stream->group_id == big->big_handle)){
iso_stream->cis_handle = bis_handle;
iso_stream->state = HCI_ISO_STREAM_STATE_ESTABLISHED;
break;
}
}
}
if (big->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED) {
big->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH;
big->state_vars.next_bis = 0;
}
} else {
// create BIG failed or has been stopped by us
hci_iso_create_big_failed(big, status);
}
}
break;
case HCI_SUBEVENT_LE_TERMINATE_BIG_COMPLETE:
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
big = hci_big_for_handle(hci_subevent_le_terminate_big_complete_get_big_handle(packet));
if (big != NULL){
// finalize associated ISO streams
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if (iso_stream->group_id == big->big_handle){
log_info("BIG Terminated, big_handle 0x%02x, con handle 0x%04x", iso_stream->group_id, iso_stream->cis_handle);
btstack_linked_list_iterator_remove(&it);
btstack_memory_hci_iso_stream_free(iso_stream);
}
}
btstack_linked_list_remove(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big);
switch (big->state){
case LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED:
hci_emit_big_created(big, big->state_vars.status);
break;
default:
hci_emit_big_terminated(big);
break;
}
}
break;
case HCI_SUBEVENT_LE_BIG_SYNC_ESTABLISHED:
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
big_sync = hci_big_sync_for_handle(packet[4]);
if (big_sync != NULL){
uint8_t status = packet[3];
if (status == ERROR_CODE_SUCCESS){
// store bis_con_handles and trigger iso path setup
uint8_t num_bis = btstack_min(big_sync->num_bis, packet[16]);
for (i=0;i<num_bis;i++){
hci_con_handle_t bis_handle = little_endian_read_16(packet, 17 + (2 * i));
big_sync->bis_con_handles[i] = bis_handle;
// setup iso_stream_t
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) &&
(iso_stream->group_id == big_sync->big_handle)){
iso_stream->cis_handle = bis_handle;
iso_stream->state = HCI_ISO_STREAM_STATE_ESTABLISHED;
break;
}
}
}
if (big_sync->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED) {
// trigger iso path setup
big_sync->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH;
big_sync->state_vars.next_bis = 0;
}
} else {
// create BIG Sync failed or has been stopped by us
hci_iso_big_sync_failed(big_sync, status);
}
}
break;
case HCI_SUBEVENT_LE_BIG_SYNC_LOST:
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
big_sync = hci_big_sync_for_handle(packet[4]);
if (big_sync != NULL){
uint8_t big_handle = packet[4];
btstack_linked_list_remove(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync);
hci_emit_big_sync_stopped(big_handle);
}
break;
#endif
default:
break;
}
break;
#endif
case HCI_EVENT_VENDOR_SPECIFIC:
// Vendor specific commands often create vendor specific event instead of num completed packets
// To avoid getting stuck as num_cmds_packets is zero, reset it to 1 for controllers with this behaviour
switch (hci_stack->manufacturer){
case BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO:
hci_stack->num_cmd_packets = 1;
break;
default:
break;
}
break;
default:
break;
}
handle_event_for_current_stack_state(packet, size);
// notify upper stack
hci_emit_event(packet, size, 0); // don't dump, already happened in packet handler
// moved here to give upper stack a chance to close down everything with hci_connection_t intact
if ((hci_event_packet_get_type(packet) == HCI_EVENT_DISCONNECTION_COMPLETE) && (packet[2] == 0)){
handle = little_endian_read_16(packet, 3);
hci_connection_t * aConn = hci_connection_for_handle(handle);
// discard connection if app did not trigger a reconnect in the event handler
if (aConn && aConn->state == RECEIVED_DISCONNECTION_COMPLETE){
hci_shutdown_connection(aConn);
}
#ifdef ENABLE_CONTROLLER_DUMP_PACKETS
hci_controller_dump_packets();
#endif
}
// execute main loop
hci_run();
}
#ifdef ENABLE_CLASSIC
static void sco_handler(uint8_t * packet, uint16_t size){
// lookup connection struct
hci_con_handle_t con_handle = READ_SCO_CONNECTION_HANDLE(packet);
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return;
#ifdef ENABLE_SCO_OVER_HCI
// CSR 8811 prefixes 60 byte SCO packet in transparent mode with 20 zero bytes -> skip first 20 payload bytes
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){
if ((size == 83) && ((hci_stack->sco_voice_setting_active & 0x03) == 0x03)){
packet[2] = 0x3c;
memmove(&packet[3], &packet[23], 63);
size = 63;
}
}
if (hci_have_usb_transport()){
// Nothing to do
} else {
// log_debug("sco flow %u, handle 0x%04x, packets sent %u, bytes send %u", hci_stack->synchronous_flow_control_enabled, (int) con_handle, conn->num_packets_sent, conn->num_sco_bytes_sent);
if (hci_stack->synchronous_flow_control_enabled == 0){
// ignore received SCO packets for the first 10 ms, then allow for max two HCI_SCO_2EV3_SIZE packets
uint8_t max_sco_packets = (uint8_t) btstack_min(2 * HCI_SCO_2EV3_SIZE / conn->sco_payload_length, hci_stack->sco_packets_total_num);
if (conn->sco_tx_active == 0){
if (btstack_time_delta(btstack_run_loop_get_time_ms(), conn->sco_established_ms) > 10){
conn->sco_tx_active = 1;
conn->sco_tx_ready = max_sco_packets;
log_info("Start SCO sending, %u packets", conn->sco_tx_ready);
hci_notify_if_sco_can_send_now();
}
} else {
if (conn->sco_tx_ready < max_sco_packets){
conn->sco_tx_ready++;
}
hci_notify_if_sco_can_send_now();
}
}
}
#endif
// deliver to app
if (hci_stack->sco_packet_handler) {
hci_stack->sco_packet_handler(HCI_SCO_DATA_PACKET, 0, packet, size);
}
#ifdef HAVE_SCO_TRANSPORT
// We can send one packet for each received packet
conn->sco_tx_ready++;
hci_notify_if_sco_can_send_now();
#endif
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
conn->num_packets_completed++;
hci_stack->host_completed_packets = 1;
hci_run();
#endif
}
#endif
static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
// propagate ISO packets received as ACL
hci_iso_stream_t * iso_stream = NULL;
if ((packet_type == HCI_ACL_DATA_PACKET) && (size >= HCI_ACL_HEADER_SIZE)){
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet);
iso_stream = hci_iso_stream_for_con_handle(con_handle);
if (iso_stream != NULL){
packet_type = HCI_ISO_DATA_PACKET;
}
}
#endif
// don't log internal events unless requested
bool internal_event = (packet_type == HCI_EVENT_PACKET) && (hci_event_packet_get_type(packet) >= BTSTACK_EVENT_FIRST);
bool log_packet = internal_event == false;
#ifdef ENABLE_LOG_BTSTACK_EVENTS
log_packet = true;
#endif
if (log_packet){
hci_dump_packet(packet_type, 1, packet, size);
}
switch (packet_type) {
case HCI_EVENT_PACKET:
event_handler(packet, size);
break;
case HCI_ACL_DATA_PACKET:
acl_handler(packet, size);
break;
#ifdef ENABLE_CLASSIC
case HCI_SCO_DATA_PACKET:
sco_handler(packet, size);
break;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
case HCI_ISO_DATA_PACKET:
if ((iso_stream == NULL) && (size >= HCI_ISO_HEADER_SIZE)){
hci_con_handle_t con_handle = READ_ISO_CONNECTION_HANDLE(packet);
iso_stream = hci_iso_stream_for_con_handle(con_handle);
}
hci_iso_packet_handler(iso_stream, packet, size);
break;
#endif
default:
break;
}
}
/**
* @brief Add event packet handler.
*/
void hci_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
btstack_linked_list_add_tail(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler);
}
/**
* @brief Remove event packet handler.
*/
void hci_remove_event_handler(btstack_packet_callback_registration_t * callback_handler){
btstack_linked_list_remove(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler);
}
/** Register HCI packet handlers */
void hci_register_acl_packet_handler(btstack_packet_handler_t handler){
hci_stack->acl_packet_handler = handler;
}
#ifdef ENABLE_CLASSIC
/**
* @brief Registers a packet handler for SCO data. Used for HSP and HFP profiles.
*/
void hci_register_sco_packet_handler(btstack_packet_handler_t handler){
hci_stack->sco_packet_handler = handler;
}
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
void hci_register_iso_packet_handler(btstack_packet_handler_t handler){
hci_stack->iso_packet_handler = handler;
}
#endif
static void hci_state_reset(void){
// no connections yet
hci_stack->connections = NULL;
// keep discoverable/connectable as this has been requested by the client(s)
// hci_stack->discoverable = 0;
// hci_stack->connectable = 0;
// hci_stack->bondable = 1;
// hci_stack->own_addr_type = 0;
// buffer is free
hci_stack->hci_packet_buffer_reserved = false;
// no pending cmds
hci_stack->decline_reason = 0;
hci_stack->secure_connections_active = false;
#ifdef ENABLE_CLASSIC
hci_stack->inquiry_lap = GAP_IAC_GENERAL_INQUIRY;
hci_stack->gap_tasks_classic =
GAP_TASK_SET_DEFAULT_LINK_POLICY |
GAP_TASK_SET_CLASS_OF_DEVICE |
GAP_TASK_SET_LOCAL_NAME |
GAP_TASK_SET_EIR_DATA |
GAP_TASK_WRITE_SCAN_ENABLE |
GAP_TASK_WRITE_PAGE_TIMEOUT;
#endif
#ifdef ENABLE_CLASSIC_PAIRING_OOB
hci_stack->classic_read_local_oob_data = false;
hci_stack->classic_oob_con_handle = HCI_CON_HANDLE_INVALID;
#endif
// LE
#ifdef ENABLE_BLE
memset(hci_stack->le_random_address, 0, 6);
hci_stack->le_random_address_set = 0;
#endif
#ifdef ENABLE_LE_CENTRAL
hci_stack->le_scanning_active = false;
hci_stack->le_scanning_param_update = true;
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
hci_stack->le_whitelist_capacity = 0;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
hci_stack->le_periodic_terminate_sync_handle = HCI_CON_HANDLE_INVALID;
#endif
#endif
#ifdef ENABLE_LE_PERIPHERAL
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_PARAMS_SET) != 0){
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
}
if (hci_stack->le_advertisements_data != NULL){
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
}
#endif
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION;
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID;
hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_INVALID;
#endif
#ifdef ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND
hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID;
#endif
}
#ifdef ENABLE_CLASSIC
/**
* @brief Configure Bluetooth hardware control. Has to be called before power on.
*/
void hci_set_link_key_db(btstack_link_key_db_t const * link_key_db){
// store and open remote device db
hci_stack->link_key_db = link_key_db;
if (hci_stack->link_key_db) {
hci_stack->link_key_db->open();
}
}
#endif
void hci_init(const hci_transport_t *transport, const void *config){
#ifdef HAVE_MALLOC
if (!hci_stack) {
hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t));
}
btstack_assert(hci_stack != NULL);
#else
hci_stack = &hci_stack_static;
#endif
memset(hci_stack, 0, sizeof(hci_stack_t));
// reference to use transport layer implementation
hci_stack->hci_transport = transport;
// reference to used config
hci_stack->config = config;
// setup pointer for outgoing packet buffer
hci_stack->hci_packet_buffer = &hci_stack->hci_packet_buffer_data[HCI_OUTGOING_PRE_BUFFER_SIZE];
// max acl payload size defined in config.h
hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE;
// register packet handlers with transport
transport->register_packet_handler(&packet_handler);
hci_stack->state = HCI_STATE_OFF;
// class of device
hci_stack->class_of_device = 0x007a020c; // Smartphone
// bondable by default
hci_stack->bondable = 1;
#ifdef ENABLE_CLASSIC
// classic name
hci_stack->local_name = default_classic_name;
// Master slave policy
hci_stack->master_slave_policy = 1;
// Allow Role Switch
hci_stack->allow_role_switch = 1;
// Default / minimum security level = 2
hci_stack->gap_security_level = LEVEL_2;
// Default Security Mode 4
hci_stack->gap_security_mode = GAP_SECURITY_MODE_4;
// Errata-11838 mandates 7 bytes for GAP Security Level 1-3
hci_stack->gap_required_encyrption_key_size = 7;
// Link Supervision Timeout
hci_stack->link_supervision_timeout = HCI_LINK_SUPERVISION_TIMEOUT_DEFAULT;
// Page Timeout
hci_stack->page_timeout = 0x6000; // ca. 15 sec
// All ACL packet types are enabled
hci_stack->enabled_packet_types_acl = ACL_PACKET_TYPES_ALL;
#endif
// Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept
hci_stack->ssp_enable = 1;
hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING;
hci_stack->ssp_auto_accept = 1;
// Secure Connections: enable (requires support from Controller)
hci_stack->secure_connections_enable = true;
// voice setting - signed 16 bit pcm data with CVSD over the air
hci_stack->sco_voice_setting = 0x60;
#ifdef ENABLE_BLE
hci_stack->le_connection_scan_interval = 0x0060; // 60 ms
hci_stack->le_connection_scan_window = 0x0030; // 30 ms
hci_stack->le_connection_interval_min = 0x0008; // 10 ms
hci_stack->le_connection_interval_max = 0x0018; // 30 ms
hci_stack->le_connection_latency = 4; // 4
hci_stack->le_supervision_timeout = 0x0048; // 720 ms
hci_stack->le_minimum_ce_length = 0; // 0 ms
hci_stack->le_maximum_ce_length = 0; // 0 ms
#endif
#ifdef ENABLE_LE_CENTRAL
hci_stack->le_connection_phys = 0x01; // LE 1M PHY
// default LE Scanning
hci_stack->le_scan_type = 0x01; // active
hci_stack->le_scan_interval = 0x1e0; // 300 ms
hci_stack->le_scan_window = 0x30; // 30 ms
hci_stack->le_scan_phys = 0x01; // LE 1M PHY
#endif
#ifdef ENABLE_LE_PERIPHERAL
hci_stack->le_max_number_peripheral_connections = 1; // only single connection as peripheral
// default advertising parameters from Core v5.4 -- needed to use random address without prior adv setup
hci_stack->le_advertisements_interval_min = 0x0800;
hci_stack->le_advertisements_interval_max = 0x0800;
hci_stack->le_advertisements_type = 0;
hci_stack->le_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
hci_stack->le_advertisements_direct_address_type = BD_ADDR_TYPE_LE_PUBLIC;
hci_stack->le_advertisements_channel_map = 0x07;
hci_stack->le_advertisements_filter_policy = 0;
#endif
// connection parameter range used to answer connection parameter update requests in l2cap
hci_stack->le_connection_parameter_range.le_conn_interval_min = 6;
hci_stack->le_connection_parameter_range.le_conn_interval_max = 3200;
hci_stack->le_connection_parameter_range.le_conn_latency_min = 0;
hci_stack->le_connection_parameter_range.le_conn_latency_max = 500;
hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 10;
hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 3200;
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
hci_stack->iso_packets_to_queue = 1;
#endif
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
hci_stack->le_privacy_mode = LE_PRIVACY_MODE_DEVICE;
#endif
hci_state_reset();
}
void hci_deinit(void){
btstack_run_loop_remove_timer(&hci_stack->timeout);
#ifdef HAVE_MALLOC
if (hci_stack) {
free(hci_stack);
}
#endif
hci_stack = NULL;
#ifdef ENABLE_CLASSIC
disable_l2cap_timeouts = 0;
#endif
}
/**
* @brief Configure Bluetooth chipset driver. Has to be called before power on, or right after receiving the local version information
*/
void hci_set_chipset(const btstack_chipset_t *chipset_driver){
hci_stack->chipset = chipset_driver;
// reset chipset driver - init is also called on power_up
if (hci_stack->chipset && hci_stack->chipset->init){
hci_stack->chipset->init(hci_stack->config);
}
}
void hci_enable_custom_pre_init(void){
hci_stack->chipset_pre_init = true;
}
/**
* @brief Configure Bluetooth hardware control. Has to be called after hci_init() but before power on.
*/
void hci_set_control(const btstack_control_t *hardware_control){
// references to used control implementation
hci_stack->control = hardware_control;
// init with transport config
hardware_control->init(hci_stack->config);
}
static void hci_discard_connections(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
// cancel all l2cap connections by emitting disconnection complete before shutdown (free) connection
hci_connection_t * connection = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
hci_emit_disconnection_complete(connection->con_handle, 0x16); // terminated by local host
hci_shutdown_connection(connection);
}
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
while (hci_stack->iso_streams != NULL){
hci_iso_stream_finalize((hci_iso_stream_t *) hci_stack->iso_streams);
}
#endif
}
void hci_close(void){
#ifdef ENABLE_CLASSIC
// close remote device db
if (hci_stack->link_key_db) {
hci_stack->link_key_db->close();
}
#endif
hci_discard_connections();
hci_power_control(HCI_POWER_OFF);
#ifdef HAVE_MALLOC
free(hci_stack);
#endif
hci_stack = NULL;
}
#ifdef HAVE_SCO_TRANSPORT
void hci_set_sco_transport(const btstack_sco_transport_t *sco_transport){
hci_stack->sco_transport = sco_transport;
sco_transport->register_packet_handler(&packet_handler);
}
#endif
#ifdef ENABLE_CLASSIC
void gap_set_required_encryption_key_size(uint8_t encryption_key_size){
// validate range and set
if (encryption_key_size < 7) return;
if (encryption_key_size > 16) return;
hci_stack->gap_required_encyrption_key_size = encryption_key_size;
}
uint8_t gap_set_security_mode(gap_security_mode_t security_mode){
if ((security_mode == GAP_SECURITY_MODE_4) || (security_mode == GAP_SECURITY_MODE_2)){
hci_stack->gap_security_mode = security_mode;
return ERROR_CODE_SUCCESS;
} else {
return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE;
}
}
gap_security_mode_t gap_get_security_mode(void){
return hci_stack->gap_security_mode;
}
void gap_set_security_level(gap_security_level_t security_level){
hci_stack->gap_security_level = security_level;
}
gap_security_level_t gap_get_security_level(void){
if (hci_stack->gap_secure_connections_only_mode){
return LEVEL_4;
}
return hci_stack->gap_security_level;
}
void gap_set_minimal_service_security_level(gap_security_level_t security_level){
hci_stack->gap_minimal_service_security_level = security_level;
}
void gap_set_secure_connections_only_mode(bool enable){
hci_stack->gap_secure_connections_only_mode = enable;
}
bool gap_get_secure_connections_only_mode(void){
return hci_stack->gap_secure_connections_only_mode;
}
#endif
#ifdef ENABLE_CLASSIC
void gap_set_class_of_device(uint32_t class_of_device){
hci_stack->class_of_device = class_of_device;
hci_stack->gap_tasks_classic |= GAP_TASK_SET_CLASS_OF_DEVICE;
hci_run();
}
void gap_set_default_link_policy_settings(uint16_t default_link_policy_settings){
hci_stack->default_link_policy_settings = default_link_policy_settings;
hci_stack->gap_tasks_classic |= GAP_TASK_SET_DEFAULT_LINK_POLICY;
hci_run();
}
void gap_set_allow_role_switch(bool allow_role_switch){
hci_stack->allow_role_switch = allow_role_switch ? 1 : 0;
}
uint8_t hci_get_allow_role_switch(void){
return hci_stack->allow_role_switch;
}
void gap_set_link_supervision_timeout(uint16_t link_supervision_timeout){
hci_stack->link_supervision_timeout = link_supervision_timeout;
}
void gap_enable_link_watchdog(uint16_t timeout_ms){
hci_stack->automatic_flush_timeout = btstack_min(timeout_ms, 1280) * 8 / 5; // divide by 0.625
}
uint16_t hci_automatic_flush_timeout(void){
return hci_stack->automatic_flush_timeout;
}
void hci_disable_l2cap_timeout_check(void){
disable_l2cap_timeouts = 1;
}
#endif
#ifndef HAVE_HOST_CONTROLLER_API
// Set Public BD ADDR - passed on to Bluetooth chipset if supported in bt_control_h
void hci_set_bd_addr(bd_addr_t addr){
(void)memcpy(hci_stack->custom_bd_addr, addr, 6);
hci_stack->custom_bd_addr_set = 1;
}
#endif
// State-Module-Driver overview
// state module low-level
// HCI_STATE_OFF off close
// HCI_STATE_INITIALIZING, on open
// HCI_STATE_WORKING, on open
// HCI_STATE_HALTING, on open
// HCI_STATE_SLEEPING, off/sleep close
// HCI_STATE_FALLING_ASLEEP on open
static int hci_power_control_on(void){
// power on
int err = 0;
if (hci_stack->control && hci_stack->control->on){
err = (*hci_stack->control->on)();
}
if (err){
log_error( "POWER_ON failed");
hci_emit_hci_open_failed();
return err;
}
// int chipset driver
if (hci_stack->chipset && hci_stack->chipset->init){
hci_stack->chipset->init(hci_stack->config);
}
// init transport
if (hci_stack->hci_transport->init){
hci_stack->hci_transport->init(hci_stack->config);
}
// open transport
err = hci_stack->hci_transport->open();
if (err){
log_error( "HCI_INIT failed, turning Bluetooth off again");
if (hci_stack->control && hci_stack->control->off){
(*hci_stack->control->off)();
}
hci_emit_hci_open_failed();
return err;
}
return 0;
}
static void hci_power_control_off(void){
log_info("hci_power_control_off");
// close low-level device
hci_stack->hci_transport->close();
log_info("hci_power_control_off - hci_transport closed");
// power off
if (hci_stack->control && hci_stack->control->off){
(*hci_stack->control->off)();
}
log_info("hci_power_control_off - control closed");
hci_stack->state = HCI_STATE_OFF;
}
static void hci_power_control_sleep(void){
log_info("hci_power_control_sleep");
#if 0
// don't close serial port during sleep
// close low-level device
hci_stack->hci_transport->close(hci_stack->config);
#endif
// sleep mode
if (hci_stack->control && hci_stack->control->sleep){
(*hci_stack->control->sleep)();
}
hci_stack->state = HCI_STATE_SLEEPING;
}
static int hci_power_control_wake(void){
log_info("hci_power_control_wake");
// wake on
if (hci_stack->control && hci_stack->control->wake){
(*hci_stack->control->wake)();
}
#if 0
// open low-level device
int err = hci_stack->hci_transport->open(hci_stack->config);
if (err){
log_error( "HCI_INIT failed, turning Bluetooth off again");
if (hci_stack->control && hci_stack->control->off){
(*hci_stack->control->off)();
}
hci_emit_hci_open_failed();
return err;
}
#endif
return 0;
}
static void hci_power_enter_initializing_state(void){
// set up state machine
hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent
hci_stack->hci_packet_buffer_reserved = false;
hci_stack->state = HCI_STATE_INITIALIZING;
#ifndef HAVE_HOST_CONTROLLER_API
if (hci_stack->chipset_pre_init) {
hci_stack->substate = HCI_INIT_CUSTOM_PRE_INIT;
} else
#endif
{
hci_stack->substate = HCI_INIT_SEND_RESET;
}
}
static void hci_power_enter_halting_state(void){
#ifdef ENABLE_BLE
// drop entries scheduled for removal, mark others for re-adding
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if ((entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)) == LE_WHITELIST_REMOVE_FROM_CONTROLLER){
btstack_linked_list_iterator_remove(&it);
btstack_memory_whitelist_entry_free(entry);
} else {
entry->state = LE_WHITELIST_ADD_TO_CONTROLLER;
}
}
#ifdef ENABLE_LE_CENTRAL
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list);
const uint8_t mask = LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER | LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER;
while (btstack_linked_list_iterator_has_next(&it)){
periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&it);
if ((entry->state & mask) == LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER) {
btstack_linked_list_iterator_remove(&it);
btstack_memory_periodic_advertiser_list_entry_free(entry);
} else {
entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER;
continue;
}
}
#endif
#endif
#endif
// see hci_run
hci_stack->state = HCI_STATE_HALTING;
hci_stack->substate = HCI_HALTING_CLASSIC_STOP;
// setup watchdog timer for disconnect - only triggers if Controller does not respond anymore
btstack_run_loop_set_timer(&hci_stack->timeout, 1000);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_halting_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
}
// returns error
static int hci_power_control_state_off(HCI_POWER_MODE power_mode){
int err;
switch (power_mode){
case HCI_POWER_ON:
err = hci_power_control_on();
if (err != 0) {
log_error("hci_power_control_on() error %d", err);
return err;
}
hci_power_enter_initializing_state();
break;
case HCI_POWER_OFF:
// do nothing
break;
case HCI_POWER_SLEEP:
// do nothing (with SLEEP == OFF)
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_initializing(HCI_POWER_MODE power_mode){
switch (power_mode){
case HCI_POWER_ON:
// do nothing
break;
case HCI_POWER_OFF:
// no connections yet, just turn it off
hci_power_control_off();
break;
case HCI_POWER_SLEEP:
// no connections yet, just turn it off
hci_power_control_sleep();
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_working(HCI_POWER_MODE power_mode) {
switch (power_mode){
case HCI_POWER_ON:
// do nothing
break;
case HCI_POWER_OFF:
hci_power_enter_halting_state();
break;
case HCI_POWER_SLEEP:
// see hci_run
hci_stack->state = HCI_STATE_FALLING_ASLEEP;
hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT;
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_halting(HCI_POWER_MODE power_mode) {
switch (power_mode){
case HCI_POWER_ON:
hci_power_enter_initializing_state();
break;
case HCI_POWER_OFF:
// do nothing
break;
case HCI_POWER_SLEEP:
// see hci_run
hci_stack->state = HCI_STATE_FALLING_ASLEEP;
hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT;
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_falling_asleep(HCI_POWER_MODE power_mode) {
switch (power_mode){
case HCI_POWER_ON:
hci_power_enter_initializing_state();
break;
case HCI_POWER_OFF:
hci_power_enter_halting_state();
break;
case HCI_POWER_SLEEP:
// do nothing
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_sleeping(HCI_POWER_MODE power_mode) {
int err;
switch (power_mode){
case HCI_POWER_ON:
err = hci_power_control_wake();
if (err) return err;
hci_power_enter_initializing_state();
break;
case HCI_POWER_OFF:
hci_power_enter_halting_state();
break;
case HCI_POWER_SLEEP:
// do nothing
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
int hci_power_control(HCI_POWER_MODE power_mode){
log_info("hci_power_control: %d, current mode %u", power_mode, hci_stack->state);
btstack_run_loop_remove_timer(&hci_stack->timeout);
int err = 0;
switch (hci_stack->state){
case HCI_STATE_OFF:
err = hci_power_control_state_off(power_mode);
break;
case HCI_STATE_INITIALIZING:
err = hci_power_control_state_initializing(power_mode);
break;
case HCI_STATE_WORKING:
err = hci_power_control_state_working(power_mode);
break;
case HCI_STATE_HALTING:
err = hci_power_control_state_halting(power_mode);
break;
case HCI_STATE_FALLING_ASLEEP:
err = hci_power_control_state_falling_asleep(power_mode);
break;
case HCI_STATE_SLEEPING:
err = hci_power_control_state_sleeping(power_mode);
break;
default:
btstack_assert(false);
break;
}
if (err != 0){
return err;
}
// create internal event
hci_emit_state();
// trigger next/first action
hci_run();
return 0;
}
static void hci_halting_run(void) {
log_info("HCI_STATE_HALTING, substate %x\n", hci_stack->substate);
hci_connection_t *connection;
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_PERIPHERAL
bool stop_advertisements;
#endif
#endif
switch (hci_stack->substate) {
case HCI_HALTING_CLASSIC_STOP:
#ifdef ENABLE_CLASSIC
if (!hci_can_send_command_packet_now()) return;
if (hci_stack->connectable || hci_stack->discoverable){
hci_stack->substate = HCI_HALTING_LE_ADV_STOP;
hci_send_cmd(&hci_write_scan_enable, 0);
return;
}
#endif
/* fall through */
case HCI_HALTING_LE_ADV_STOP:
hci_stack->substate = HCI_HALTING_LE_ADV_STOP;
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_PERIPHERAL
if (!hci_can_send_command_packet_now()) return;
stop_advertisements = (hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets);
// stop all periodic advertisements and check if an extended set is active
while (btstack_linked_list_iterator_has_next(&it)){
le_advertising_set_t * advertising_set = (le_advertising_set_t*) btstack_linked_list_iterator_next(&it);
if ((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE) != 0) {
advertising_set->state &= ~LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE;
hci_send_cmd(&hci_le_set_periodic_advertising_enable, 0, advertising_set->advertising_handle);
return;
}
if ((advertising_set->state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0) {
stop_advertisements = true;
advertising_set->state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
}
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
if (stop_advertisements){
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
hci_send_cmd(&hci_le_set_extended_advertising_enable, 0, 0, NULL, NULL, NULL);
return;
}
} else
#else /* ENABLE_LE_PERIPHERAL */
{
if (stop_advertisements) {
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
hci_send_cmd(&hci_le_set_advertise_enable, 0);
return;
}
}
#endif /* ENABLE_LE_EXTENDED_ADVERTISING*/
#endif /* ENABLE_LE_PERIPHERAL */
#endif /* ENABLE_BLE */
/* fall through */
case HCI_HALTING_LE_SCAN_STOP:
hci_stack->substate = HCI_HALTING_LE_SCAN_STOP;
if (!hci_can_send_command_packet_now()) return;
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
if (hci_stack->le_scanning_active){
hci_le_scan_stop();
hci_stack->substate = HCI_HALTING_DISCONNECT_ALL;
return;
}
#endif
#endif
/* fall through */
case HCI_HALTING_DISCONNECT_ALL:
hci_stack->substate = HCI_HALTING_DISCONNECT_ALL;
if (!hci_can_send_command_packet_now()) return;
// close all open connections
connection = (hci_connection_t *) hci_stack->connections;
if (connection) {
hci_con_handle_t con_handle = (uint16_t) connection->con_handle;
log_info("HCI_STATE_HALTING, connection %p, handle %u, state %u", (void*)connection, con_handle, connection->state);
// check state
switch(connection->state) {
case SENT_DISCONNECT:
case RECEIVED_DISCONNECTION_COMPLETE:
// wait until connection is gone
return;
default:
break;
}
// finally, send the disconnect command
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return;
}
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
// stop BIGs and BIG Syncs
if (hci_stack->le_audio_bigs != NULL){
le_audio_big_t * big = (le_audio_big_t*) hci_stack->le_audio_bigs;
if (big->state == LE_AUDIO_BIG_STATE_W4_TERMINATED) return;
big->state = LE_AUDIO_BIG_STATE_W4_TERMINATED;
hci_send_cmd(&hci_le_terminate_big, big->big_handle);
return;
}
if (hci_stack->le_audio_big_syncs != NULL){
le_audio_big_sync_t * big_sync = (le_audio_big_sync_t*) hci_stack->le_audio_big_syncs;
if (big_sync->state == LE_AUDIO_BIG_STATE_W4_TERMINATED) return;
big_sync->state = LE_AUDIO_BIG_STATE_W4_TERMINATED;
hci_send_cmd(&hci_le_big_terminate_sync, big_sync->big_handle);
return;
}
#endif
btstack_run_loop_remove_timer(&hci_stack->timeout);
// no connections left, wait a bit to assert that btstack_crypto isn't waiting for an HCI event
log_info("HCI_STATE_HALTING: wait 50 ms");
hci_stack->substate = HCI_HALTING_W4_CLOSE_TIMER;
btstack_run_loop_set_timer(&hci_stack->timeout, 50);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_halting_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
break;
case HCI_HALTING_W4_CLOSE_TIMER:
// keep waiting
break;
case HCI_HALTING_CLOSE:
// close left over connections (that had not been properly closed before)
hci_stack->substate = HCI_HALTING_CLOSE_DISCARDING_CONNECTIONS;
hci_discard_connections();
log_info("HCI_STATE_HALTING, calling off");
// switch mode
hci_power_control_off();
log_info("HCI_STATE_HALTING, emitting state");
hci_emit_state();
log_info("HCI_STATE_HALTING, done");
break;
default:
break;
}
}
static void hci_falling_asleep_run(void){
hci_connection_t * connection;
switch(hci_stack->substate) {
case HCI_FALLING_ASLEEP_DISCONNECT:
log_info("HCI_STATE_FALLING_ASLEEP");
// close all open connections
connection = (hci_connection_t *) hci_stack->connections;
if (connection){
// send disconnect
if (!hci_can_send_command_packet_now()) return;
log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", (void*)connection, (uint16_t)connection->con_handle);
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
// send disconnected event right away - causes higher layer connections to get closed, too.
hci_shutdown_connection(connection);
return;
}
if (hci_classic_supported()){
// disable page and inquiry scan
if (!hci_can_send_command_packet_now()) return;
log_info("HCI_STATE_HALTING, disabling inq scans");
hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan
// continue in next substate
hci_stack->substate = HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE;
break;
}
/* fall through */
case HCI_FALLING_ASLEEP_COMPLETE:
log_info("HCI_STATE_HALTING, calling sleep");
// switch mode
hci_power_control_sleep(); // changes hci_stack->state to SLEEP
hci_emit_state();
break;
default:
break;
}
}
#ifdef ENABLE_CLASSIC
static void hci_update_scan_enable(void){
// 2 = page scan, 1 = inq scan
hci_stack->new_scan_enable_value = (hci_stack->connectable << 1) | hci_stack->discoverable;
hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_SCAN_ENABLE;
hci_run();
}
void gap_discoverable_control(uint8_t enable){
if (enable) enable = 1; // normalize argument
if (hci_stack->discoverable == enable){
hci_emit_scan_mode_changed(hci_stack->discoverable, hci_stack->connectable);
return;
}
hci_stack->discoverable = enable;
hci_update_scan_enable();
}
void gap_connectable_control(uint8_t enable){
if (enable) enable = 1; // normalize argument
// don't emit event
if (hci_stack->connectable == enable) return;
hci_stack->connectable = enable;
hci_update_scan_enable();
}
#endif
void gap_local_bd_addr(bd_addr_t address_buffer){
(void)memcpy(address_buffer, hci_stack->local_bd_addr, 6);
}
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
static void hci_host_num_completed_packets(void){
// create packet manually as arrays are not supported and num_commands should not get reduced
hci_reserve_packet_buffer();
uint8_t * packet = hci_get_outgoing_packet_buffer();
uint16_t size = 0;
uint16_t num_handles = 0;
packet[size++] = 0x35;
packet[size++] = 0x0c;
size++; // skip param len
size++; // skip num handles
// add { handle, packets } entries
btstack_linked_item_t * it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (connection->num_packets_completed){
little_endian_store_16(packet, size, connection->con_handle);
size += 2;
little_endian_store_16(packet, size, connection->num_packets_completed);
size += 2;
//
num_handles++;
connection->num_packets_completed = 0;
}
}
packet[2] = size - 3;
packet[3] = num_handles;
hci_stack->host_completed_packets = 0;
hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size);
hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size);
// release packet buffer for synchronous transport implementations
if (hci_transport_synchronous()){
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
}
}
#endif
static void hci_halting_timeout_handler(btstack_timer_source_t * ds){
UNUSED(ds);
hci_stack->substate = HCI_HALTING_CLOSE;
hci_halting_run();
}
static bool hci_run_acl_fragments(void){
if (hci_stack->acl_fragmentation_total_size > 0u) {
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer);
hci_connection_t *connection = hci_connection_for_handle(con_handle);
if (connection) {
if (hci_can_send_prepared_acl_packet_now(con_handle)){
hci_send_acl_packet_fragments(connection);
return true;
}
} else {
// connection gone -> discard further fragments
log_info("hci_run: fragmented ACL packet no connection -> discard fragment");
hci_stack->acl_fragmentation_total_size = 0;
hci_stack->acl_fragmentation_pos = 0;
}
}
return false;
}
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
static bool hci_run_iso_fragments(void){
if (hci_stack->iso_fragmentation_total_size > 0u) {
// TODO: flow control
if (hci_transport_can_send_prepared_packet_now(HCI_ISO_DATA_PACKET)){
hci_send_iso_packet_fragments();
return true;
}
}
return false;
}
#endif
#ifdef ENABLE_CLASSIC
#ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS
static bool hci_classic_operation_active(void) {
if (hci_stack->inquiry_state >= GAP_INQUIRY_STATE_W4_ACTIVE){
return true;
}
if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W4_COMPLETE){
return true;
}
btstack_linked_item_t * it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next) {
hci_connection_t *connection = (hci_connection_t *) it;
switch (connection->state) {
case SENT_CREATE_CONNECTION:
case SENT_CANCEL_CONNECTION:
case SENT_DISCONNECT:
return true;
default:
break;
}
}
return false;
}
#endif
static bool hci_run_general_gap_classic(void){
// assert stack is working and classic is active
if (hci_classic_supported() == false) return false;
if (hci_stack->state != HCI_STATE_WORKING) return false;
// decline incoming connections
if (hci_stack->decline_reason){
uint8_t reason = hci_stack->decline_reason;
hci_stack->decline_reason = 0;
hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason);
return true;
}
if (hci_stack->gap_tasks_classic != 0){
hci_run_gap_tasks_classic();
return true;
}
// start/stop inquiry
if ((hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN) && (hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX)){
#ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS
if (hci_classic_operation_active() == false)
#endif
{
uint8_t duration = hci_stack->inquiry_state;
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_ACTIVE;
if (hci_stack->inquiry_max_period_length != 0){
hci_send_cmd(&hci_periodic_inquiry_mode, hci_stack->inquiry_max_period_length, hci_stack->inquiry_min_period_length, hci_stack->inquiry_lap, duration, 0);
} else {
hci_send_cmd(&hci_inquiry, hci_stack->inquiry_lap, duration, 0);
}
return true;
}
}
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W2_CANCEL){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_CANCELLED;
hci_send_cmd(&hci_inquiry_cancel);
return true;
}
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W2_EXIT_PERIODIC){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_CANCELLED;
hci_send_cmd(&hci_exit_periodic_inquiry_mode);
return true;
}
// remote name request
if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W2_SEND){
#ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS
if (hci_classic_operation_active() == false)
#endif
{
hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W4_COMPLETE;
hci_send_cmd(&hci_remote_name_request, hci_stack->remote_name_addr,
hci_stack->remote_name_page_scan_repetition_mode, 0, hci_stack->remote_name_clock_offset);
return true;
}
}
#ifdef ENABLE_CLASSIC_PAIRING_OOB
// Local OOB data
if (hci_stack->classic_read_local_oob_data){
hci_stack->classic_read_local_oob_data = false;
if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_LOCAL_OOB_EXTENDED_DATA_COMMAND)){
hci_send_cmd(&hci_read_local_extended_oob_data);
} else {
hci_send_cmd(&hci_read_local_oob_data);
}
}
#endif
// pairing
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE){
uint8_t state = hci_stack->gap_pairing_state;
uint8_t pin_code[PIN_CODE_LEN];
switch (state){
case GAP_PAIRING_STATE_SEND_PIN:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE;
memset(pin_code, 0, 16);
memcpy(pin_code, hci_stack->gap_pairing_input.gap_pairing_pin, hci_stack->gap_pairing_pin_len);
hci_send_cmd(&hci_pin_code_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_pin_len, pin_code);
break;
case GAP_PAIRING_STATE_SEND_PIN_NEGATIVE:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE;
hci_send_cmd(&hci_pin_code_request_negative_reply, hci_stack->gap_pairing_addr);
break;
case GAP_PAIRING_STATE_SEND_PASSKEY:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE;
hci_send_cmd(&hci_user_passkey_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_input.gap_pairing_passkey);
break;
case GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE;
hci_send_cmd(&hci_user_passkey_request_negative_reply, hci_stack->gap_pairing_addr);
break;
case GAP_PAIRING_STATE_SEND_CONFIRMATION:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE;
hci_send_cmd(&hci_user_confirmation_request_reply, hci_stack->gap_pairing_addr);
break;
case GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE:
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE;
hci_send_cmd(&hci_user_confirmation_request_negative_reply, hci_stack->gap_pairing_addr);
break;
default:
break;
}
return true;
}
return false;
}
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static uint8_t hci_le_num_phys(uint8_t phys){
const uint8_t num_bits_set[] = { 0, 1, 1, 2, 1, 2, 2, 3 };
btstack_assert(phys);
return num_bits_set[phys];
}
#endif
#ifdef ENABLE_LE_CENTRAL
static void hci_le_scan_stop(void){
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()) {
hci_send_cmd(&hci_le_set_extended_scan_enable, 0, 0, 0, 0);
} else
#endif
{
hci_send_cmd(&hci_le_set_scan_enable, 0, 0);
}
}
static void
hci_send_le_create_connection(uint8_t initiator_filter_policy, bd_addr_type_t address_type, uint8_t *address) {
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()) {
// prepare arrays for all phys (LE Coded, LE 1M, LE 2M PHY)
uint16_t le_connection_scan_interval[3];
uint16_t le_connection_scan_window[3];
uint16_t le_connection_interval_min[3];
uint16_t le_connection_interval_max[3];
uint16_t le_connection_latency[3];
uint16_t le_supervision_timeout[3];
uint16_t le_minimum_ce_length[3];
uint16_t le_maximum_ce_length[3];
uint8_t i;
uint8_t num_phys = hci_le_num_phys(hci_stack->le_connection_phys);
for (i=0;i<num_phys;i++){
le_connection_scan_interval[i] = hci_stack->le_connection_scan_interval;
le_connection_scan_window[i] = hci_stack->le_connection_scan_window;
le_connection_interval_min[i] = hci_stack->le_connection_interval_min;
le_connection_interval_max[i] = hci_stack->le_connection_interval_max;
le_connection_latency[i] = hci_stack->le_connection_latency;
le_supervision_timeout[i] = hci_stack->le_supervision_timeout;
le_minimum_ce_length[i] = hci_stack->le_minimum_ce_length;
le_maximum_ce_length[i] = hci_stack->le_maximum_ce_length;
}
hci_send_cmd(&hci_le_extended_create_connection,
initiator_filter_policy,
hci_stack->le_connection_own_addr_type, // our addr type:
address_type, // peer address type
address, // peer bd addr
hci_stack->le_connection_phys, // initiating PHY
le_connection_scan_interval, // conn scan interval
le_connection_scan_window, // conn scan windows
le_connection_interval_min, // conn interval min
le_connection_interval_max, // conn interval max
le_connection_latency, // conn latency
le_supervision_timeout, // conn latency
le_minimum_ce_length, // min ce length
le_maximum_ce_length // max ce length
);
} else
#endif
{
hci_send_cmd(&hci_le_create_connection,
hci_stack->le_connection_scan_interval, // conn scan interval
hci_stack->le_connection_scan_window, // conn scan windows
initiator_filter_policy, // don't use whitelist
address_type, // peer address type
address, // peer bd addr
hci_stack->le_connection_own_addr_type, // our addr type:
hci_stack->le_connection_interval_min, // conn interval min
hci_stack->le_connection_interval_max, // conn interval max
hci_stack->le_connection_latency, // conn latency
hci_stack->le_supervision_timeout, // conn latency
hci_stack->le_minimum_ce_length, // min ce length
hci_stack->le_maximum_ce_length // max ce length
);
}
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static uint8_t hci_le_extended_advertising_operation_for_chunk(uint16_t pos, uint16_t len){
uint8_t operation = 0;
if (pos == 0){
// first fragment or complete data
operation |= 1;
}
if (pos + LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN >= len){
// last fragment or complete data
operation |= 2;
}
return operation;
}
#endif
#endif
static bool hci_whitelist_modification_pending(void) {
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)){
return true;
}
}
return false;
}
static bool hci_whitelist_modification_process(void){
// add/remove entries
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER){
entry->state &= ~LE_WHITELIST_REMOVE_FROM_CONTROLLER;
entry->state &= ~LE_WHITELIST_ON_CONTROLLER;
bd_addr_type_t address_type = entry->address_type;
bd_addr_t address;
memcpy(address, entry->address, 6);
if ((entry->state & LE_WHITELIST_ADD_TO_CONTROLLER) == 0){
// remove from whitelist if not scheduled for re-addition
btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry);
btstack_memory_whitelist_entry_free(entry);
}
hci_send_cmd(&hci_le_remove_device_from_white_list, address_type, address);
return true;
}
if (entry->state & LE_WHITELIST_ADD_TO_CONTROLLER){
entry->state &= ~LE_WHITELIST_ADD_TO_CONTROLLER;
entry->state |= LE_WHITELIST_ON_CONTROLLER;
hci_send_cmd(&hci_le_add_device_to_white_list, entry->address_type, entry->address);
return true;
}
}
return false;
}
static bool hci_run_general_gap_le(void){
btstack_linked_list_iterator_t lit;
UNUSED(lit);
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_stack->le_resolvable_private_address_update_s > 0){
uint16_t update_s = hci_stack->le_resolvable_private_address_update_s;
hci_stack->le_resolvable_private_address_update_s = 0;
hci_send_cmd(&hci_le_set_resolvable_private_address_timeout, update_s);
return true;
}
#endif
// Phase 1: collect what to stop
#ifdef ENABLE_LE_CENTRAL
bool scanning_stop = false;
bool connecting_stop = false;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
bool periodic_sync_stop = false;
#endif
#endif
#endif
#ifdef ENABLE_LE_PERIPHERAL
bool advertising_stop = false;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
le_advertising_set_t * advertising_stop_set = NULL;
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
bool periodic_advertising_stop = false;
#endif
#endif
#endif
// check if own address changes
uint8_t address_change_mask = LE_ADVERTISEMENT_TASKS_SET_ADDRESS | LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0;
bool random_address_change = (hci_stack->le_advertisements_todo & address_change_mask) != 0;
// check if whitelist needs modification
bool whitelist_modification_pending = hci_whitelist_modification_pending();
// check if resolving list needs modification
bool resolving_list_modification_pending = false;
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
bool resolving_list_supported = hci_command_supported(SUPPORTED_HCI_COMMAND_LE_SET_ADDRESS_RESOLUTION_ENABLE);
if (resolving_list_supported && hci_stack->le_resolving_list_state != LE_RESOLVING_LIST_DONE){
resolving_list_modification_pending = true;
}
#endif
#ifdef ENABLE_LE_CENTRAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
// check if periodic advertiser list needs modification
bool periodic_list_modification_pending = false;
btstack_linked_list_iterator_init(&lit, &hci_stack->le_periodic_advertiser_list);
while (btstack_linked_list_iterator_has_next(&lit)){
periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&lit);
if (entry->state & (LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER | LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER)){
periodic_list_modification_pending = true;
break;
}
}
#endif
// scanning control
if (hci_stack->le_scanning_active) {
// stop if:
// - parameter change required
// - it's disabled
// - whitelist change required but used for scanning
// - resolving list modified
// - own address changes
bool scanning_uses_whitelist = (hci_stack->le_scan_filter_policy & 1) == 1;
if ((hci_stack->le_scanning_param_update) ||
!hci_stack->le_scanning_enabled ||
(scanning_uses_whitelist && whitelist_modification_pending) ||
resolving_list_modification_pending ||
random_address_change){
scanning_stop = true;
}
}
// connecting control
bool connecting_with_whitelist;
switch (hci_stack->le_connecting_state){
case LE_CONNECTING_DIRECT:
case LE_CONNECTING_WHITELIST:
// stop connecting if:
// - connecting uses white and whitelist modification pending
// - if it got disabled
// - resolving list modified
// - own address changes
connecting_with_whitelist = hci_stack->le_connecting_state == LE_CONNECTING_WHITELIST;
if ((connecting_with_whitelist && whitelist_modification_pending) ||
(hci_stack->le_connecting_request == LE_CONNECTING_IDLE) ||
resolving_list_modification_pending ||
random_address_change) {
connecting_stop = true;
}
break;
default:
break;
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
// periodic sync control
bool sync_with_advertiser_list;
switch(hci_stack->le_periodic_sync_state){
case LE_CONNECTING_DIRECT:
case LE_CONNECTING_WHITELIST:
// stop sync if:
// - sync with advertiser list and advertiser list modification pending
// - if it got disabled
sync_with_advertiser_list = hci_stack->le_periodic_sync_state == LE_CONNECTING_WHITELIST;
if ((sync_with_advertiser_list && periodic_list_modification_pending) ||
(hci_stack->le_periodic_sync_request == LE_CONNECTING_IDLE)){
periodic_sync_stop = true;
}
break;
default:
break;
}
#endif
#endif
#endif /* ENABLE_LE_CENTRAL */
#ifdef ENABLE_LE_PERIPHERAL
// le advertisement control
if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0){
// stop if:
// - parameter change required
// - random address used in advertising and changes
// - it's disabled
// - whitelist change required but used for advertisement filter policy
// - resolving list modified
// - own address changes
bool advertising_uses_whitelist = hci_stack->le_advertisements_filter_policy != 0;
bool advertising_uses_random_address = hci_stack->le_own_addr_type != BD_ADDR_TYPE_LE_PUBLIC;
bool advertising_change = (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS) != 0;
if (advertising_change ||
(advertising_uses_random_address && random_address_change) ||
(hci_stack->le_advertisements_enabled_for_current_roles == 0) ||
(advertising_uses_whitelist && whitelist_modification_pending) ||
resolving_list_modification_pending ||
random_address_change) {
advertising_stop = true;
}
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported() && (advertising_stop == false)){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets);
while (btstack_linked_list_iterator_has_next(&it)){
le_advertising_set_t * advertising_set = (le_advertising_set_t*) btstack_linked_list_iterator_next(&it);
if ((advertising_set->state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0) {
// stop if:
// - parameter change required
// - random address used in connectable advertising and changes
// - it's disabled
// - whitelist change required but used for advertisement filter policy
// - resolving list modified
// - own address changes
// - advertisement set will be removed
bool advertising_uses_whitelist = advertising_set->extended_params.advertising_filter_policy != 0;
bool advertising_connectable = (advertising_set->extended_params.advertising_event_properties & 1) != 0;
bool advertising_uses_random_address =
(advertising_set->extended_params.own_address_type != BD_ADDR_TYPE_LE_PUBLIC) &&
advertising_connectable;
bool advertising_parameter_change = (advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PARAMS) != 0;
bool advertising_enabled = (advertising_set->state & LE_ADVERTISEMENT_STATE_ENABLED) != 0;
bool advertising_set_random_address_change =
(advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_ADDRESS) != 0;
bool advertising_set_will_be_removed =
(advertising_set->state & LE_ADVERTISEMENT_TASKS_REMOVE_SET) != 0;
if (advertising_parameter_change ||
(advertising_uses_random_address && advertising_set_random_address_change) ||
(advertising_enabled == false) ||
(advertising_uses_whitelist && whitelist_modification_pending) ||
resolving_list_modification_pending ||
advertising_set_will_be_removed) {
advertising_stop = true;
advertising_stop_set = advertising_set;
break;
}
}
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if ((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE) != 0) {
// stop if:
// - it's disabled
// - parameter change required
bool periodic_enabled = (advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED) != 0;
bool periodic_parameter_change = (advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS) != 0;
if ((periodic_enabled == false) || periodic_parameter_change){
periodic_advertising_stop = true;
advertising_stop_set = advertising_set;
}
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
}
}
#endif
#endif
// Phase 2: stop everything that should be off during modifications
// 2.1 Outgoing connection
#ifdef ENABLE_LE_CENTRAL
if (connecting_stop){
hci_send_cmd(&hci_le_create_connection_cancel);
return true;
}
#endif
// 2.2 Scanning
#ifdef ENABLE_LE_CENTRAL
if (scanning_stop){
hci_stack->le_scanning_active = false;
hci_le_scan_stop();
return true;
}
// 2.3 Periodic Sync
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_stack->le_periodic_terminate_sync_handle != HCI_CON_HANDLE_INVALID){
uint16_t sync_handle = hci_stack->le_periodic_terminate_sync_handle;
hci_stack->le_periodic_terminate_sync_handle = HCI_CON_HANDLE_INVALID;
hci_send_cmd(&hci_le_periodic_advertising_terminate_sync, sync_handle);
return true;
}
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if (periodic_sync_stop){
hci_stack->le_periodic_sync_state = LE_CONNECTING_CANCEL;
hci_send_cmd(&hci_le_periodic_advertising_create_sync_cancel);
return true;
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
#endif /* ENABLE_LE_EXTENDED_ADVERTISING */
#endif /* ENABLE_LE_CENTRAL */
// 2.4 Advertising: legacy, extended, periodic
#ifdef ENABLE_LE_PERIPHERAL
if (advertising_stop){
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()) {
uint8_t advertising_stop_handle;
if (advertising_stop_set != NULL){
advertising_stop_handle = advertising_stop_set->advertising_handle;
advertising_stop_set->state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
} else {
advertising_stop_handle = 0;
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
}
const uint8_t advertising_handles[] = { advertising_stop_handle };
const uint16_t durations[] = { 0 };
const uint16_t max_events[] = { 0 };
hci_send_cmd(&hci_le_set_extended_advertising_enable, 0, 1, advertising_handles, durations, max_events);
} else
#endif
{
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE;
hci_send_cmd(&hci_le_set_advertise_enable, 0);
}
return true;
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if (periodic_advertising_stop){
advertising_stop_set->state &= ~LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE;
hci_send_cmd(&hci_le_set_periodic_advertising_enable, 0, advertising_stop_set->advertising_handle);
return true;
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
#endif /* ENABLE_LE_EXTENDED_ADVERTISING */
#endif /* ENABLE_LE_PERIPHERAL */
// Phase 3: modify
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_PRIVACY_NOTIFY) {
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_PRIVACY_NOTIFY;
// GAP Privacy, notify clients upon upcoming random address change
hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_PRIVACY_PENDING;
// notify might cause hci_run to get executed, check if we still can send
gap_privacy_clients_notify(hci_stack->le_random_address);
if (!hci_can_send_command_packet_now()) {
return true;
}
}
// - wait until privacy update completed
if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_PRIVACY_PENDING) != 0){
return false;
}
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADDRESS){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADDRESS;
hci_send_cmd(&hci_le_set_random_address, hci_stack->le_random_address);
#ifdef ENABLE_LE_SET_ADV_PARAMS_ON_RANDOM_ADDRESS_CHANGE
// workaround: on some Controllers, address in advertisements is updated only after next dv params set
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
#endif
return true;
}
#ifdef ENABLE_LE_CENTRAL
if (hci_stack->le_scanning_param_update){
hci_stack->le_scanning_param_update = false;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
// prepare arrays for all phys (LE Coded and LE 1M PHY)
uint8_t scan_types[2];
uint16_t scan_intervals[2];
uint16_t scan_windows[2];
uint8_t i;
uint8_t num_phys = hci_le_num_phys(hci_stack->le_scan_phys);
for (i=0;i<num_phys;i++){
scan_types[i] = hci_stack->le_scan_type;
scan_intervals[i] = hci_stack->le_scan_interval;
scan_windows[i] = hci_stack->le_scan_window;
}
hci_send_cmd(&hci_le_set_extended_scan_parameters, hci_stack->le_own_addr_type,
hci_stack->le_scan_filter_policy, hci_stack->le_scan_phys, scan_types, scan_intervals, scan_windows);
} else
#endif
{
hci_send_cmd(&hci_le_set_scan_parameters, hci_stack->le_scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window,
hci_stack->le_own_addr_type, hci_stack->le_scan_filter_policy);
}
return true;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_stack->le_advertisements_own_addr_type = hci_stack->le_own_addr_type;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
// map advertisment type to advertising event properties
uint16_t adv_event_properties = 0;
// 0b00010011, 0b00010101, 0b00011101, 0b00010010, 0b00010000
const uint16_t mapping[] = { 0x13, 0x15, 0x1D, 0x12, 0x10 };
if (hci_stack->le_advertisements_type < (sizeof(mapping)/sizeof(uint16_t))){
adv_event_properties = mapping[hci_stack->le_advertisements_type];
}
hci_stack->le_advertising_set_in_current_command = 0;
hci_send_cmd(&hci_le_set_extended_advertising_parameters,
0,
adv_event_properties,
hci_stack->le_advertisements_interval_min,
hci_stack->le_advertisements_interval_max,
hci_stack->le_advertisements_channel_map,
hci_stack->le_advertisements_own_addr_type,
hci_stack->le_advertisements_direct_address_type,
hci_stack->le_advertisements_direct_address,
hci_stack->le_advertisements_filter_policy,
0x7f, // tx power: no preference
0x01, // primary adv phy: LE 1M
0, // secondary adv max skip
0x01, // secondary adv phy
0, // adv sid
0 // scan request notification
);
} else
#endif
{
hci_send_cmd(&hci_le_set_advertising_parameters,
hci_stack->le_advertisements_interval_min,
hci_stack->le_advertisements_interval_max,
hci_stack->le_advertisements_type,
hci_stack->le_advertisements_own_addr_type,
hci_stack->le_advertisements_direct_address_type,
hci_stack->le_advertisements_direct_address,
hci_stack->le_advertisements_channel_map,
hci_stack->le_advertisements_filter_policy);
}
return true;
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
// assumption: only set if extended advertising is supported
if ((hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0) != 0){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0;
hci_send_cmd(&hci_le_set_advertising_set_random_address, 0, hci_stack->le_random_address);
return true;
}
#endif
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADV_DATA){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
uint8_t adv_data_clean[31];
memset(adv_data_clean, 0, sizeof(adv_data_clean));
(void)memcpy(adv_data_clean, hci_stack->le_advertisements_data,
hci_stack->le_advertisements_data_len);
btstack_replace_bd_addr_placeholder(adv_data_clean, hci_stack->le_advertisements_data_len, hci_stack->local_bd_addr);
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
hci_stack->le_advertising_set_in_current_command = 0;
hci_send_cmd(&hci_le_set_extended_advertising_data, 0, 0x03, 0x01, hci_stack->le_advertisements_data_len, adv_data_clean);
} else
#endif
{
hci_send_cmd(&hci_le_set_advertising_data, hci_stack->le_advertisements_data_len, adv_data_clean);
}
return true;
}
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA;
uint8_t scan_data_clean[31];
memset(scan_data_clean, 0, sizeof(scan_data_clean));
(void)memcpy(scan_data_clean, hci_stack->le_scan_response_data,
hci_stack->le_scan_response_data_len);
btstack_replace_bd_addr_placeholder(scan_data_clean, hci_stack->le_scan_response_data_len, hci_stack->local_bd_addr);
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
hci_stack->le_advertising_set_in_current_command = 0;
hci_send_cmd(&hci_le_set_extended_scan_response_data, 0, 0x03, 0x01, hci_stack->le_scan_response_data_len, scan_data_clean);
} else
#endif
{
hci_send_cmd(&hci_le_set_scan_response_data, hci_stack->le_scan_response_data_len, scan_data_clean);
}
return true;
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()) {
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets);
while (btstack_linked_list_iterator_has_next(&it)){
le_advertising_set_t * advertising_set = (le_advertising_set_t*) btstack_linked_list_iterator_next(&it);
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_REMOVE_SET) != 0) {
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_REMOVE_SET;
hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle;
hci_send_cmd(&hci_le_remove_advertising_set, advertising_set->advertising_handle);
return true;
}
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PARAMS) != 0){
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle;
hci_send_cmd(&hci_le_set_extended_advertising_parameters,
advertising_set->advertising_handle,
advertising_set->extended_params.advertising_event_properties,
advertising_set->extended_params.primary_advertising_interval_min,
advertising_set->extended_params.primary_advertising_interval_max,
advertising_set->extended_params.primary_advertising_channel_map,
advertising_set->extended_params.own_address_type,
advertising_set->extended_params.peer_address_type,
advertising_set->extended_params.peer_address,
advertising_set->extended_params.advertising_filter_policy,
advertising_set->extended_params.advertising_tx_power,
advertising_set->extended_params.primary_advertising_phy,
advertising_set->extended_params.secondary_advertising_max_skip,
advertising_set->extended_params.secondary_advertising_phy,
advertising_set->extended_params.advertising_sid,
advertising_set->extended_params.scan_request_notification_enable
);
return true;
}
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_ADDRESS) != 0){
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_ADDRESS;
hci_send_cmd(&hci_le_set_advertising_set_random_address, advertising_set->advertising_handle, advertising_set->random_address);
return true;
}
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_ADV_DATA) != 0) {
uint16_t pos = advertising_set->adv_data_pos;
uint8_t operation = hci_le_extended_advertising_operation_for_chunk(pos, advertising_set->adv_data_len);
uint16_t data_to_upload = btstack_min(advertising_set->adv_data_len - pos, LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN);
if ((operation & 0x02) != 0){
// last fragment or complete data
operation |= 2;
advertising_set->adv_data_pos = 0;
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
} else {
advertising_set->adv_data_pos += data_to_upload;
}
hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle;
hci_send_cmd(&hci_le_set_extended_advertising_data, advertising_set->advertising_handle, operation, 0x01, data_to_upload, &advertising_set->adv_data[pos]);
return true;
}
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA) != 0) {
uint16_t pos = advertising_set->scan_data_pos;
uint8_t operation = hci_le_extended_advertising_operation_for_chunk(pos, advertising_set->scan_data_len);
uint16_t data_to_upload = btstack_min(advertising_set->scan_data_len - pos, LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN);
if ((operation & 0x02) != 0){
advertising_set->scan_data_pos = 0;
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA;
} else {
advertising_set->scan_data_pos += data_to_upload;
}
hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle;
hci_send_cmd(&hci_le_set_extended_scan_response_data, advertising_set->advertising_handle, operation, 0x01, data_to_upload, &advertising_set->scan_data[pos]);
return true;
}
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS) != 0){
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS;
hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle;
hci_send_cmd(&hci_le_set_periodic_advertising_parameters,
advertising_set->advertising_handle,
advertising_set->periodic_params.periodic_advertising_interval_min,
advertising_set->periodic_params.periodic_advertising_interval_max,
advertising_set->periodic_params.periodic_advertising_properties);
return true;
}
if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PERIODIC_DATA) != 0) {
uint16_t pos = advertising_set->periodic_data_pos;
uint8_t operation = hci_le_extended_advertising_operation_for_chunk(pos, advertising_set->periodic_data_len);
uint16_t data_to_upload = btstack_min(advertising_set->periodic_data_len - pos, LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN);
if ((operation & 0x02) != 0){
// last fragment or complete data
operation |= 2;
advertising_set->periodic_data_pos = 0;
advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_PERIODIC_DATA;
} else {
advertising_set->periodic_data_pos += data_to_upload;
}
hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle;
hci_send_cmd(&hci_le_set_periodic_advertising_data, advertising_set->advertising_handle, operation, data_to_upload, &advertising_set->periodic_data[pos]);
return true;
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
}
}
#endif
#endif
#ifdef ENABLE_LE_CENTRAL
// if connect with whitelist was active and is not cancelled yet, wait until next time
if (hci_stack->le_connecting_state == LE_CONNECTING_CANCEL) return false;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
// if periodic sync with advertiser list was active and is not cancelled yet, wait until next time
if (hci_stack->le_periodic_sync_state == LE_CONNECTING_CANCEL) return false;
#endif
#endif
// LE Whitelist Management
if (whitelist_modification_pending){
bool done = hci_whitelist_modification_process();
if (done) return true;
}
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
// LE Resolving List Management
if (resolving_list_modification_pending) {
uint16_t i;
uint8_t null_16[16];
uint8_t local_irk_flipped[16];
const uint8_t *local_irk;
switch (hci_stack->le_resolving_list_state) {
case LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION:
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_READ_SIZE;
hci_send_cmd(&hci_le_set_address_resolution_enabled, 1);
return true;
case LE_RESOLVING_LIST_READ_SIZE:
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SEND_CLEAR;
hci_send_cmd(&hci_le_read_resolving_list_size);
return true;
case LE_RESOLVING_LIST_SEND_CLEAR:
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SET_IRK;
(void) memset(hci_stack->le_resolving_list_add_entries, 0xff,
sizeof(hci_stack->le_resolving_list_add_entries));
(void) memset(hci_stack->le_resolving_list_set_privacy_mode, 0xff,
sizeof(hci_stack->le_resolving_list_set_privacy_mode));
(void) memset(hci_stack->le_resolving_list_remove_entries, 0,
sizeof(hci_stack->le_resolving_list_remove_entries));
hci_send_cmd(&hci_le_clear_resolving_list);
return true;
case LE_RESOLVING_LIST_SET_IRK:
// set IRK used by RPA for undirected advertising
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_UPDATES_ENTRIES;
local_irk = gap_get_persistent_irk();
reverse_128(local_irk, local_irk_flipped);
memset(null_16, 0, sizeof(null_16));
hci_send_cmd(&hci_le_add_device_to_resolving_list, BD_ADDR_TYPE_LE_PUBLIC, null_16,
null_16, local_irk_flipped);
return true;
case LE_RESOLVING_LIST_UPDATES_ENTRIES:
// first remove old entries
for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) {
uint8_t offset = i >> 3;
uint8_t mask = 1 << (i & 7);
if ((hci_stack->le_resolving_list_remove_entries[offset] & mask) == 0) continue;
hci_stack->le_resolving_list_remove_entries[offset] &= ~mask;
bd_addr_t peer_identity_addreses;
int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN;
sm_key_t peer_irk;
le_device_db_info(i, &peer_identity_addr_type, peer_identity_addreses, peer_irk);
if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue;
#ifdef ENABLE_LE_WHITELIST_TOUCH_AFTER_RESOLVING_LIST_UPDATE
// trigger whitelist entry 'update' (work around for controller bug)
btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&lit)) {
whitelist_entry_t *entry = (whitelist_entry_t *) btstack_linked_list_iterator_next(&lit);
if (entry->address_type != peer_identity_addr_type) continue;
if (memcmp(entry->address, peer_identity_addreses, 6) != 0) continue;
log_info("trigger whitelist update %s", bd_addr_to_str(peer_identity_addreses));
entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER;
}
#endif
hci_send_cmd(&hci_le_remove_device_from_resolving_list, peer_identity_addr_type,
peer_identity_addreses);
return true;
}
// then add new entries
for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) {
uint8_t offset = i >> 3;
uint8_t mask = 1 << (i & 7);
if ((hci_stack->le_resolving_list_add_entries[offset] & mask) == 0) continue;
hci_stack->le_resolving_list_add_entries[offset] &= ~mask;
bd_addr_t peer_identity_addreses;
int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN;
sm_key_t peer_irk;
le_device_db_info(i, &peer_identity_addr_type, peer_identity_addreses, peer_irk);
if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue;
if (btstack_is_null(peer_irk, 16)) continue;
local_irk = gap_get_persistent_irk();
// command uses format specifier 'P' that stores 16-byte value without flip
uint8_t peer_irk_flipped[16];
reverse_128(local_irk, local_irk_flipped);
reverse_128(peer_irk, peer_irk_flipped);
hci_send_cmd(&hci_le_add_device_to_resolving_list, peer_identity_addr_type, peer_identity_addreses,
peer_irk_flipped, local_irk_flipped);
return true;
}
// finally, set privacy mode
for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) {
uint8_t offset = i >> 3;
uint8_t mask = 1 << (i & 7);
if ((hci_stack->le_resolving_list_set_privacy_mode[offset] & mask) == 0) continue;
hci_stack->le_resolving_list_set_privacy_mode[offset] &= ~mask;
if (hci_stack->le_privacy_mode == LE_PRIVACY_MODE_NETWORK) {
// Network Privacy Mode is default
continue;
}
bd_addr_t peer_identity_address;
int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN;
sm_key_t peer_irk;
le_device_db_info(i, &peer_identity_addr_type, peer_identity_address, peer_irk);
if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue;
if (btstack_is_null(peer_irk, 16)) continue;
// command uses format specifier 'P' that stores 16-byte value without flip
uint8_t peer_irk_flipped[16];
reverse_128(peer_irk, peer_irk_flipped);
hci_send_cmd(&hci_le_set_privacy_mode, peer_identity_addr_type, peer_identity_address, hci_stack->le_privacy_mode);
return true;
}
break;
default:
break;
}
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_DONE;
}
#endif
#ifdef ENABLE_LE_CENTRAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
// LE Whitelist Management
if (periodic_list_modification_pending){
// add/remove entries
btstack_linked_list_iterator_init(&lit, &hci_stack->le_periodic_advertiser_list);
while (btstack_linked_list_iterator_has_next(&lit)){
periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&lit);
if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER){
entry->state &= ~LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER;
hci_send_cmd(&hci_le_remove_device_from_periodic_advertiser_list, entry->address_type, entry->address, entry->sid);
return true;
}
if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER){
entry->state &= ~LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER;
entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER;
hci_send_cmd(&hci_le_add_device_to_periodic_advertiser_list, entry->address_type, entry->address, entry->sid);
return true;
}
if ((entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER) == 0){
btstack_linked_list_remove(&hci_stack->le_periodic_advertiser_list, (btstack_linked_item_t *) entry);
btstack_memory_periodic_advertiser_list_entry_free(entry);
}
}
}
#endif
#endif
#ifdef ENABLE_LE_CENTRAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if (hci_stack->le_past_set_default_params){
hci_stack->le_past_set_default_params = false;
hci_send_cmd(&hci_le_set_default_periodic_advertising_sync_transfer_parameters,
hci_stack->le_past_mode,
hci_stack->le_past_skip,
hci_stack->le_past_sync_timeout,
hci_stack->le_past_cte_type);
return true;
}
#endif
#endif
#endif
// postpone all actions until stack is fully working
if (hci_stack->state != HCI_STATE_WORKING) return false;
// advertisements, active scanning, and creating connections requires random address to be set if using private address
if ( (hci_stack->le_own_addr_type != BD_ADDR_TYPE_LE_PUBLIC) && (hci_stack->le_random_address_set == 0u) ) return false;
// Phase 4: restore state
#ifdef ENABLE_LE_CENTRAL
// re-start scanning
if ((hci_stack->le_scanning_enabled && !hci_stack->le_scanning_active)){
hci_stack->le_scanning_active = true;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
hci_send_cmd(&hci_le_set_extended_scan_enable, 1, hci_stack->le_scan_filter_duplicates, 0, 0);
} else
#endif
{
hci_send_cmd(&hci_le_set_scan_enable, 1, hci_stack->le_scan_filter_duplicates);
}
return true;
}
#endif
#ifdef ENABLE_LE_CENTRAL
// re-start connecting
if ( (hci_stack->le_connecting_state == LE_CONNECTING_IDLE) && (hci_stack->le_connecting_request == LE_CONNECTING_WHITELIST)){
bd_addr_t null_addr;
memset(null_addr, 0, 6);
hci_stack->le_connection_own_addr_type = hci_stack->le_own_addr_type;
hci_get_own_address_for_addr_type(hci_stack->le_connection_own_addr_type, hci_stack->le_connection_own_address);
hci_send_le_create_connection(1, 0, null_addr);
return true;
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_stack->le_periodic_sync_state == LE_CONNECTING_IDLE){
switch(hci_stack->le_periodic_sync_request){
case LE_CONNECTING_DIRECT:
case LE_CONNECTING_WHITELIST:
hci_stack->le_periodic_sync_state = ((hci_stack->le_periodic_sync_options & 1) != 0) ? LE_CONNECTING_WHITELIST : LE_CONNECTING_DIRECT;
hci_send_cmd(&hci_le_periodic_advertising_create_sync,
hci_stack->le_periodic_sync_options,
hci_stack->le_periodic_sync_advertising_sid,
hci_stack->le_periodic_sync_advertiser_address_type,
hci_stack->le_periodic_sync_advertiser_address,
hci_stack->le_periodic_sync_skip,
hci_stack->le_periodic_sync_timeout,
hci_stack->le_periodic_sync_cte_type);
return true;
default:
break;
}
}
#endif
#endif
#ifdef ENABLE_LE_PERIPHERAL
// re-start advertising
if (hci_stack->le_advertisements_enabled_for_current_roles && ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ACTIVE) == 0)){
// check if advertisements should be enabled given
hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_ACTIVE;
hci_get_own_address_for_addr_type(hci_stack->le_advertisements_own_addr_type, hci_stack->le_advertisements_own_address);
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
const uint8_t advertising_handles[] = { 0 };
const uint16_t durations[] = { 0 };
const uint16_t max_events[] = { 0 };
hci_send_cmd(&hci_le_set_extended_advertising_enable, 1, 1, advertising_handles, durations, max_events);
} else
#endif
{
hci_send_cmd(&hci_le_set_advertise_enable, 1);
}
return true;
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()) {
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets);
while (btstack_linked_list_iterator_has_next(&it)) {
le_advertising_set_t *advertising_set = (le_advertising_set_t *) btstack_linked_list_iterator_next(&it);
if (((advertising_set->state & LE_ADVERTISEMENT_STATE_ENABLED) != 0) && ((advertising_set->state & LE_ADVERTISEMENT_STATE_ACTIVE) == 0)){
advertising_set->state |= LE_ADVERTISEMENT_STATE_ACTIVE;
const uint8_t advertising_handles[] = { advertising_set->advertising_handle };
const uint16_t durations[] = { advertising_set->enable_timeout };
const uint16_t max_events[] = { advertising_set->enable_max_scan_events };
hci_send_cmd(&hci_le_set_extended_advertising_enable, 1, 1, advertising_handles, durations, max_events);
return true;
}
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if (((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED) != 0) && ((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE) == 0)){
advertising_set->state |= LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE;
uint8_t enable = 1;
if (advertising_set->periodic_include_adi){
enable |= 2;
}
hci_send_cmd(&hci_le_set_periodic_advertising_enable, enable, advertising_set->advertising_handle);
return true;
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
}
}
#endif
#endif
return false;
}
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
static bool hci_run_iso_tasks(void){
btstack_linked_list_iterator_t it;
if (hci_stack->iso_active_operation_type != HCI_ISO_TYPE_INVALID) {
return false;
}
// BIG
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it);
switch (big->state){
case LE_AUDIO_BIG_STATE_CREATE:
hci_stack->iso_active_operation_group_id = big->params->big_handle;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_BIS;
big->state = LE_AUDIO_BIG_STATE_W4_ESTABLISHED;
hci_send_cmd(&hci_le_create_big,
big->params->big_handle,
big->params->advertising_handle,
big->params->num_bis,
big->params->sdu_interval_us,
big->params->max_sdu,
big->params->max_transport_latency_ms,
big->params->rtn,
big->params->phy,
big->params->packing,
big->params->framing,
big->params->encryption,
big->params->broadcast_code);
return true;
case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH:
big->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH;
hci_send_cmd(&hci_le_setup_iso_data_path, big->bis_con_handles[big->state_vars.next_bis], 0, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL);
return true;
case LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED:
big->state = LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED;
hci_send_cmd(&hci_le_terminate_big, big->big_handle, big->state_vars.status);
return true;
case LE_AUDIO_BIG_STATE_TERMINATE:
big->state = LE_AUDIO_BIG_STATE_W4_TERMINATED;
hci_send_cmd(&hci_le_terminate_big, big->big_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return true;
default:
break;
}
}
// BIG Sync
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_big_sync_t * big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it);
switch (big_sync->state){
case LE_AUDIO_BIG_STATE_CREATE:
hci_stack->iso_active_operation_group_id = big_sync->params->big_handle;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_BIS;
big_sync->state = LE_AUDIO_BIG_STATE_W4_ESTABLISHED;
hci_send_cmd(&hci_le_big_create_sync,
big_sync->params->big_handle,
big_sync->params->sync_handle,
big_sync->params->encryption,
big_sync->params->broadcast_code,
big_sync->params->mse,
big_sync->params->big_sync_timeout_10ms,
big_sync->params->num_bis,
big_sync->params->bis_indices);
return true;
case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH:
big_sync->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH;
hci_send_cmd(&hci_le_setup_iso_data_path, big_sync->bis_con_handles[big_sync->state_vars.next_bis], 1, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL);
return true;
case LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED:
big_sync->state = LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED;
hci_send_cmd(&hci_le_big_terminate_sync, big_sync->big_handle);
return true;
case LE_AUDIO_BIG_STATE_TERMINATE:
big_sync->state = LE_AUDIO_BIG_STATE_W4_TERMINATED;
hci_send_cmd(&hci_le_big_terminate_sync, big_sync->big_handle);
return true;
default:
break;
}
}
// CIG
bool cig_active;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_cigs);
while (btstack_linked_list_iterator_has_next(&it)) {
le_audio_cig_t *cig = (le_audio_cig_t *) btstack_linked_list_iterator_next(&it);
uint8_t i;
// Set CIG Parameters
uint8_t cis_id[MAX_NR_CIS];
uint16_t max_sdu_c_to_p[MAX_NR_CIS];
uint16_t max_sdu_p_to_c[MAX_NR_CIS];
uint8_t phy_c_to_p[MAX_NR_CIS];
uint8_t phy_p_to_c[MAX_NR_CIS];
uint8_t rtn_c_to_p[MAX_NR_CIS];
uint8_t rtn_p_to_c[MAX_NR_CIS];
switch (cig->state) {
case LE_AUDIO_CIG_STATE_CREATE:
hci_stack->iso_active_operation_group_id = cig->params->cig_id;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
cig->state = LE_AUDIO_CIG_STATE_W4_ESTABLISHED;
le_audio_cig_params_t * params = cig->params;
for (i = 0; i < params->num_cis; i++) {
le_audio_cis_params_t * cis_params = &cig->params->cis_params[i];
cis_id[i] = cis_params->cis_id;
max_sdu_c_to_p[i] = cis_params->max_sdu_c_to_p;
max_sdu_p_to_c[i] = cis_params->max_sdu_p_to_c;
phy_c_to_p[i] = cis_params->phy_c_to_p;
phy_p_to_c[i] = cis_params->phy_p_to_c;
rtn_c_to_p[i] = cis_params->rtn_c_to_p;
rtn_p_to_c[i] = cis_params->rtn_p_to_c;
}
hci_send_cmd(&hci_le_set_cig_parameters,
cig->cig_id,
params->sdu_interval_c_to_p,
params->sdu_interval_p_to_c,
params->worst_case_sca,
params->packing,
params->framing,
params->max_transport_latency_c_to_p,
params->max_transport_latency_p_to_c,
params->num_cis,
cis_id,
max_sdu_c_to_p,
max_sdu_p_to_c,
phy_c_to_p,
phy_p_to_c,
rtn_c_to_p,
rtn_p_to_c
);
return true;
case LE_AUDIO_CIG_STATE_CREATE_CIS:
hci_stack->iso_active_operation_group_id = cig->params->cig_id;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
cig->state = LE_AUDIO_CIG_STATE_W4_CREATE_CIS;
for (i=0;i<cig->num_cis;i++){
cig->cis_setup_active[i] = true;
}
hci_send_cmd(&hci_le_create_cis, cig->num_cis, cig->cis_con_handles, cig->acl_con_handles);
return true;
case LE_AUDIO_CIG_STATE_SETUP_ISO_PATH:
for ( ; cig->state_vars.next_cis < (cig->num_cis * 2) ; cig->state_vars.next_cis++ ){
// find next path to setup
uint8_t cis_index = cig->state_vars.next_cis >> 1;
if (cig->cis_established[cis_index] == false) {
continue;
}
uint8_t cis_direction = cig->state_vars.next_cis & 1;
bool setup = true;
if (cis_direction == 0){
// 0 - input - host to controller
// we are central => central to peripheral
setup &= cig->params->cis_params[cis_index].max_sdu_c_to_p > 0;
} else {
// 1 - output - controller to host
// we are central => peripheral to central
setup &= cig->params->cis_params[cis_index].max_sdu_p_to_c > 0;
}
if (setup){
hci_stack->iso_active_operation_group_id = cig->params->cig_id;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
cig->state = LE_AUDIO_CIG_STATE_W4_SETUP_ISO_PATH;
hci_send_cmd(&hci_le_setup_iso_data_path, cig->cis_con_handles[cis_index], cis_direction, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL);
return true;
}
}
cig->state = LE_AUDIO_CIG_STATE_ACTIVE;
break;
case LE_AUDIO_CIG_STATE_REMOVE:
// check if CIG Active
cig_active = false;
for (i = 0; i < cig->num_cis; i++) {
if (cig->cis_con_handles[i] != HCI_CON_HANDLE_INVALID){
hci_iso_stream_t * stream = hci_iso_stream_for_con_handle(cig->cis_con_handles[i]);
if (stream != NULL){
cig_active = true;
break;
}
}
}
if (cig_active == false){
btstack_linked_list_iterator_remove(&it);
hci_send_cmd(&hci_le_remove_cig, cig->cig_id);
return true;
}
default:
break;
}
}
// CIS Accept/Reject/Setup ISO Path/Close
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)) {
hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
hci_con_handle_t con_handle;
switch (iso_stream->state){
case HCI_ISO_STREAM_W2_ACCEPT:
iso_stream->state = HCI_ISO_STREAM_STATE_W4_ESTABLISHED;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS;
hci_send_cmd(&hci_le_accept_cis_request, iso_stream->cis_handle);
return true;
case HCI_ISO_STREAM_W2_REJECT:
con_handle = iso_stream->cis_handle;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS;
hci_iso_stream_finalize(iso_stream);
hci_send_cmd(&hci_le_reject_cis_request, con_handle, ERROR_CODE_REMOTE_DEVICE_TERMINATED_CONNECTION_DUE_TO_LOW_RESOURCES);
return true;
case HCI_ISO_STREAM_STATE_W2_SETUP_ISO_INPUT:
hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
iso_stream->state = HCI_ISO_STREAM_STATE_W4_ISO_SETUP_INPUT;
hci_send_cmd(&hci_le_setup_iso_data_path, iso_stream->cis_handle, 0, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL);
return true;
case HCI_ISO_STREAM_STATE_W2_SETUP_ISO_OUTPUT:
hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS;
hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS;
iso_stream->state = HCI_ISO_STREAM_STATE_W4_ISO_SETUP_OUTPUT;
hci_send_cmd(&hci_le_setup_iso_data_path, iso_stream->cis_handle, 1, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL);
return true;
case HCI_ISO_STREAM_STATE_W2_CLOSE:
iso_stream->state = HCI_ISO_STREAM_STATE_W4_DISCONNECTED;
hci_send_cmd(&hci_disconnect, iso_stream->cis_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return true;
default:
break;
}
}
return false;
}
#endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */
#endif
static bool hci_run_general_pending_commands(void){
btstack_linked_item_t * it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
switch(connection->state){
case SEND_CREATE_CONNECTION:
switch(connection->address_type){
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_ACL:
log_info("sending hci_create_connection");
hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, hci_stack->allow_role_switch);
break;
#endif
default:
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
log_info("sending hci_le_create_connection");
hci_stack->le_connection_own_addr_type = hci_stack->le_own_addr_type;
hci_get_own_address_for_addr_type(hci_stack->le_connection_own_addr_type, hci_stack->le_connection_own_address);
hci_send_le_create_connection(0, connection->address_type, connection->address);
connection->state = SENT_CREATE_CONNECTION;
#endif
#endif
break;
}
return true;
#ifdef ENABLE_CLASSIC
case RECEIVED_CONNECTION_REQUEST:
if (connection->address_type == BD_ADDR_TYPE_ACL){
log_info("sending hci_accept_connection_request");
connection->state = ACCEPTED_CONNECTION_REQUEST;
hci_send_cmd(&hci_accept_connection_request, connection->address, hci_stack->master_slave_policy);
return true;
}
break;
#endif
case SEND_DISCONNECT:
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return true;
default:
break;
}
// no further commands if connection is about to get shut down
if (connection->state == SENT_DISCONNECT) continue;
#ifdef ENABLE_CLASSIC
// Handling link key request requires remote supported features
if (((connection->authentication_flags & AUTH_FLAG_HANDLE_LINK_KEY_REQUEST) != 0)){
log_info("responding to link key request, have link key db: %u", hci_stack->link_key_db != NULL);
connectionClearAuthenticationFlags(connection, AUTH_FLAG_HANDLE_LINK_KEY_REQUEST);
bool have_link_key = connection->link_key_type != INVALID_LINK_KEY;
bool security_level_sufficient = have_link_key && (gap_security_level_for_link_key_type(connection->link_key_type) >= connection->requested_security_level);
if (have_link_key && security_level_sufficient){
hci_send_cmd(&hci_link_key_request_reply, connection->address, &connection->link_key);
} else {
hci_send_cmd(&hci_link_key_request_negative_reply, connection->address);
}
return true;
}
if (connection->authentication_flags & AUTH_FLAG_DENY_PIN_CODE_REQUEST){
log_info("denying to pin request");
connectionClearAuthenticationFlags(connection, AUTH_FLAG_DENY_PIN_CODE_REQUEST);
hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address);
return true;
}
// security assessment requires remote features
if ((connection->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_REQUEST) != 0){
connectionClearAuthenticationFlags(connection, AUTH_FLAG_RECV_IO_CAPABILITIES_REQUEST);
hci_ssp_assess_security_on_io_cap_request(connection);
// no return here as hci_ssp_assess_security_on_io_cap_request only sets AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY or AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY
}
if (connection->authentication_flags & AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY){
connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY);
// set authentication requirements:
// - MITM = ssp_authentication_requirement (USER) | requested_security_level (dynamic)
// - BONDING MODE: dedicated if requested, bondable otherwise. Drop bondable if not set for remote
connection->io_cap_request_auth_req = hci_stack->ssp_authentication_requirement & 1;
if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){
connection->io_cap_request_auth_req |= 1;
}
bool bonding = hci_stack->bondable;
if (connection->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE){
// if we have received IO Cap Response, we're in responder role
bool remote_bonding = connection->io_cap_response_auth_req >= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING;
if (bonding && !remote_bonding){
log_info("Remote not bonding, dropping local flag");
bonding = false;
}
}
if (bonding){
if (connection->bonding_flags & BONDING_DEDICATED){
connection->io_cap_request_auth_req |= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING;
} else {
connection->io_cap_request_auth_req |= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING;
}
}
uint8_t have_oob_data = 0;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
if (connection->classic_oob_c_192 != NULL){
have_oob_data |= 1;
}
if (connection->classic_oob_c_256 != NULL){
have_oob_data |= 2;
}
#endif
hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, have_oob_data, connection->io_cap_request_auth_req);
return true;
}
if (connection->authentication_flags & AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY) {
connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED);
return true;
}
#ifdef ENABLE_CLASSIC_PAIRING_OOB
if (connection->authentication_flags & AUTH_FLAG_SEND_REMOTE_OOB_DATA_REPLY){
connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_REMOTE_OOB_DATA_REPLY);
const uint8_t zero[16] = { 0 };
const uint8_t * r_192 = zero;
const uint8_t * c_192 = zero;
const uint8_t * r_256 = zero;
const uint8_t * c_256 = zero;
// verify P-256 OOB
if ((connection->classic_oob_c_256 != NULL) && hci_command_supported(SUPPORTED_HCI_COMMAND_REMOTE_OOB_EXTENDED_DATA_REQUEST_REPLY)) {
c_256 = connection->classic_oob_c_256;
if (connection->classic_oob_r_256 != NULL) {
r_256 = connection->classic_oob_r_256;
}
}
// verify P-192 OOB
if ((connection->classic_oob_c_192 != NULL)) {
c_192 = connection->classic_oob_c_192;
if (connection->classic_oob_r_192 != NULL) {
r_192 = connection->classic_oob_r_192;
}
}
// assess security
bool need_level_4 = hci_stack->gap_secure_connections_only_mode || (connection->requested_security_level == LEVEL_4);
bool can_reach_level_4 = hci_remote_sc_enabled(connection) && (c_256 != NULL);
if (need_level_4 && !can_reach_level_4){
log_info("Level 4 required, but not possible -> abort");
hci_pairing_complete(connection, ERROR_CODE_INSUFFICIENT_SECURITY);
// send oob negative reply
c_256 = NULL;
c_192 = NULL;
}
// Reply
if (c_256 != zero) {
hci_send_cmd(&hci_remote_oob_extended_data_request_reply, &connection->address, c_192, r_192, c_256, r_256);
} else if (c_192 != zero){
hci_send_cmd(&hci_remote_oob_data_request_reply, &connection->address, c_192, r_192);
} else {
hci_stack->classic_oob_con_handle = connection->con_handle;
hci_send_cmd(&hci_remote_oob_data_request_negative_reply, &connection->address);
}
return true;
}
#endif
if (connection->authentication_flags & AUTH_FLAG_SEND_USER_CONFIRM_REPLY){
connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_USER_CONFIRM_REPLY);
hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address);
return true;
}
if (connection->authentication_flags & AUTH_FLAG_SEND_USER_CONFIRM_NEGATIVE_REPLY){
connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_USER_CONFIRM_NEGATIVE_REPLY);
hci_send_cmd(&hci_user_confirmation_request_negative_reply, &connection->address);
return true;
}
if (connection->authentication_flags & AUTH_FLAG_SEND_USER_PASSKEY_REPLY){
connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_USER_PASSKEY_REPLY);
hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000);
return true;
}
if ((connection->bonding_flags & (BONDING_DISCONNECT_DEDICATED_DONE | BONDING_DEDICATED_DEFER_DISCONNECT)) == BONDING_DISCONNECT_DEDICATED_DONE){
connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE;
connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT;
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return true;
}
if ((connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST) && ((connection->bonding_flags & BONDING_RECEIVED_REMOTE_FEATURES) != 0)){
connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST;
connection->bonding_flags |= BONDING_SENT_AUTHENTICATE_REQUEST;
hci_send_cmd(&hci_authentication_requested, connection->con_handle);
return true;
}
if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){
connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST;
hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1);
return true;
}
if (connection->bonding_flags & BONDING_SEND_READ_ENCRYPTION_KEY_SIZE){
connection->bonding_flags &= ~BONDING_SEND_READ_ENCRYPTION_KEY_SIZE;
hci_send_cmd(&hci_read_encryption_key_size, connection->con_handle, 1);
return true;
}
if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_0){
connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_0;
hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle);
return true;
}
if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_1){
connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_1;
hci_send_cmd(&hci_read_remote_extended_features_command, connection->con_handle, 1);
return true;
}
if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_2){
connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_2;
hci_send_cmd(&hci_read_remote_extended_features_command, connection->con_handle, 2);
return true;
}
#endif
if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){
connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK;
#ifdef ENABLE_CLASSIC
hci_pairing_complete(connection, ERROR_CODE_CONNECTION_REJECTED_DUE_TO_SECURITY_REASONS);
#endif
if (connection->state != SENT_DISCONNECT){
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_AUTHENTICATION_FAILURE);
return true;
}
}
#ifdef ENABLE_CLASSIC
uint16_t sniff_min_interval;
switch (connection->sniff_min_interval){
case 0:
break;
case 0xffff:
connection->sniff_min_interval = 0;
hci_send_cmd(&hci_exit_sniff_mode, connection->con_handle);
return true;
default:
sniff_min_interval = connection->sniff_min_interval;
connection->sniff_min_interval = 0;
hci_send_cmd(&hci_sniff_mode, connection->con_handle, connection->sniff_max_interval, sniff_min_interval, connection->sniff_attempt, connection->sniff_timeout);
return true;
}
if (connection->sniff_subrating_max_latency != 0xffff){
uint16_t max_latency = connection->sniff_subrating_max_latency;
connection->sniff_subrating_max_latency = 0;
hci_send_cmd(&hci_sniff_subrating, connection->con_handle, max_latency, connection->sniff_subrating_min_remote_timeout, connection->sniff_subrating_min_local_timeout);
return true;
}
if (connection->qos_service_type != HCI_SERVICE_TYPE_INVALID){
uint8_t service_type = (uint8_t) connection->qos_service_type;
connection->qos_service_type = HCI_SERVICE_TYPE_INVALID;
hci_send_cmd(&hci_qos_setup, connection->con_handle, 0, service_type, connection->qos_token_rate, connection->qos_peak_bandwidth, connection->qos_latency, connection->qos_delay_variation);
return true;
}
if (connection->request_role != HCI_ROLE_INVALID){
hci_role_t role = connection->request_role;
connection->request_role = HCI_ROLE_INVALID;
hci_send_cmd(&hci_switch_role_command, connection->address, role);
return true;
}
#endif
if (connection->gap_connection_tasks != 0){
#ifdef ENABLE_CLASSIC
if ((connection->gap_connection_tasks & GAP_CONNECTION_TASK_WRITE_AUTOMATIC_FLUSH_TIMEOUT) != 0){
connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_WRITE_AUTOMATIC_FLUSH_TIMEOUT;
hci_send_cmd(&hci_write_automatic_flush_timeout, connection->con_handle, hci_stack->automatic_flush_timeout);
return true;
}
if (connection->gap_connection_tasks & GAP_CONNECTION_TASK_WRITE_SUPERVISION_TIMEOUT){
connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_WRITE_SUPERVISION_TIMEOUT;
hci_send_cmd(&hci_write_link_supervision_timeout, connection->con_handle, hci_stack->link_supervision_timeout);
return true;
}
#endif
if (connection->gap_connection_tasks & GAP_CONNECTION_TASK_READ_RSSI){
connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_READ_RSSI;
hci_send_cmd(&hci_read_rssi, connection->con_handle);
return true;
}
#ifdef ENABLE_BLE
if (connection->gap_connection_tasks & GAP_CONNECTION_TASK_LE_READ_REMOTE_FEATURES){
connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_LE_READ_REMOTE_FEATURES;
hci_send_cmd(&hci_le_read_remote_used_features, connection->con_handle);
return true;
}
#endif
}
#ifdef ENABLE_BLE
switch (connection->le_con_parameter_update_state){
// response to L2CAP CON PARAMETER UPDATE REQUEST
case CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS:
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection->le_conn_interval_min,
connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout,
hci_stack->le_minimum_ce_length, hci_stack->le_maximum_ce_length);
return true;
case CON_PARAMETER_UPDATE_REPLY:
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
hci_send_cmd(&hci_le_remote_connection_parameter_request_reply, connection->con_handle, connection->le_conn_interval_min,
connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout,
hci_stack->le_minimum_ce_length, hci_stack->le_maximum_ce_length);
return true;
case CON_PARAMETER_UPDATE_NEGATIVE_REPLY:
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
hci_send_cmd(&hci_le_remote_connection_parameter_request_negative_reply, connection->con_handle,
ERROR_CODE_UNACCEPTABLE_CONNECTION_PARAMETERS);
return true;
default:
break;
}
if (connection->le_phy_update_all_phys != 0xffu){
uint8_t all_phys = connection->le_phy_update_all_phys;
connection->le_phy_update_all_phys = 0xff;
hci_send_cmd(&hci_le_set_phy, connection->con_handle, all_phys, connection->le_phy_update_tx_phys, connection->le_phy_update_rx_phys, connection->le_phy_update_phy_options);
return true;
}
if (connection->le_subrate_min > 0){
uint16_t subrate_min = connection->le_subrate_min;
connection->le_subrate_min = 0;
hci_send_cmd(&hci_le_subrate_request, connection->con_handle, subrate_min, connection->le_subrate_max, connection->le_subrate_max_latency,
connection->le_subrate_continuation_number, connection->le_supervision_timeout);
return true;
}
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
if (connection->le_past_sync_handle != HCI_CON_HANDLE_INVALID){
hci_con_handle_t sync_handle = connection->le_past_sync_handle;
connection->le_past_sync_handle = HCI_CON_HANDLE_INVALID;
hci_send_cmd(&hci_le_periodic_advertising_sync_transfer, connection->con_handle, connection->le_past_service_data, sync_handle);
return true;
}
if (connection->le_past_advertising_handle != 0xff){
uint8_t advertising_handle = connection->le_past_advertising_handle;
connection->le_past_advertising_handle = 0xff;
hci_send_cmd(&hci_le_periodic_advertising_set_info_transfer, connection->con_handle, connection->le_past_service_data, advertising_handle);
return true;
}
#endif
#endif
}
return false;
}
static void hci_run(void){
// stack state sub statemachines
switch (hci_stack->state) {
case HCI_STATE_INITIALIZING:
hci_initializing_run();
break;
case HCI_STATE_HALTING:
hci_halting_run();
break;
case HCI_STATE_FALLING_ASLEEP:
hci_falling_asleep_run();
break;
default:
break;
}
// allow to run after initialization to working transition
if (hci_stack->state != HCI_STATE_WORKING){
return;
}
bool done;
// send continuation fragments first, as they block the prepared packet buffer
done = hci_run_acl_fragments();
if (done) return;
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
done = hci_run_iso_fragments();
if (done) return;
#endif
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
// send host num completed packets next as they don't require num_cmd_packets > 0
if (!hci_can_send_command_packet_transport()) return;
if (hci_stack->host_completed_packets){
hci_host_num_completed_packets();
return;
}
#endif
if (!hci_can_send_command_packet_now()) return;
// global/non-connection oriented commands
#ifdef ENABLE_CLASSIC
// general gap classic
done = hci_run_general_gap_classic();
if (done) return;
#endif
#ifdef ENABLE_BLE
// general gap le
done = hci_run_general_gap_le();
if (done) return;
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
// ISO related tasks, e.g. BIG create/terminate/sync
done = hci_run_iso_tasks();
if (done) return;
#endif
#endif
// send pending HCI commands
hci_run_general_pending_commands();
}
#ifdef ENABLE_CLASSIC
static void hci_set_sco_payload_length_for_flipped_packet_types(hci_connection_t * hci_connection, uint16_t flipped_packet_types){
// bits 6-9 are 'don't use'
uint16_t packet_types = flipped_packet_types ^ 0x03c0;
// restrict packet types to local and remote supported
packet_types &= hci_connection->remote_supported_sco_packets & hci_stack->usable_packet_types_sco;
hci_connection->sco_payload_length = hci_sco_payload_length_for_packet_types(packet_types);
log_info("Possible SCO packet types 0x%04x => payload length %u", packet_types, hci_connection->sco_payload_length);
}
#endif
// funnel for sending cmd packet using single outgoing buffer
static uint8_t hci_send_prepared_cmd_packet(void) {
btstack_assert(hci_stack->hci_packet_buffer_reserved);
// cache opcode
hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
// get size
uint16_t size = 3u + hci_stack->hci_packet_buffer[2u];
// send packet
uint8_t status = hci_send_cmd_packet(hci_stack->hci_packet_buffer, size);
// release packet buffer on error or for synchronous transport implementations
if ((status != ERROR_CODE_SUCCESS) || hci_transport_synchronous()){
hci_release_packet_buffer();
}
return status;
}
uint8_t hci_send_cmd_packet(uint8_t *packet, int size){
// house-keeping
#ifdef ENABLE_CLASSIC
bd_addr_t addr;
hci_connection_t * conn;
#endif
#ifdef ENABLE_LE_CENTRAL
uint8_t initiator_filter_policy;
#endif
uint16_t opcode = little_endian_read_16(packet, 0);
switch (opcode) {
case HCI_OPCODE_HCI_WRITE_LOOPBACK_MODE:
hci_stack->loopback_mode = packet[3];
break;
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_CREATE_CONNECTION:
reverse_bd_addr(&packet[3], addr);
log_info("Create_connection to %s", bd_addr_to_str(addr));
// CVE-2020-26555: reject outgoing connection to device with same BD ADDR
if (memcmp(hci_stack->local_bd_addr, addr, 6) == 0) {
hci_emit_connection_complete(addr, 0, ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR);
return ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR;
}
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) {
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL, HCI_ROLE_MASTER);
if (!conn) {
// notify client that alloc failed
hci_emit_connection_complete(addr, 0, BTSTACK_MEMORY_ALLOC_FAILED);
return BTSTACK_MEMORY_ALLOC_FAILED; // packet not sent to controller
}
conn->state = SEND_CREATE_CONNECTION;
}
log_info("conn state %u", conn->state);
// TODO: L2CAP should not send create connection command, instead a (new) gap function should be used
switch (conn->state) {
// if connection active exists
case OPEN:
// and OPEN, emit connection complete command
hci_emit_connection_complete(addr, conn->con_handle, ERROR_CODE_SUCCESS);
// packet not sent to controller
return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS;
case RECEIVED_DISCONNECTION_COMPLETE:
// create connection triggered in disconnect complete event, let's do it now
break;
case SEND_CREATE_CONNECTION:
#ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS
if (hci_classic_operation_active()){
return ERROR_CODE_SUCCESS;
}
#endif
// connection created by hci, e.g. dedicated bonding, but not executed yet, let's do it now
break;
default:
// otherwise, just ignore as it is already in the open process
// packet not sent to controller
return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS;
}
conn->state = SENT_CREATE_CONNECTION;
// track outgoing connection
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_ACL;
(void) memcpy(hci_stack->outgoing_addr, addr, 6);
break;
case HCI_OPCODE_HCI_SETUP_SYNCHRONOUS_CONNECTION:
conn = hci_connection_for_handle(little_endian_read_16(packet, 3));
if (conn == NULL) {
// neither SCO nor ACL connection for con handle
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
} else {
uint16_t remote_supported_sco_packets;
switch (conn->address_type){
case BD_ADDR_TYPE_ACL:
// assert SCO connection does not exit
if (hci_connection_for_bd_addr_and_type(conn->address, BD_ADDR_TYPE_SCO) != NULL){
return ERROR_CODE_COMMAND_DISALLOWED;
}
// cache remote sco packet types
remote_supported_sco_packets = conn->remote_supported_sco_packets;
// allocate connection struct
conn = create_connection_for_bd_addr_and_type(conn->address, BD_ADDR_TYPE_SCO,
HCI_ROLE_MASTER);
if (!conn) {
return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED;
}
conn->remote_supported_sco_packets = remote_supported_sco_packets;
break;
case BD_ADDR_TYPE_SCO:
// update of existing SCO connection
break;
default:
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
}
// conn refers to hci connection of type sco now
conn->state = SENT_CREATE_CONNECTION;
// track outgoing connection to handle command status with error
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_SCO;
(void) memcpy(hci_stack->outgoing_addr, conn->address, 6);
// setup_synchronous_connection? Voice setting at offset 22
// TODO: compare to current setting if sco connection already active
hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 15);
// derive sco payload length from packet types
hci_set_sco_payload_length_for_flipped_packet_types(conn, little_endian_read_16(packet, 18));
break;
case HCI_OPCODE_HCI_ACCEPT_SYNCHRONOUS_CONNECTION:
// get SCO connection
reverse_bd_addr(&packet[3], addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO);
if (conn == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
conn->state = ACCEPTED_CONNECTION_REQUEST;
// track outgoing connection to handle command status with error
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_SCO;
(void) memcpy(hci_stack->outgoing_addr, addr, 6);
// accept_synchronous_connection? Voice setting at offset 18
// TODO: compare to current setting if sco connection already active
hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 19);
// derive sco payload length from packet types
hci_set_sco_payload_length_for_flipped_packet_types(conn, little_endian_read_16(packet, 22));
break;
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
case HCI_OPCODE_HCI_LE_CREATE_CONNECTION:
// white list used?
initiator_filter_policy = packet[7];
switch (initiator_filter_policy) {
case 0:
// whitelist not used
hci_stack->le_connecting_state = LE_CONNECTING_DIRECT;
break;
case 1:
hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST;
break;
default:
log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy);
break;
}
// track outgoing connection
hci_stack->outgoing_addr_type = (bd_addr_type_t) packet[8]; // peer address type
reverse_bd_addr( &packet[9], hci_stack->outgoing_addr); // peer address
break;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
case HCI_OPCODE_HCI_LE_EXTENDED_CREATE_CONNECTION:
// white list used?
initiator_filter_policy = packet[3];
switch (initiator_filter_policy) {
case 0:
// whitelist not used
hci_stack->le_connecting_state = LE_CONNECTING_DIRECT;
break;
case 1:
hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST;
break;
default:
log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy);
break;
}
// track outgoing connection
hci_stack->outgoing_addr_type = (bd_addr_type_t) packet[5]; // peer address type
reverse_bd_addr( &packet[6], hci_stack->outgoing_addr); // peer address
break;
#endif
case HCI_OPCODE_HCI_LE_CREATE_CONNECTION_CANCEL:
hci_stack->le_connecting_state = LE_CONNECTING_CANCEL;
break;
#endif
#ifdef ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND
case HCI_OPCODE_HCI_LE_CONNECTION_UPDATE:
case HCI_OPCODE_HCI_LE_READ_REMOTE_USED_FEATURES:
case HCI_OPCODE_HCI_LE_START_ENCRYPTION:
case HCI_OPCODE_HCI_LE_LONG_TERM_KEY_REQUEST_REPLY:
case HCI_OPCODE_HCI_LE_LONG_TERM_KEY_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_LE_REMOTE_CONNECTION_PARAMETER_REQUEST_REPLY:
case HCI_OPCODE_HCI_LE_REMOTE_CONNECTION_PARAMETER_REQUEST_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_LE_SET_DATA_LENGTH:
case HCI_OPCODE_HCI_LE_READ_PHY:
case HCI_OPCODE_HCI_LE_SET_PHY:
// conection handle is first command parameter
hci_stack->hci_command_con_handle = little_endian_read_16(packet, 3);
break;
#endif
#endif /* ENABLE_BLE */
default:
break;
}
hci_stack->num_cmd_packets--;
hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size);
int err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size);
uint8_t status;
if (err == 0){
status = ERROR_CODE_SUCCESS;
} else {
status = ERROR_CODE_HARDWARE_FAILURE;
}
return status;
}
// disconnect because of security block
void hci_disconnect_security_block(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return;
connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK;
}
// Configure Secure Simple Pairing
#ifdef ENABLE_CLASSIC
// enable will enable SSP during init
void gap_ssp_set_enable(int enable){
hci_stack->ssp_enable = enable;
}
static int hci_local_ssp_activated(void){
return gap_ssp_supported() && hci_stack->ssp_enable;
}
// if set, BTstack will respond to io capability request using authentication requirement
void gap_ssp_set_io_capability(int io_capability){
hci_stack->ssp_io_capability = io_capability;
}
void gap_ssp_set_authentication_requirement(int authentication_requirement){
hci_stack->ssp_authentication_requirement = authentication_requirement;
}
// if set, BTstack will confirm a numeric comparison and enter '000000' if requested
void gap_ssp_set_auto_accept(int auto_accept){
hci_stack->ssp_auto_accept = auto_accept;
}
void gap_secure_connections_enable(bool enable){
hci_stack->secure_connections_enable = enable;
}
bool gap_secure_connections_active(void){
return hci_stack->secure_connections_active;
}
#endif
// va_list part of hci_send_cmd
uint8_t hci_send_cmd_va_arg(const hci_cmd_t * cmd, va_list argptr){
if (!hci_can_send_command_packet_now()){
log_error("hci_send_cmd called but cannot send packet now");
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_reserve_packet_buffer();
hci_cmd_create_from_template(hci_stack->hci_packet_buffer, cmd, argptr);
return hci_send_prepared_cmd_packet();
}
/**
* pre: num_commands >= 0 - it's allowed to send a command to the controller
*/
uint8_t hci_send_cmd(const hci_cmd_t * cmd, ...){
va_list argptr;
va_start(argptr, cmd);
uint8_t status = hci_send_cmd_va_arg(cmd, argptr);
va_end(argptr);
return status;
}
// Forward HCI events and create non-HCI events
static void hci_emit_event(uint8_t * event, uint16_t size, int dump){
// dump packet
if (dump) {
hci_dump_packet( HCI_EVENT_PACKET, 1, event, size);
}
// dispatch to all event handlers
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->event_handlers);
while (btstack_linked_list_iterator_has_next(&it)){
btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
entry->callback(HCI_EVENT_PACKET, 0, event, size);
}
}
static void hci_emit_btstack_event(uint8_t * event, uint16_t size, int dump){
#ifndef ENABLE_LOG_BTSTACK_EVENTS
dump = 0;
#endif
hci_emit_event(event, size, dump);
}
static void hci_emit_acl_packet(uint8_t * packet, uint16_t size){
if (!hci_stack->acl_packet_handler) return;
hci_stack->acl_packet_handler(HCI_ACL_DATA_PACKET, 0, packet, size);
}
#ifdef ENABLE_CLASSIC
static void hci_notify_if_sco_can_send_now(void){
// notify SCO sender if waiting
if (!hci_stack->sco_waiting_for_can_send_now) return;
if (hci_can_send_sco_packet_now()){
hci_stack->sco_waiting_for_can_send_now = 0;
uint8_t event[2] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 };
hci_dump_btstack_event(event, sizeof(event));
hci_stack->sco_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event));
}
}
// parsing end emitting has been merged to reduce code size
static void gap_inquiry_explode(uint8_t *packet, uint16_t size) {
uint8_t event[28+GAP_INQUIRY_MAX_NAME_LEN];
uint8_t * eir_data;
ad_context_t context;
const uint8_t * name;
uint8_t name_len;
if (size < 3) return;
int event_type = hci_event_packet_get_type(packet);
int num_reserved_fields = (event_type == HCI_EVENT_INQUIRY_RESULT) ? 2 : 1; // 2 for old event, 1 otherwise
int num_responses = hci_event_inquiry_result_get_num_responses(packet);
switch (event_type){
case HCI_EVENT_INQUIRY_RESULT:
case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:
if (size != (3 + (num_responses * 14))) return;
break;
case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE:
if (size != 257) return;
if (num_responses != 1) return;
break;
default:
return;
}
// event[1] is set at the end
int i;
for (i=0; i<num_responses;i++){
memset(event, 0, sizeof(event));
event[0] = GAP_EVENT_INQUIRY_RESULT;
uint8_t event_size = 27; // if name is not set by EIR
(void)memcpy(&event[2], &packet[3 + (i * 6)], 6); // bd_addr
event[8] = packet[3 + (num_responses*(6)) + (i*1)]; // page_scan_repetition_mode
(void)memcpy(&event[9],
&packet[3 + (num_responses * (6 + 1 + num_reserved_fields)) + (i * 3)],
3); // class of device
(void)memcpy(&event[12],
&packet[3 + (num_responses * (6 + 1 + num_reserved_fields + 3)) + (i * 2)],
2); // clock offset
switch (event_type){
case HCI_EVENT_INQUIRY_RESULT:
// 14,15,16,17 = 0, size 18
break;
case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:
event[14] = 1;
event[15] = packet [3 + (num_responses*(6+1+num_reserved_fields+3+2)) + (i*1)]; // rssi
// 16,17 = 0, size 18
break;
case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE:
event[14] = 1;
event[15] = packet [3 + (num_responses*(6+1+num_reserved_fields+3+2)) + (i*1)]; // rssi
// EIR packets only contain a single inquiry response
eir_data = &packet[3 + (6+1+num_reserved_fields+3+2+1)];
name = NULL;
// Iterate over EIR data
for (ad_iterator_init(&context, EXTENDED_INQUIRY_RESPONSE_DATA_LEN, eir_data) ; ad_iterator_has_more(&context) ; ad_iterator_next(&context)){
uint8_t data_type = ad_iterator_get_data_type(&context);
uint8_t data_size = ad_iterator_get_data_len(&context);
const uint8_t * data = ad_iterator_get_data(&context);
// Prefer Complete Local Name over Shortened Local Name
switch (data_type){
case BLUETOOTH_DATA_TYPE_SHORTENED_LOCAL_NAME:
if (name) continue;
/* fall through */
case BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME:
name = data;
name_len = data_size;
break;
case BLUETOOTH_DATA_TYPE_DEVICE_ID:
if (data_size != 8) break;
event[16] = 1;
memcpy(&event[17], data, 8);
break;
default:
break;
}
}
if (name){
event[25] = 1;
// truncate name if needed
int len = btstack_min(name_len, GAP_INQUIRY_MAX_NAME_LEN);
event[26] = len;
(void)memcpy(&event[27], name, len);
event_size += len;
}
break;
default:
return;
}
event[1] = event_size - 2;
hci_emit_btstack_event(event, event_size, 1);
}
}
#endif
void hci_emit_state(void){
log_info("BTSTACK_EVENT_STATE %u", hci_stack->state);
uint8_t event[3];
event[0] = BTSTACK_EVENT_STATE;
event[1] = sizeof(event) - 2u;
event[2] = hci_stack->state;
hci_emit_btstack_event(event, sizeof(event), 1);
}
#ifdef ENABLE_CLASSIC
static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){
uint8_t event[13];
event[0] = HCI_EVENT_CONNECTION_COMPLETE;
event[1] = sizeof(event) - 2;
event[2] = status;
little_endian_store_16(event, 3, con_handle);
reverse_bd_addr(address, &event[5]);
event[11] = 1; // ACL connection
event[12] = 0; // encryption disabled
hci_emit_btstack_event(event, sizeof(event), 1);
}
static void hci_emit_l2cap_check_timeout(hci_connection_t *conn){
if (disable_l2cap_timeouts) return;
log_info("L2CAP_EVENT_TIMEOUT_CHECK");
uint8_t event[4];
event[0] = L2CAP_EVENT_TIMEOUT_CHECK;
event[1] = sizeof(event) - 2;
little_endian_store_16(event, 2, conn->con_handle);
hci_emit_btstack_event(event, sizeof(event), 1);
}
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
static void hci_emit_le_connection_complete(uint8_t address_type, const bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){
uint8_t hci_event[21];
hci_event[0] = HCI_EVENT_LE_META;
hci_event[1] = sizeof(hci_event) - 2u;
hci_event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE;
hci_event[3] = status;
little_endian_store_16(hci_event, 4, con_handle);
hci_event[6] = 0; // TODO: role
hci_event[7] = address_type;
reverse_bd_addr(address, &hci_event[8]);
little_endian_store_16(hci_event, 14, 0); // interval
little_endian_store_16(hci_event, 16, 0); // latency
little_endian_store_16(hci_event, 18, 0); // supervision timeout
hci_event[20] = 0; // master clock accuracy
hci_emit_btstack_event(hci_event, sizeof(hci_event), 1);
// emit GAP event, too
uint8_t gap_event[36];
hci_create_gap_connection_complete_event(hci_event, gap_event);
hci_emit_btstack_event(gap_event, sizeof(gap_event), 1);
}
#endif
#endif
static void hci_emit_transport_packet_sent(void){
// notify upper stack that it might be possible to send again
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
hci_emit_btstack_event(&event[0], sizeof(event), 0); // don't dump
}
static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason){
uint8_t event[6];
event[0] = HCI_EVENT_DISCONNECTION_COMPLETE;
event[1] = sizeof(event) - 2u;
event[2] = 0; // status = OK
little_endian_store_16(event, 3, con_handle);
event[5] = reason;
hci_emit_btstack_event(event, sizeof(event), 1);
}
static void hci_emit_nr_connections_changed(void){
log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections());
uint8_t event[3];
event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED;
event[1] = sizeof(event) - 2u;
event[2] = nr_hci_connections();
hci_emit_btstack_event(event, sizeof(event), 1);
}
static void hci_emit_hci_open_failed(void){
log_info("BTSTACK_EVENT_POWERON_FAILED");
uint8_t event[2];
event[0] = BTSTACK_EVENT_POWERON_FAILED;
event[1] = sizeof(event) - 2u;
hci_emit_btstack_event(event, sizeof(event), 1);
}
static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){
log_info("hci_emit_dedicated_bonding_result %u ", status);
uint8_t event[9];
int pos = 0;
event[pos++] = GAP_EVENT_DEDICATED_BONDING_COMPLETED;
event[pos++] = sizeof(event) - 2u;
event[pos++] = status;
reverse_bd_addr(address, &event[pos]);
hci_emit_btstack_event(event, sizeof(event), 1);
}
#ifdef ENABLE_CLASSIC
static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){
log_info("hci_emit_security_level %u for handle %x", level, con_handle);
uint8_t event[5];
int pos = 0;
event[pos++] = GAP_EVENT_SECURITY_LEVEL;
event[pos++] = sizeof(event) - 2;
little_endian_store_16(event, 2, con_handle);
pos += 2;
event[pos++] = level;
hci_emit_btstack_event(event, sizeof(event), 1);
}
static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){
if (!connection) return LEVEL_0;
if ((connection->authentication_flags & AUTH_FLAG_CONNECTION_ENCRYPTED) == 0) return LEVEL_0;
// BIAS: we only consider Authenticated if the connection is already encrypted, which requires that both sides have link key
if ((connection->authentication_flags & AUTH_FLAG_CONNECTION_AUTHENTICATED) == 0) return LEVEL_0;
if (connection->encryption_key_size < hci_stack->gap_required_encyrption_key_size) return LEVEL_0;
gap_security_level_t security_level = gap_security_level_for_link_key_type(connection->link_key_type);
// LEVEL 4 always requires 128 bit encryption key size
if ((security_level == LEVEL_4) && (connection->encryption_key_size < 16)){
security_level = LEVEL_3;
}
return security_level;
}
static void hci_emit_scan_mode_changed(uint8_t discoverable, uint8_t connectable){
uint8_t event[4];
event[0] = BTSTACK_EVENT_SCAN_MODE_CHANGED;
event[1] = sizeof(event) - 2;
event[2] = discoverable;
event[3] = connectable;
hci_emit_btstack_event(event, sizeof(event), 1);
}
// query if remote side supports eSCO
bool hci_remote_esco_supported(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return false;
return (connection->remote_supported_features[0] & 1) != 0;
}
uint16_t hci_remote_sco_packet_types(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return 0;
return connection->remote_supported_sco_packets;
}
static bool hci_ssp_supported(hci_connection_t * connection){
const uint8_t mask = BONDING_REMOTE_SUPPORTS_SSP_CONTROLLER | BONDING_REMOTE_SUPPORTS_SSP_HOST;
return (connection->bonding_flags & mask) == mask;
}
// query if remote side supports SSP
bool hci_remote_ssp_supported(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return false;
return hci_ssp_supported(connection) ? 1 : 0;
}
bool gap_ssp_supported_on_both_sides(hci_con_handle_t handle){
return hci_local_ssp_activated() && hci_remote_ssp_supported(handle);
}
/**
* Check if remote supported features query has completed
*/
bool hci_remote_features_available(hci_con_handle_t handle){
hci_connection_t * connection = hci_connection_for_handle(handle);
if (!connection) return false;
return (connection->bonding_flags & BONDING_RECEIVED_REMOTE_FEATURES) != 0;
}
/**
* Trigger remote supported features query
*/
static void hci_trigger_remote_features_for_connection(hci_connection_t * connection){
if ((connection->bonding_flags & (BONDING_REMOTE_FEATURES_QUERY_ACTIVE | BONDING_RECEIVED_REMOTE_FEATURES)) == 0){
connection->bonding_flags |= BONDING_REMOTE_FEATURES_QUERY_ACTIVE | BONDING_REQUEST_REMOTE_FEATURES_PAGE_0;
}
}
void hci_remote_features_query(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return;
hci_trigger_remote_features_for_connection(connection);
hci_run();
}
// GAP API
/**
* @bbrief enable/disable bonding. default is enabled
* @praram enabled
*/
void gap_set_bondable_mode(int enable){
hci_stack->bondable = enable ? 1 : 0;
}
/**
* @brief Get bondable mode.
* @return 1 if bondable
*/
int gap_get_bondable_mode(void){
return hci_stack->bondable;
}
/**
* @brief map link keys to security levels
*/
gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){
switch (link_key_type){
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
return LEVEL_4;
case COMBINATION_KEY:
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192:
return LEVEL_3;
default:
return LEVEL_2;
}
}
/**
* @brief map link keys to secure connection yes/no
*/
bool gap_secure_connection_for_link_key_type(link_key_type_t link_key_type){
switch (link_key_type){
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
case UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
return true;
default:
return false;
}
}
/**
* @brief map link keys to authenticated
*/
bool gap_authenticated_for_link_key_type(link_key_type_t link_key_type){
switch (link_key_type){
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192:
return true;
default:
return false;
}
}
bool gap_mitm_protection_required_for_security_level(gap_security_level_t level){
log_info("gap_mitm_protection_required_for_security_level %u", level);
return level > LEVEL_2;
}
/**
* @brief get current security level
*/
gap_security_level_t gap_security_level(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return LEVEL_0;
return gap_security_level_for_connection(connection);
}
/**
* @brief request connection to device to
* @result GAP_AUTHENTICATION_RESULT
*/
void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection){
hci_emit_security_level(con_handle, LEVEL_0);
return;
}
btstack_assert(hci_is_le_connection(connection) == false);
// Core Spec 5.2, GAP 5.2.2: "When in Secure Connections Only mode, all services (except those allowed to have Security Mode 4, Level 0)
// available on the BR/EDR physical transport require Security Mode 4, Level 4 "
if (hci_stack->gap_secure_connections_only_mode && (requested_level != LEVEL_0)){
requested_level = LEVEL_4;
}
gap_security_level_t current_level = gap_security_level(con_handle);
log_info("gap_request_security_level requested level %u, planned level %u, current level %u",
requested_level, connection->requested_security_level, current_level);
// authentication active if authentication request was sent or planned level > 0
bool authentication_active = ((connection->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) != 0) || (connection->requested_security_level > LEVEL_0);
if (authentication_active){
// authentication already active
if (connection->requested_security_level < requested_level){
// increase requested level as new level is higher
// TODO: handle re-authentication when done
connection->requested_security_level = requested_level;
}
} else {
// no request active, notify if security sufficient
if (requested_level <= current_level){
hci_emit_security_level(con_handle, current_level);
return;
}
// store request
connection->requested_security_level = requested_level;
// start to authenticate connection
connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST;
// request remote features if not already active, also trigger hci_run
hci_remote_features_query(con_handle);
}
}
/**
* @brief start dedicated bonding with device. disconnect after bonding
* @param device
* @param request MITM protection
* @result GAP_DEDICATED_BONDING_COMPLETE
*/
int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){
// create connection state machine
hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_ACL, HCI_ROLE_MASTER);
if (!connection){
return BTSTACK_MEMORY_ALLOC_FAILED;
}
// delete link key
gap_drop_link_key_for_bd_addr(device);
// configure LEVEL_2/3, dedicated bonding
connection->state = SEND_CREATE_CONNECTION;
connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2;
log_info("gap_dedicated_bonding, mitm %d -> level %u", mitm_protection_required, connection->requested_security_level);
connection->bonding_flags = BONDING_DEDICATED;
hci_run();
return 0;
}
uint8_t hci_dedicated_bonding_defer_disconnect(hci_con_handle_t con_handle, bool defer){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (connection == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
if (defer){
connection->bonding_flags |= BONDING_DEDICATED_DEFER_DISCONNECT;
} else {
connection->bonding_flags &= ~BONDING_DEDICATED_DEFER_DISCONNECT;
// trigger disconnect
hci_run();
}
return ERROR_CODE_SUCCESS;
}
void gap_set_local_name(const char * local_name){
hci_stack->local_name = local_name;
hci_stack->gap_tasks_classic |= GAP_TASK_SET_LOCAL_NAME;
// also update EIR if not set by user
if (hci_stack->eir_data == NULL){
hci_stack->gap_tasks_classic |= GAP_TASK_SET_EIR_DATA;
}
hci_run();
}
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
void gap_start_scan(void){
hci_stack->le_scanning_enabled = true;
hci_run();
}
void gap_stop_scan(void){
hci_stack->le_scanning_enabled = false;
hci_run();
}
void gap_set_scan_params(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window, uint8_t scanning_filter_policy){
hci_stack->le_scan_type = scan_type;
hci_stack->le_scan_filter_policy = scanning_filter_policy;
hci_stack->le_scan_interval = scan_interval;
hci_stack->le_scan_window = scan_window;
hci_stack->le_scanning_param_update = true;
hci_run();
}
void gap_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){
gap_set_scan_params(scan_type, scan_interval, scan_window, 0);
}
void gap_set_scan_duplicate_filter(bool enabled){
hci_stack->le_scan_filter_duplicates = enabled ? 1 : 0;
}
void gap_set_scan_phys(uint8_t phys){
// LE Coded and LE 1M PHY
hci_stack->le_scan_phys = phys & 0x05;
}
uint8_t gap_connect(const bd_addr_t addr, bd_addr_type_t addr_type) {
// disallow le connection if outgoing already active
if (hci_is_le_connection_type(addr_type) && hci_stack->le_connecting_request != LE_CONNECTING_IDLE){
log_error("le connect already active");
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (conn == NULL) {
conn = create_connection_for_bd_addr_and_type(addr, addr_type, HCI_ROLE_MASTER);
if (conn == NULL){
// alloc failed
log_info("gap_connect: failed to alloc hci_connection_t");
return BTSTACK_MEMORY_ALLOC_FAILED;
}
} else {
switch (conn->state) {
case RECEIVED_DISCONNECTION_COMPLETE:
// connection was just disconnected, reset state and allow re-connect
conn->role = HCI_ROLE_MASTER;
break;
default:
return ERROR_CODE_COMMAND_DISALLOWED;
}
}
// set le connecting state
if (hci_is_le_connection_type(addr_type)){
hci_stack->le_connecting_request = LE_CONNECTING_DIRECT;
}
// trigger connect
log_info("gap_connect: send create connection next");
conn->state = SEND_CREATE_CONNECTION;
hci_run();
return ERROR_CODE_SUCCESS;
}
// @assumption: only a single outgoing LE Connection exists
static hci_connection_t * gap_get_outgoing_le_connection(void){
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * conn = (hci_connection_t *) it;
if (hci_is_le_connection(conn)){
switch (conn->state){
case SEND_CREATE_CONNECTION:
case SENT_CREATE_CONNECTION:
return conn;
default:
break;
};
}
}
return NULL;
}
uint8_t gap_connect_cancel(void){
hci_connection_t * conn;
switch (hci_stack->le_connecting_request){
case LE_CONNECTING_IDLE:
break;
case LE_CONNECTING_WHITELIST:
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
hci_run();
break;
case LE_CONNECTING_DIRECT:
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
conn = gap_get_outgoing_le_connection();
if (conn == NULL){
hci_run();
} else {
switch (conn->state){
case SEND_CREATE_CONNECTION:
// skip sending create connection and emit event instead
hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER);
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
break;
case SENT_CREATE_CONNECTION:
// let hci_run_general_gap_le cancel outgoing connection
hci_run();
break;
default:
break;
}
}
break;
default:
btstack_unreachable();
break;
}
return ERROR_CODE_SUCCESS;
}
/**
* @brief Set connection parameters for outgoing connections
* @param conn_scan_interval (unit: 0.625 msec), default: 60 ms
* @param conn_scan_window (unit: 0.625 msec), default: 30 ms
* @param conn_interval_min (unit: 1.25ms), default: 10 ms
* @param conn_interval_max (unit: 1.25ms), default: 30 ms
* @param conn_latency, default: 4
* @param supervision_timeout (unit: 10ms), default: 720 ms
* @param min_ce_length (unit: 0.625ms), default: 10 ms
* @param max_ce_length (unit: 0.625ms), default: 30 ms
*/
void gap_set_connection_phys(uint8_t phys){
// LE Coded, LE 1M, LE 2M PHY
hci_stack->le_connection_phys = phys & 7;
}
#endif
void gap_set_connection_parameters(uint16_t conn_scan_interval, uint16_t conn_scan_window,
uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency,
uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length){
hci_stack->le_connection_scan_interval = conn_scan_interval;
hci_stack->le_connection_scan_window = conn_scan_window;
hci_stack->le_connection_interval_min = conn_interval_min;
hci_stack->le_connection_interval_max = conn_interval_max;
hci_stack->le_connection_latency = conn_latency;
hci_stack->le_supervision_timeout = supervision_timeout;
hci_stack->le_minimum_ce_length = min_ce_length;
hci_stack->le_maximum_ce_length = max_ce_length;
}
/**
* @brief Updates the connection parameters for a given LE connection
* @param handle
* @param conn_interval_min (unit: 1.25ms)
* @param conn_interval_max (unit: 1.25ms)
* @param conn_latency
* @param supervision_timeout (unit: 10ms)
* @return 0 if ok
*/
int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min,
uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
connection->le_conn_interval_min = conn_interval_min;
connection->le_conn_interval_max = conn_interval_max;
connection->le_conn_latency = conn_latency;
connection->le_supervision_timeout = supervision_timeout;
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS;
hci_run();
return 0;
}
/**
* @brief Request an update of the connection parameter for a given LE connection
* @param handle
* @param conn_interval_min (unit: 1.25ms)
* @param conn_interval_max (unit: 1.25ms)
* @param conn_latency
* @param supervision_timeout (unit: 10ms)
* @return 0 if ok
*/
int gap_request_connection_parameter_update(hci_con_handle_t con_handle, uint16_t conn_interval_min,
uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
connection->le_conn_interval_min = conn_interval_min;
connection->le_conn_interval_max = conn_interval_max;
connection->le_conn_latency = conn_latency;
connection->le_supervision_timeout = supervision_timeout;
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_SEND_REQUEST;
uint8_t l2cap_trigger_run_event[2] = { L2CAP_EVENT_TRIGGER_RUN, 0};
hci_emit_btstack_event(l2cap_trigger_run_event, sizeof(l2cap_trigger_run_event), 0);
return 0;
}
uint8_t gap_request_connection_subrating(hci_con_handle_t con_handle, uint16_t subrate_min, uint16_t subrate_max,
uint16_t max_latency, uint16_t continuation_number, uint16_t supervision_timeout){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
connection->le_subrate_min = subrate_min;
connection->le_subrate_max = subrate_max;
connection->le_subrate_max_latency = max_latency;
connection->le_subrate_continuation_number = continuation_number;
connection->le_supervision_timeout = supervision_timeout;
hci_run();
return ERROR_CODE_SUCCESS;
}
#ifdef ENABLE_LE_PERIPHERAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static void hci_assert_advertisement_set_0_ready(void){
// force advertising set creation for legacy LE Advertising
if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_PARAMS_SET) == 0){
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
}
}
#endif
/**
* @brief Set Advertisement Data
* @param advertising_data_length
* @param advertising_data (max 31 octets)
* @note data is not copied, pointer has to stay valid
*/
void gap_advertisements_set_data(uint8_t advertising_data_length, uint8_t * advertising_data){
hci_stack->le_advertisements_data_len = advertising_data_length;
hci_stack->le_advertisements_data = advertising_data;
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
hci_assert_advertisement_set_0_ready();
#endif
hci_run();
}
/**
* @brief Set Scan Response Data
* @param advertising_data_length
* @param advertising_data (max 31 octets)
* @note data is not copied, pointer has to stay valid
*/
void gap_scan_response_set_data(uint8_t scan_response_data_length, uint8_t * scan_response_data){
hci_stack->le_scan_response_data_len = scan_response_data_length;
hci_stack->le_scan_response_data = scan_response_data;
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
hci_assert_advertisement_set_0_ready();
#endif
hci_run();
}
/**
* @brief Set Advertisement Parameters
* @param adv_int_min
* @param adv_int_max
* @param adv_type
* @param direct_address_type
* @param direct_address
* @param channel_map
* @param filter_policy
*
* @note internal use. use gap_advertisements_set_params from gap_le.h instead.
*/
void hci_le_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
uint8_t direct_address_typ, bd_addr_t direct_address,
uint8_t channel_map, uint8_t filter_policy) {
hci_stack->le_advertisements_interval_min = adv_int_min;
hci_stack->le_advertisements_interval_max = adv_int_max;
hci_stack->le_advertisements_type = adv_type;
hci_stack->le_advertisements_direct_address_type = direct_address_typ;
hci_stack->le_advertisements_channel_map = channel_map;
hci_stack->le_advertisements_filter_policy = filter_policy;
(void)memcpy(hci_stack->le_advertisements_direct_address, direct_address,
6);
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_PARAMS_SET;
hci_run();
}
/**
* @brief Enable/Disable Advertisements
* @param enabled
*/
void gap_advertisements_enable(int enabled){
if (enabled == 0){
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ENABLED;
} else {
hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_ENABLED;
}
hci_update_advertisements_enabled_for_current_roles();
hci_run();
}
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static le_advertising_set_t * hci_advertising_set_for_handle(uint8_t advertising_handle){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets);
while (btstack_linked_list_iterator_has_next(&it)){
le_advertising_set_t * item = (le_advertising_set_t *) btstack_linked_list_iterator_next(&it);
if ( item->advertising_handle == advertising_handle ) {
return item;
}
}
return NULL;
}
uint8_t gap_extended_advertising_set_resolvable_private_address_update(uint16_t update_s){
hci_stack->le_resolvable_private_address_update_s = update_s;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_setup(le_advertising_set_t * storage, const le_extended_advertising_parameters_t * advertising_parameters, uint8_t * out_advertising_handle){
// find free advertisement handle. we use LE_EXTENDED_ADVERTISING_LEGACY_HANDLE for non-extended advertising
uint8_t advertisement_handle;
for (advertisement_handle = LE_EXTENDED_ADVERTISING_LEGACY_HANDLE + 1; advertisement_handle <= LE_EXTENDED_ADVERTISING_MAX_HANDLE; advertisement_handle++){
if (hci_advertising_set_for_handle(advertisement_handle) == NULL) break;
}
if (advertisement_handle > LE_EXTENDED_ADVERTISING_MAX_HANDLE) return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED;
// clear
memset(storage, 0, sizeof(le_advertising_set_t));
// copy params
storage->advertising_handle = advertisement_handle;
memcpy(&storage->extended_params, advertising_parameters, sizeof(le_extended_advertising_parameters_t));
// add to list
bool add_ok = btstack_linked_list_add(&hci_stack->le_advertising_sets, (btstack_linked_item_t *) storage);
if (!add_ok) return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS;
*out_advertising_handle = advertisement_handle;
// set tasks and start
storage->tasks = LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_set_params(uint8_t advertising_handle, const le_extended_advertising_parameters_t * advertising_parameters){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
memcpy(&advertising_set->extended_params, advertising_parameters, sizeof(le_extended_advertising_parameters_t));
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_get_params(uint8_t advertising_handle, le_extended_advertising_parameters_t * advertising_parameters){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
memcpy(advertising_parameters, &advertising_set->extended_params, sizeof(le_extended_advertising_parameters_t));
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_set_random_address(uint8_t advertising_handle, bd_addr_t random_address){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
memcpy(advertising_set->random_address, random_address, 6);
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_ADDRESS;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_set_adv_data(uint8_t advertising_handle, uint16_t advertising_data_length, const uint8_t * advertising_data){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
advertising_set->adv_data = advertising_data;
advertising_set->adv_data_len = advertising_data_length;
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_set_scan_response_data(uint8_t advertising_handle, uint16_t scan_response_data_length, const uint8_t * scan_response_data){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
advertising_set->scan_data = scan_response_data;
advertising_set->scan_data_len = scan_response_data_length;
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_start(uint8_t advertising_handle, uint16_t timeout, uint8_t num_extended_advertising_events){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
advertising_set->enable_timeout = timeout;
advertising_set->enable_max_scan_events = num_extended_advertising_events;
// set tasks and start
advertising_set->state |= LE_ADVERTISEMENT_STATE_ENABLED;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_stop(uint8_t advertising_handle){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
// set tasks and start
advertising_set->state &= ~LE_ADVERTISEMENT_STATE_ENABLED;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_extended_advertising_remove(uint8_t advertising_handle){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_REMOVE_SET;
hci_run();
return ERROR_CODE_SUCCESS;
}
#ifdef ENABLE_LE_PERIODIC_ADVERTISING
uint8_t gap_periodic_advertising_set_params(uint8_t advertising_handle, const le_periodic_advertising_parameters_t * advertising_parameters){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
// periodic advertising requires neither connectable, scannable, legacy or anonymous
if ((advertising_set->extended_params.advertising_event_properties & 0x1f) != 0) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
memcpy(&advertising_set->periodic_params, advertising_parameters, sizeof(le_periodic_advertising_parameters_t));
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_get_params(uint8_t advertising_handle, le_periodic_advertising_parameters_t * advertising_parameters){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
memcpy(advertising_parameters, &advertising_set->extended_params, sizeof(le_periodic_advertising_parameters_t));
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_set_data(uint8_t advertising_handle, uint16_t periodic_data_length, const uint8_t * periodic_data){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
advertising_set->periodic_data = periodic_data;
advertising_set->periodic_data_len = periodic_data_length;
// set tasks and start
advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_PERIODIC_DATA;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_start(uint8_t advertising_handle, bool include_adi){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
// set tasks and start
advertising_set->periodic_include_adi = include_adi;
advertising_set->state |= LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_stop(uint8_t advertising_handle){
le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle);
if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
// set tasks and start
advertising_set->state &= ~LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED;
hci_run();
return ERROR_CODE_SUCCESS;
}
#ifdef ENABLE_LE_CENTRAL
uint8_t gap_periodic_advertising_sync_transfer_set_default_parameters(uint8_t mode, uint16_t skip, uint16_t sync_timeout, uint8_t cte_type){
hci_stack->le_past_mode = mode;
hci_stack->le_past_skip = skip;
hci_stack->le_past_sync_timeout = sync_timeout;
hci_stack->le_past_cte_type = cte_type;
hci_stack->le_past_set_default_params = true;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_sync_transfer_send(hci_con_handle_t con_handle, uint16_t service_data, hci_con_handle_t sync_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
hci_connection->le_past_sync_handle = sync_handle;
hci_connection->le_past_service_data = service_data;
hci_run();
return ERROR_CODE_SUCCESS;
}
#endif
uint8_t gap_periodic_advertising_set_info_transfer_send(hci_con_handle_t con_handle, uint16_t service_data, uint8_t advertising_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
hci_connection->le_past_advertising_handle = advertising_handle;
hci_connection->le_past_service_data = service_data;
hci_run();
return ERROR_CODE_SUCCESS;
}
#endif /* ENABLE_LE_PERIODIC_ADVERTISING */
#endif
#endif
void hci_le_set_own_address_type(uint8_t own_address_type){
log_info("hci_le_set_own_address_type: old %u, new %u", hci_stack->le_own_addr_type, own_address_type);
if (own_address_type == hci_stack->le_own_addr_type) return;
hci_stack->le_own_addr_type = own_address_type;
#ifdef ENABLE_LE_PERIPHERAL
// update advertisement parameters, too
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_run();
#endif
#ifdef ENABLE_LE_CENTRAL
// note: we don't update scan parameters or modify ongoing connection attempts
#endif
}
void hci_le_random_address_set(const bd_addr_t random_address){
log_info("gap_privacy: hci_le_random_address_set %s", bd_addr_to_str(random_address));
memcpy(hci_stack->le_random_address, random_address, 6);
hci_stack->le_random_address_set = true;
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADDRESS | LE_ADVERTISEMENT_TASKS_PRIVACY_NOTIFY;
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
if (hci_le_extended_advertising_supported()){
hci_assert_advertisement_set_0_ready();
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0;
}
#endif
hci_run();
}
#endif
uint8_t gap_disconnect(hci_con_handle_t handle){
hci_connection_t * conn = hci_connection_for_handle(handle);
if (!conn){
hci_emit_disconnection_complete(handle, 0);
return 0;
}
uint8_t status = ERROR_CODE_SUCCESS;
switch (conn->state){
case RECEIVED_DISCONNECTION_COMPLETE:
// ignore if remote just disconnected
break;
case SEND_DISCONNECT:
case SENT_DISCONNECT:
// disconnect already requested or sent
status = ERROR_CODE_COMMAND_DISALLOWED;
break;
default:
// trigger hci_disconnect
conn->state = SEND_DISCONNECT;
hci_run();
break;
}
return status;
}
int gap_read_rssi(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
hci_connection->gap_connection_tasks |= GAP_CONNECTION_TASK_READ_RSSI;
hci_run();
return 1;
}
/**
* @brief Get connection type
* @param con_handle
* @result connection_type
*/
gap_connection_type_t gap_get_connection_type(hci_con_handle_t connection_handle){
hci_connection_t * conn = hci_connection_for_handle(connection_handle);
if (!conn) return GAP_CONNECTION_INVALID;
switch (conn->address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
return GAP_CONNECTION_LE;
case BD_ADDR_TYPE_SCO:
return GAP_CONNECTION_SCO;
case BD_ADDR_TYPE_ACL:
return GAP_CONNECTION_ACL;
default:
return GAP_CONNECTION_INVALID;
}
}
hci_role_t gap_get_role(hci_con_handle_t connection_handle){
hci_connection_t * conn = hci_connection_for_handle(connection_handle);
if (!conn) return HCI_ROLE_INVALID;
return (hci_role_t) conn->role;
}
#ifdef ENABLE_CLASSIC
uint8_t gap_request_role(const bd_addr_t addr, hci_role_t role){
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->request_role = role;
hci_run();
return ERROR_CODE_SUCCESS;
}
#endif
#ifdef ENABLE_BLE
uint8_t gap_le_set_phy(hci_con_handle_t con_handle, uint8_t all_phys, uint8_t tx_phys, uint8_t rx_phys, uint16_t phy_options){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->le_phy_update_all_phys = all_phys;
conn->le_phy_update_tx_phys = tx_phys;
conn->le_phy_update_rx_phys = rx_phys;
conn->le_phy_update_phy_options = (uint8_t) phy_options;
hci_run();
return 0;
}
static uint8_t hci_whitelist_add(bd_addr_type_t address_type, const bd_addr_t address){
#if !defined(HAVE_MALLOC) && (!defined(MAX_NR_WHITELIST_ENTRIES) || (MAX_NR_WHITELIST_ENTRIES == 0))
// incorrect configuration:
// - as MAX_NR_WHITELIST_ENTRIES is not defined or zero this function always fails
// - please set MAX_NR_WHITELIST_ENTRIES in btstack_config.h
btstack_assert(false);
#endif
// check if already in list
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)) {
whitelist_entry_t *entry = (whitelist_entry_t *) btstack_linked_list_iterator_next(&it);
if (entry->address_type != address_type) {
continue;
}
if (memcmp(entry->address, address, 6) != 0) {
continue;
}
// if already on controller:
if ((entry->state & LE_WHITELIST_ON_CONTROLLER) != 0){
if ((entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER) != 0){
// drop remove request
entry->state = LE_WHITELIST_ON_CONTROLLER;
return ERROR_CODE_SUCCESS;
} else {
// disallow as already on controller
return ERROR_CODE_COMMAND_DISALLOWED;
}
}
// assume scheduled to add
return ERROR_CODE_COMMAND_DISALLOWED;
}
// alloc and add to list
whitelist_entry_t * entry = btstack_memory_whitelist_entry_get();
if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
entry->address_type = address_type;
(void)memcpy(entry->address, address, 6);
entry->state = LE_WHITELIST_ADD_TO_CONTROLLER;
btstack_linked_list_add(&hci_stack->le_whitelist, (btstack_linked_item_t*) entry);
return ERROR_CODE_SUCCESS;
}
static uint8_t hci_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->address_type != address_type) {
continue;
}
if (memcmp(entry->address, address, 6) != 0) {
continue;
}
if (entry->state & LE_WHITELIST_ON_CONTROLLER){
// remove from controller if already present
entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER;
} else {
// directly remove entry from whitelist
btstack_linked_list_iterator_remove(&it);
btstack_memory_whitelist_entry_free(entry);
}
return ERROR_CODE_SUCCESS;
}
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
static void hci_whitelist_clear(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->state & LE_WHITELIST_ON_CONTROLLER){
// remove from controller if already present
entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER;
continue;
}
// directly remove entry from whitelist
btstack_linked_list_iterator_remove(&it);
btstack_memory_whitelist_entry_free(entry);
}
}
/**
* @brief Clear Whitelist
* @return 0 if ok
*/
uint8_t gap_whitelist_clear(void){
hci_whitelist_clear();
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Add Device to Whitelist
* @param address_typ
* @param address
* @return 0 if ok
*/
uint8_t gap_whitelist_add(bd_addr_type_t address_type, const bd_addr_t address){
uint8_t status = hci_whitelist_add(address_type, address);
if (status){
return status;
}
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Remove Device from Whitelist
* @param address_typ
* @param address
* @return 0 if ok
*/
uint8_t gap_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address){
uint8_t status = hci_whitelist_remove(address_type, address);
if (status){
return status;
}
hci_run();
return ERROR_CODE_SUCCESS;
}
#ifdef ENABLE_LE_CENTRAL
/**
* @brief Connect with Whitelist
* @note Explicit whitelist management and this connect with whitelist replace deprecated gap_auto_connection_* functions
* @return - if ok
*/
uint8_t gap_connect_with_whitelist(void){
if (hci_stack->le_connecting_request != LE_CONNECTING_IDLE){
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_stack->le_connecting_request = LE_CONNECTING_WHITELIST;
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Auto Connection Establishment - Start Connecting to device
* @param address_typ
* @param address
* @return 0 if ok
*/
uint8_t gap_auto_connection_start(bd_addr_type_t address_type, const bd_addr_t address){
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){
return ERROR_CODE_COMMAND_DISALLOWED;
}
uint8_t status = hci_whitelist_add(address_type, address);
if (status == BTSTACK_MEMORY_ALLOC_FAILED) {
return status;
}
hci_stack->le_connecting_request = LE_CONNECTING_WHITELIST;
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Auto Connection Establishment - Stop Connecting to device
* @param address_typ
* @param address
* @return 0 if ok
*/
uint8_t gap_auto_connection_stop(bd_addr_type_t address_type, const bd_addr_t address){
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_whitelist_remove(address_type, address);
if (btstack_linked_list_empty(&hci_stack->le_whitelist)){
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
}
hci_run();
return 0;
}
/**
* @brief Auto Connection Establishment - Stop everything
* @note Convenience function to stop all active auto connection attempts
*/
uint8_t gap_auto_connection_stop_all(void){
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT) {
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_whitelist_clear();
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint16_t gap_le_connection_interval(hci_con_handle_t con_handle){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return 0;
return conn->le_connection_interval;
}
#endif
#endif
#ifdef ENABLE_CLASSIC
/**
* @brief Set Extended Inquiry Response data
* @param eir_data size HCI_EXTENDED_INQUIRY_RESPONSE_DATA_LEN (240) bytes, is not copied make sure memory is accessible during stack startup
* @note has to be done before stack starts up
*/
void gap_set_extended_inquiry_response(const uint8_t * data){
hci_stack->eir_data = data;
hci_stack->gap_tasks_classic |= GAP_TASK_SET_EIR_DATA;
hci_run();
}
/**
* @brief Start GAP Classic Inquiry
* @param duration in 1.28s units
* @return 0 if ok
* @events: GAP_EVENT_INQUIRY_RESULT, GAP_EVENT_INQUIRY_COMPLETE
*/
int gap_inquiry_start(uint8_t duration_in_1280ms_units){
if (hci_stack->state != HCI_STATE_WORKING) return ERROR_CODE_COMMAND_DISALLOWED;
if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
if ((duration_in_1280ms_units < GAP_INQUIRY_DURATION_MIN) || (duration_in_1280ms_units > GAP_INQUIRY_DURATION_MAX)){
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
hci_stack->inquiry_state = duration_in_1280ms_units;
hci_stack->inquiry_max_period_length = 0;
hci_stack->inquiry_min_period_length = 0;
hci_run();
return 0;
}
uint8_t gap_inquiry_periodic_start(uint8_t duration, uint16_t max_period_length, uint16_t min_period_length){
if (hci_stack->state != HCI_STATE_WORKING) return ERROR_CODE_COMMAND_DISALLOWED;
if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
if (duration < GAP_INQUIRY_DURATION_MIN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
if (duration > GAP_INQUIRY_DURATION_MAX) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
if (max_period_length < GAP_INQUIRY_MAX_PERIODIC_LEN_MIN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;;
if (min_period_length < GAP_INQUIRY_MIN_PERIODIC_LEN_MIN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;;
hci_stack->inquiry_state = duration;
hci_stack->inquiry_max_period_length = max_period_length;
hci_stack->inquiry_min_period_length = min_period_length;
hci_run();
return 0;
}
/**
* @brief Stop GAP Classic Inquiry
* @return 0 if ok
*/
int gap_inquiry_stop(void){
if ((hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN) && (hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX)) {
// emit inquiry complete event, before it even started
uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0};
hci_emit_btstack_event(event, sizeof(event), 1);
return 0;
}
switch (hci_stack->inquiry_state){
case GAP_INQUIRY_STATE_ACTIVE:
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W2_CANCEL;
hci_run();
return ERROR_CODE_SUCCESS;
case GAP_INQUIRY_STATE_PERIODIC:
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W2_EXIT_PERIODIC;
hci_run();
return ERROR_CODE_SUCCESS;
default:
return ERROR_CODE_COMMAND_DISALLOWED;
}
}
void gap_inquiry_set_lap(uint32_t lap){
hci_stack->inquiry_lap = lap;
}
void gap_inquiry_set_scan_activity(uint16_t inquiry_scan_interval, uint16_t inquiry_scan_window){
hci_stack->inquiry_scan_interval = inquiry_scan_interval;
hci_stack->inquiry_scan_window = inquiry_scan_window;
hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_INQUIRY_SCAN_ACTIVITY;
hci_run();
}
void gap_inquiry_set_transmit_power_level(int8_t tx_power)
{
hci_stack->inquiry_tx_power_level = tx_power;
hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_INQUIRY_TX_POWER_LEVEL;
hci_run();
}
/**
* @brief Remote Name Request
* @param addr
* @param page_scan_repetition_mode
* @param clock_offset only used when bit 15 is set
* @events: HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE
*/
int gap_remote_name_request(const bd_addr_t addr, uint8_t page_scan_repetition_mode, uint16_t clock_offset){
if (hci_stack->remote_name_state != GAP_REMOTE_NAME_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
(void)memcpy(hci_stack->remote_name_addr, addr, 6);
hci_stack->remote_name_page_scan_repetition_mode = page_scan_repetition_mode;
hci_stack->remote_name_clock_offset = clock_offset;
hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W2_SEND;
hci_run();
return 0;
}
static int gap_pairing_set_state_and_run(const bd_addr_t addr, uint8_t state){
hci_stack->gap_pairing_state = state;
(void)memcpy(hci_stack->gap_pairing_addr, addr, 6);
hci_run();
return 0;
}
/**
* @brief Legacy Pairing Pin Code Response for binary data / non-strings
* @param addr
* @param pin_data
* @param pin_len
* @return 0 if ok
*/
int gap_pin_code_response_binary(const bd_addr_t addr, const uint8_t * pin_data, uint8_t pin_len){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
if (pin_len > PIN_CODE_LEN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
hci_stack->gap_pairing_input.gap_pairing_pin = pin_data;
hci_stack->gap_pairing_pin_len = pin_len;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN);
}
/**
* @brief Legacy Pairing Pin Code Response
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_pin_code_response(const bd_addr_t addr, const char * pin){
return gap_pin_code_response_binary(addr, (const uint8_t*) pin, (uint8_t) strlen(pin));
}
/**
* @brief Abort Legacy Pairing
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_pin_code_negative(bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN_NEGATIVE);
}
/**
* @brief SSP Passkey Response
* @param addr
* @param passkey
* @return 0 if ok
*/
int gap_ssp_passkey_response(const bd_addr_t addr, uint32_t passkey){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
hci_stack->gap_pairing_input.gap_pairing_passkey = passkey;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY);
}
/**
* @brief Abort SSP Passkey Entry/Pairing
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_ssp_passkey_negative(const bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE);
}
/**
* @brief Accept SSP Numeric Comparison
* @param addr
* @param passkey
* @return 0 if ok
*/
int gap_ssp_confirmation_response(const bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION);
}
/**
* @brief Abort SSP Numeric Comparison/Pairing
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_ssp_confirmation_negative(const bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE);
}
#if defined(ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY) || defined(ENABLE_EXPLICIT_LINK_KEY_REPLY)
static uint8_t gap_set_auth_flag_and_run(const bd_addr_t addr, hci_authentication_flags_t flag){
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
connectionSetAuthenticationFlags(conn, flag);
hci_run();
return ERROR_CODE_SUCCESS;
}
#endif
#ifdef ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY
uint8_t gap_ssp_io_capabilities_response(const bd_addr_t addr){
return gap_set_auth_flag_and_run(addr, AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY);
}
uint8_t gap_ssp_io_capabilities_negative(const bd_addr_t addr){
return gap_set_auth_flag_and_run(addr, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
}
#endif
#ifdef ENABLE_CLASSIC_PAIRING_OOB
/**
* @brief Report Remote OOB Data
* @param bd_addr
* @param c_192 Simple Pairing Hash C derived from P-192 public key
* @param r_192 Simple Pairing Randomizer derived from P-192 public key
* @param c_256 Simple Pairing Hash C derived from P-256 public key
* @param r_256 Simple Pairing Randomizer derived from P-256 public key
*/
uint8_t gap_ssp_remote_oob_data(const bd_addr_t addr, const uint8_t * c_192, const uint8_t * r_192, const uint8_t * c_256, const uint8_t * r_256){
hci_connection_t * connection = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (connection == NULL) {
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
connection->classic_oob_c_192 = c_192;
connection->classic_oob_r_192 = r_192;
// ignore P-256 if not supported by us
if (hci_stack->secure_connections_active){
connection->classic_oob_c_256 = c_256;
connection->classic_oob_r_256 = r_256;
}
return ERROR_CODE_SUCCESS;
}
/**
* @brief Generate new OOB data
* @note OOB data will be provided in GAP_EVENT_LOCAL_OOB_DATA and be used in future pairing procedures
*/
void gap_ssp_generate_oob_data(void){
hci_stack->classic_read_local_oob_data = true;
hci_run();
}
#endif
#ifdef ENABLE_EXPLICIT_LINK_KEY_REPLY
uint8_t gap_send_link_key_response(const bd_addr_t addr, link_key_t link_key, link_key_type_t type){
hci_connection_t * connection = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (connection == NULL) {
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
memcpy(connection->link_key, link_key, sizeof(link_key_t));
connection->link_key_type = type;
return gap_set_auth_flag_and_run(addr, AUTH_FLAG_HANDLE_LINK_KEY_REQUEST);
}
#endif // ENABLE_EXPLICIT_LINK_KEY_REPLY
/**
* @brief Set inquiry mode: standard, with RSSI, with RSSI + Extended Inquiry Results. Has to be called before power on.
* @param inquiry_mode see bluetooth_defines.h
*/
void hci_set_inquiry_mode(inquiry_mode_t inquiry_mode){
hci_stack->inquiry_mode = inquiry_mode;
}
/**
* @brief Configure Voice Setting for use with SCO data in HSP/HFP
*/
void hci_set_sco_voice_setting(uint16_t voice_setting){
hci_stack->sco_voice_setting = voice_setting;
}
/**
* @brief Get SCO Voice Setting
* @return current voice setting
*/
uint16_t hci_get_sco_voice_setting(void){
return hci_stack->sco_voice_setting;
}
static int hci_have_usb_transport(void){
if (!hci_stack->hci_transport) return 0;
const char * transport_name = hci_stack->hci_transport->name;
if (!transport_name) return 0;
return (transport_name[0] == 'H') && (transport_name[1] == '2');
}
static uint16_t hci_sco_packet_length_for_payload_length(uint16_t payload_size){
uint16_t sco_packet_length = 0;
#if defined(ENABLE_SCO_OVER_HCI) || defined (HAVE_SCO_TRANSPORT)
// Transparent = mSBC => 1, CVSD with 16-bit samples requires twice as many bytes
int multiplier;
if (((hci_stack->sco_voice_setting_active & 0x03) != 0x03) &&
((hci_stack->sco_voice_setting_active & 0x20) == 0x20)) {
multiplier = 2;
} else {
multiplier = 1;
}
#endif
#ifdef ENABLE_SCO_OVER_HCI
if (hci_have_usb_transport()){
// see Core Spec for H2 USB Transfer.
// 3 byte SCO header + 24 bytes per connection
// @note multiple sco connections not supported currently
sco_packet_length = 3 + 24 * multiplier;
} else {
// 3 byte SCO header + SCO packet length over the air
sco_packet_length = 3 + payload_size * multiplier;
// assert that it still fits inside an SCO buffer
if (sco_packet_length > (hci_stack->sco_data_packet_length + 3)){
sco_packet_length = 3 + hci_stack->sco_data_packet_length;
}
}
#endif
#ifdef HAVE_SCO_TRANSPORT
// 3 byte SCO header + SCO packet length over the air
sco_packet_length = 3 + payload_size * multiplier;
// assert that it still fits inside an SCO buffer
if (sco_packet_length > (hci_stack->sco_data_packet_length + 3)){
sco_packet_length = 3 + hci_stack->sco_data_packet_length;
}
#endif
return sco_packet_length;
}
uint16_t hci_get_sco_packet_length_for_connection(hci_con_handle_t sco_con_handle){
hci_connection_t * connection = hci_connection_for_handle(sco_con_handle);
if (connection != NULL){
return hci_sco_packet_length_for_payload_length(connection->sco_payload_length);
}
return 0;
}
uint16_t hci_get_sco_packet_length(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if ( connection->address_type == BD_ADDR_TYPE_SCO ) {
return hci_sco_packet_length_for_payload_length(connection->sco_payload_length);;
}
}
return 0;
}
/**
* @brief Sets the master/slave policy
* @param policy (0: attempt to become master, 1: let connecting device decide)
*/
void hci_set_master_slave_policy(uint8_t policy){
hci_stack->master_slave_policy = policy;
}
#endif
HCI_STATE hci_get_state(void){
return hci_stack->state;
}
#ifdef ENABLE_CLASSIC
void gap_register_classic_connection_filter(int (*accept_callback)(bd_addr_t addr, hci_link_type_t link_type)){
hci_stack->gap_classic_accept_callback = accept_callback;
}
#endif
/**
* @brief Set callback for Bluetooth Hardware Error
*/
void hci_set_hardware_error_callback(void (*fn)(uint8_t error)){
hci_stack->hardware_error_callback = fn;
}
void hci_disconnect_all(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
if (con->state == SENT_DISCONNECT) continue;
con->state = SEND_DISCONNECT;
}
hci_run();
}
uint16_t hci_get_manufacturer(void){
return hci_stack->manufacturer;
}
#ifdef ENABLE_BLE
static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
if (!hci_con) return NULL;
return &hci_con->sm_connection;
}
// extracted from sm.c to allow enabling of l2cap le data channels without adding sm.c to the build
// without sm.c default values from create_connection_for_bd_addr_and_type() result in non-encrypted, not-authenticated
#endif
uint8_t gap_encryption_key_size(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
if (hci_is_le_connection(hci_connection)){
#ifdef ENABLE_BLE
sm_connection_t * sm_conn = &hci_connection->sm_connection;
if (sm_conn->sm_connection_encrypted != 0u) {
return sm_conn->sm_actual_encryption_key_size;
}
#endif
} else {
#ifdef ENABLE_CLASSIC
if ((hci_connection->authentication_flags & AUTH_FLAG_CONNECTION_ENCRYPTED)){
return hci_connection->encryption_key_size;
}
#endif
}
return 0;
}
bool gap_authenticated(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return false;
switch (hci_connection->address_type){
#ifdef ENABLE_BLE
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
if (hci_connection->sm_connection.sm_connection_encrypted == 0) return 0; // unencrypted connection cannot be authenticated
return hci_connection->sm_connection.sm_connection_authenticated != 0;
#endif
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_SCO:
case BD_ADDR_TYPE_ACL:
return gap_authenticated_for_link_key_type(hci_connection->link_key_type);
#endif
default:
return false;
}
}
bool gap_secure_connection(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
switch (hci_connection->address_type){
#ifdef ENABLE_BLE
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
if (hci_connection->sm_connection.sm_connection_encrypted == 0) return false; // unencrypted connection cannot be authenticated
return hci_connection->sm_connection.sm_connection_sc;
#endif
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_SCO:
case BD_ADDR_TYPE_ACL:
return gap_secure_connection_for_link_key_type(hci_connection->link_key_type);
#endif
default:
return false;
}
}
bool gap_bonded(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
#ifdef ENABLE_CLASSIC
link_key_t link_key;
link_key_type_t link_key_type;
#endif
switch (hci_connection->address_type){
#ifdef ENABLE_BLE
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY:
case BD_ADDR_TYPE_LE_RANDOM_IDENTITY:
return hci_connection->sm_connection.sm_le_db_index >= 0;
#endif
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_SCO:
case BD_ADDR_TYPE_ACL:
return hci_stack->link_key_db && hci_stack->link_key_db->get_link_key(hci_connection->address, link_key, &link_key_type);
#endif
default:
return false;
}
}
#ifdef ENABLE_BLE
authorization_state_t gap_authorization_state(hci_con_handle_t con_handle){
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
if (sm_conn == NULL) return AUTHORIZATION_UNKNOWN; // wrong connection
if (sm_conn->sm_connection_encrypted == 0u) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
if (sm_conn->sm_connection_authenticated == 0u) return AUTHORIZATION_UNKNOWN; // unauthenticated connection cannot be authorized
return sm_conn->sm_connection_authorization_state;
}
#endif
#ifdef ENABLE_CLASSIC
uint8_t gap_sniff_mode_enter(hci_con_handle_t con_handle, uint16_t sniff_min_interval, uint16_t sniff_max_interval, uint16_t sniff_attempt, uint16_t sniff_timeout){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->sniff_min_interval = sniff_min_interval;
conn->sniff_max_interval = sniff_max_interval;
conn->sniff_attempt = sniff_attempt;
conn->sniff_timeout = sniff_timeout;
hci_run();
return 0;
}
/**
* @brief Exit Sniff mode
* @param con_handle
@ @return 0 if ok
*/
uint8_t gap_sniff_mode_exit(hci_con_handle_t con_handle){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->sniff_min_interval = 0xffff;
hci_run();
return 0;
}
uint8_t gap_sniff_subrating_configure(hci_con_handle_t con_handle, uint16_t max_latency, uint16_t min_remote_timeout, uint16_t min_local_timeout){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->sniff_subrating_max_latency = max_latency;
conn->sniff_subrating_min_remote_timeout = min_remote_timeout;
conn->sniff_subrating_min_local_timeout = min_local_timeout;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_qos_set(hci_con_handle_t con_handle, hci_service_type_t service_type, uint32_t token_rate, uint32_t peak_bandwidth, uint32_t latency, uint32_t delay_variation){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->qos_service_type = service_type;
conn->qos_token_rate = token_rate;
conn->qos_peak_bandwidth = peak_bandwidth;
conn->qos_latency = latency;
conn->qos_delay_variation = delay_variation;
hci_run();
return ERROR_CODE_SUCCESS;
}
void gap_set_page_scan_activity(uint16_t page_scan_interval, uint16_t page_scan_window){
hci_stack->new_page_scan_interval = page_scan_interval;
hci_stack->new_page_scan_window = page_scan_window;
hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_PAGE_SCAN_ACTIVITY;
hci_run();
}
void gap_set_page_scan_type(page_scan_type_t page_scan_type){
hci_stack->new_page_scan_type = (uint8_t) page_scan_type;
hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_PAGE_SCAN_TYPE;
hci_run();
}
void gap_set_page_timeout(uint16_t page_timeout){
hci_stack->page_timeout = page_timeout;
hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_PAGE_TIMEOUT;
hci_run();
}
#endif
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
void hci_load_le_device_db_entry_into_resolving_list(uint16_t le_device_db_index){
if (le_device_db_index >= MAX_NUM_RESOLVING_LIST_ENTRIES) return;
if (le_device_db_index >= le_device_db_max_count()) return;
uint8_t offset = le_device_db_index >> 3;
uint8_t mask = 1 << (le_device_db_index & 7);
hci_stack->le_resolving_list_add_entries[offset] |= mask;
hci_stack->le_resolving_list_set_privacy_mode[offset] |= mask;
if (hci_stack->le_resolving_list_state == LE_RESOLVING_LIST_DONE){
// note: go back to remove entries, otherwise, a remove + add will skip the add
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_UPDATES_ENTRIES;
}
}
void hci_remove_le_device_db_entry_from_resolving_list(uint16_t le_device_db_index){
if (le_device_db_index >= MAX_NUM_RESOLVING_LIST_ENTRIES) return;
if (le_device_db_index >= le_device_db_max_count()) return;
uint8_t offset = le_device_db_index >> 3;
uint8_t mask = 1 << (le_device_db_index & 7);
hci_stack->le_resolving_list_remove_entries[offset] |= mask;
if (hci_stack->le_resolving_list_state == LE_RESOLVING_LIST_DONE){
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_UPDATES_ENTRIES;
}
}
uint8_t gap_load_resolving_list_from_le_device_db(void){
if (hci_command_supported(SUPPORTED_HCI_COMMAND_LE_SET_ADDRESS_RESOLUTION_ENABLE) == false){
return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE;
}
if (hci_stack->le_resolving_list_state != LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION){
// restart le resolving list update
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_READ_SIZE;
}
return ERROR_CODE_SUCCESS;
}
void gap_set_peer_privacy_mode(le_privacy_mode_t privacy_mode ){
hci_stack->le_privacy_mode = privacy_mode;
}
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
#ifdef ENABLE_LE_EXTENDED_ADVERTISING
static uint8_t hci_periodic_advertiser_list_add(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){
#if !defined(HAVE_MALLOC) && (!defined(MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES) || (MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES == 0))
// incorrect configuration:
// - as MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES is not defined or zero this function always fails
// - please set MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES in btstack_config.h
btstack_assert(false);
#endif
// check if already in list
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list);
while (btstack_linked_list_iterator_has_next(&it)) {
periodic_advertiser_list_entry_t *entry = (periodic_advertiser_list_entry_t *) btstack_linked_list_iterator_next(&it);
if (entry->sid != advertising_sid) {
continue;
}
if (entry->address_type != address_type) {
continue;
}
if (memcmp(entry->address, address, 6) != 0) {
continue;
}
// disallow if already scheduled to add
if ((entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER) != 0){
return ERROR_CODE_COMMAND_DISALLOWED;
}
// still on controller, but scheduled to remove -> re-add
entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER;
return ERROR_CODE_SUCCESS;
}
// alloc and add to list
periodic_advertiser_list_entry_t * entry = btstack_memory_periodic_advertiser_list_entry_get();
if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
entry->sid = advertising_sid;
entry->address_type = address_type;
(void)memcpy(entry->address, address, 6);
entry->state = LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER;
btstack_linked_list_add(&hci_stack->le_periodic_advertiser_list, (btstack_linked_item_t*) entry);
return ERROR_CODE_SUCCESS;
}
static uint8_t hci_periodic_advertiser_list_remove(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list);
while (btstack_linked_list_iterator_has_next(&it)){
periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->sid != advertising_sid) {
continue;
}
if (entry->address_type != address_type) {
continue;
}
if (memcmp(entry->address, address, 6) != 0) {
continue;
}
if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER){
// remove from controller if already present
entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER;
} else {
// directly remove entry from whitelist
btstack_linked_list_iterator_remove(&it);
btstack_memory_periodic_advertiser_list_entry_free(entry);
}
return ERROR_CODE_SUCCESS;
}
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
static void hci_periodic_advertiser_list_clear(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list);
while (btstack_linked_list_iterator_has_next(&it)){
periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER){
// remove from controller if already present
entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER;
continue;
}
// directly remove entry from whitelist
btstack_linked_list_iterator_remove(&it);
btstack_memory_periodic_advertiser_list_entry_free(entry);
}
}
uint8_t gap_periodic_advertiser_list_clear(void){
hci_periodic_advertiser_list_clear();
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertiser_list_add(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){
uint8_t status = hci_periodic_advertiser_list_add(address_type, address, advertising_sid);
if (status){
return status;
}
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertiser_list_remove(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){
uint8_t status = hci_periodic_advertiser_list_remove(address_type, address, advertising_sid);
if (status){
return status;
}
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_create_sync(uint8_t options, uint8_t advertising_sid, bd_addr_type_t advertiser_address_type,
bd_addr_t advertiser_address, uint16_t skip, uint16_t sync_timeout, uint8_t sync_cte_type){
// abort if already active
if (hci_stack->le_periodic_sync_request != LE_CONNECTING_IDLE) {
return ERROR_CODE_COMMAND_DISALLOWED;
}
// store request
hci_stack->le_periodic_sync_request = ((options & 0) != 0) ? LE_CONNECTING_WHITELIST : LE_CONNECTING_DIRECT;
hci_stack->le_periodic_sync_options = options;
hci_stack->le_periodic_sync_advertising_sid = advertising_sid;
hci_stack->le_periodic_sync_advertiser_address_type = advertiser_address_type;
memcpy(hci_stack->le_periodic_sync_advertiser_address, advertiser_address, 6);
hci_stack->le_periodic_sync_skip = skip;
hci_stack->le_periodic_sync_timeout = sync_timeout;
hci_stack->le_periodic_sync_cte_type = sync_cte_type;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_create_sync_cancel(void){
// abort if not requested
if (hci_stack->le_periodic_sync_request == LE_CONNECTING_IDLE) {
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_stack->le_periodic_sync_request = LE_CONNECTING_IDLE;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_periodic_advertising_terminate_sync(uint16_t sync_handle){
if (hci_stack->le_periodic_terminate_sync_handle != HCI_CON_HANDLE_INVALID){
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_stack->le_periodic_terminate_sync_handle = sync_handle;
hci_run();
return ERROR_CODE_SUCCESS;
}
#endif
#endif
#ifdef ENABLE_LE_ISOCHRONOUS_STREAMS
static hci_iso_stream_t *
hci_iso_stream_create(hci_iso_type_t iso_type, hci_iso_stream_state_t state, uint8_t group_id, uint8_t stream_id) {
hci_iso_stream_t * iso_stream = btstack_memory_hci_iso_stream_get();
if (iso_stream != NULL){
iso_stream->iso_type = iso_type;
iso_stream->state = state;
iso_stream->group_id = group_id;
iso_stream->stream_id = stream_id;
iso_stream->cis_handle = HCI_CON_HANDLE_INVALID;
iso_stream->acl_handle = HCI_CON_HANDLE_INVALID;
btstack_linked_list_add(&hci_stack->iso_streams, (btstack_linked_item_t*) iso_stream);
}
return iso_stream;
}
static hci_iso_stream_t * hci_iso_stream_for_con_handle(hci_con_handle_t con_handle){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if (iso_stream->cis_handle == con_handle ) {
return iso_stream;
}
}
return NULL;
}
static void hci_iso_stream_finalize(hci_iso_stream_t * iso_stream){
log_info("hci_iso_stream_finalize con_handle 0x%04x, group_id 0x%02x", iso_stream->cis_handle, iso_stream->group_id);
btstack_linked_list_remove(&hci_stack->iso_streams, (btstack_linked_item_t*) iso_stream);
btstack_memory_hci_iso_stream_free(iso_stream);
}
static void hci_iso_stream_finalize_by_type_and_group_id(hci_iso_type_t iso_type, uint8_t group_id) {
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->group_id == group_id) &&
(iso_stream->iso_type == iso_type)){
btstack_linked_list_iterator_remove(&it);
btstack_memory_hci_iso_stream_free(iso_stream);
}
}
}
static void hci_iso_stream_requested_finalize(uint8_t group_id) {
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) &&
(iso_stream->group_id == group_id)){
btstack_linked_list_iterator_remove(&it);
btstack_memory_hci_iso_stream_free(iso_stream);
}
}
}
static void hci_iso_stream_requested_confirm(uint8_t big_handle){
UNUSED(big_handle);
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)){
hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ( iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) {
iso_stream->state = HCI_ISO_STREAM_STATE_W4_ESTABLISHED;
}
}
}
static bool hci_iso_sdu_complete(uint8_t * packet, uint16_t size){
uint8_t sdu_ts_flag = (packet[1] >> 6) & 1;
uint16_t sdu_len_offset = 6 + (sdu_ts_flag * 4);
uint16_t sdu_len = little_endian_read_16(packet, sdu_len_offset) & 0x0fff;
return (sdu_len_offset + 2 + sdu_len) == size;
}
static void hci_iso_packet_handler(hci_iso_stream_t *iso_stream, uint8_t *packet, uint16_t size) {
if (iso_stream == NULL){
log_error("acl_handler called with non-registered handle %u!" , READ_ISO_CONNECTION_HANDLE(packet));
return;
}
if (hci_stack->iso_packet_handler == NULL) {
return;
}
// parse header
uint16_t con_handle_and_flags = little_endian_read_16(packet, 0);
uint16_t data_total_length = little_endian_read_16(packet, 2);
uint8_t pb_flag = (con_handle_and_flags >> 12) & 3;
// assert packet is complete
if ((data_total_length + 4u) != size){
return;
}
if ((pb_flag & 0x01) == 0){
if (pb_flag == 0x02){
// The ISO_SDU_Fragment field contains a header and a complete SDU.
if (hci_iso_sdu_complete(packet, size)) {
(hci_stack->iso_packet_handler)(HCI_ISO_DATA_PACKET, 0, packet, size);
}
} else {
// The ISO_Data_Load field contains a header and the first fragment of a fragmented SDU.
if (size > sizeof(iso_stream->reassembly_buffer)){
return;
}
memcpy(iso_stream->reassembly_buffer, packet, size);
// fix pb_flag
iso_stream->reassembly_buffer[1] = (iso_stream->reassembly_buffer[1] & 0xcf) | 0x20;
iso_stream->reassembly_pos = size;
}
} else {
// ISO_SDU_Fragment contains continuation or last fragment of an SDU
uint8_t ts_flag = (con_handle_and_flags >> 14) & 1;
if (ts_flag != 0){
return;
}
// append fragment
if (iso_stream->reassembly_pos == 0){
return;
}
if ((iso_stream->reassembly_pos + data_total_length) > sizeof(iso_stream->reassembly_buffer)){
// reset reassembly buffer
iso_stream->reassembly_pos = 0;
return;
}
memcpy(&iso_stream->reassembly_buffer[iso_stream->reassembly_pos], &packet[4], data_total_length);
iso_stream->reassembly_pos += data_total_length;
// deliver if last fragment and SDU complete
if (pb_flag == 0x03){
if (hci_iso_sdu_complete(iso_stream->reassembly_buffer, iso_stream->reassembly_pos)){
// fix data_total_length
little_endian_store_16(iso_stream->reassembly_buffer, 2, iso_stream->reassembly_pos - HCI_ISO_HEADER_SIZE);
(hci_stack->iso_packet_handler)(HCI_ISO_DATA_PACKET, 0, iso_stream->reassembly_buffer, iso_stream->reassembly_pos);
}
// reset reassembly buffer
iso_stream->reassembly_pos = 0;
}
}
}
static void hci_emit_big_created(const le_audio_big_t * big, uint8_t status){
uint8_t event [6 + (MAX_NR_BIS * 2)];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_META_GAP;
event[pos++] = 4 + (2 * big->num_bis);
event[pos++] = GAP_SUBEVENT_BIG_CREATED;
event[pos++] = status;
event[pos++] = big->big_handle;
event[pos++] = big->num_bis;
uint8_t i;
for (i=0;i<big->num_bis;i++){
little_endian_store_16(event, pos, big->bis_con_handles[i]);
pos += 2;
}
hci_emit_btstack_event(event, pos, 0);
}
static void hci_emit_cig_created(const le_audio_cig_t * cig, uint8_t status){
uint8_t event [6 + (MAX_NR_CIS * 2)];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_META_GAP;
event[pos++] = 4 + (2 * cig->num_cis);
event[pos++] = GAP_SUBEVENT_CIG_CREATED;
event[pos++] = status;
event[pos++] = cig->cig_id;
event[pos++] = cig->num_cis;
uint8_t i;
for (i=0;i<cig->num_cis;i++){
little_endian_store_16(event, pos, cig->cis_con_handles[i]);
pos += 2;
}
hci_emit_btstack_event(event, pos, 0);
}
static uint16_t hci_setup_cis_created(uint8_t * event, hci_iso_stream_t * iso_stream, uint8_t status) {
uint16_t pos = 0;
event[pos++] = HCI_EVENT_META_GAP;
event[pos++] = 8;
event[pos++] = GAP_SUBEVENT_CIS_CREATED;
event[pos++] = status;
event[pos++] = iso_stream->group_id;
event[pos++] = iso_stream->stream_id;
little_endian_store_16(event, pos, iso_stream->cis_handle);
pos += 2;
little_endian_store_16(event, pos, iso_stream->acl_handle);
pos += 2;
little_endian_store_16(event, pos, iso_stream->iso_interval_1250us);
pos += 2;
event[pos++] = iso_stream->number_of_subevents;
event[pos++] = iso_stream->burst_number_c_to_p;
event[pos++] = iso_stream->burst_number_p_to_c;
event[pos++] = iso_stream->flush_timeout_c_to_p;
event[pos++] = iso_stream->flush_timeout_p_to_c;
return pos;
}
// emits GAP_SUBEVENT_CIS_CREATED after calling hci_iso_finalize
static void hci_cis_handle_created(hci_iso_stream_t * iso_stream, uint8_t status){
// cache data before finalizing struct
uint8_t event [17];
uint16_t pos = hci_setup_cis_created(event, iso_stream, status);
btstack_assert(pos <= sizeof(event));
if (status != ERROR_CODE_SUCCESS){
hci_iso_stream_finalize(iso_stream);
}
hci_emit_btstack_event(event, pos, 0);
}
static void hci_emit_big_terminated(const le_audio_big_t * big){
uint8_t event [4];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_META_GAP;
event[pos++] = 2;
event[pos++] = GAP_SUBEVENT_BIG_TERMINATED;
event[pos++] = big->big_handle;
hci_emit_btstack_event(event, pos, 0);
}
static void hci_emit_big_sync_created(const le_audio_big_sync_t * big_sync, uint8_t status){
uint8_t event [6 + (MAX_NR_BIS * 2)];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_META_GAP;
event[pos++] = 4;
event[pos++] = GAP_SUBEVENT_BIG_SYNC_CREATED;
event[pos++] = status;
event[pos++] = big_sync->big_handle;
event[pos++] = big_sync->num_bis;
uint8_t i;
for (i=0;i<big_sync->num_bis;i++){
little_endian_store_16(event, pos, big_sync->bis_con_handles[i]);
pos += 2;
}
hci_emit_btstack_event(event, pos, 0);
}
static void hci_emit_big_sync_stopped(uint8_t big_handle){
uint8_t event [4];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_META_GAP;
event[pos++] = 2;
event[pos++] = GAP_SUBEVENT_BIG_SYNC_STOPPED;
event[pos++] = big_handle;
hci_emit_btstack_event(event, pos, 0);
}
static void hci_emit_bis_can_send_now(const le_audio_big_t *big, uint8_t bis_index) {
uint8_t event[6];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_BIS_CAN_SEND_NOW;
event[pos++] = sizeof(event) - 2;
event[pos++] = big->big_handle;
event[pos++] = bis_index;
little_endian_store_16(event, pos, big->bis_con_handles[bis_index]);
hci_emit_btstack_event(&event[0], sizeof(event), 0); // don't dump
}
static void hci_emit_cis_can_send_now(hci_con_handle_t cis_con_handle) {
uint8_t event[4];
uint16_t pos = 0;
event[pos++] = HCI_EVENT_CIS_CAN_SEND_NOW;
event[pos++] = sizeof(event) - 2;
little_endian_store_16(event, pos, cis_con_handle);
hci_emit_btstack_event(&event[0], sizeof(event), 0); // don't dump
}
static le_audio_big_t * hci_big_for_handle(uint8_t big_handle){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it);
if ( big->big_handle == big_handle ) {
return big;
}
}
return NULL;
}
static le_audio_big_sync_t * hci_big_sync_for_handle(uint8_t big_handle){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_big_sync_t * big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it);
if ( big_sync->big_handle == big_handle ) {
return big_sync;
}
}
return NULL;
}
void hci_set_num_iso_packets_to_queue(uint8_t num_packets){
hci_stack->iso_packets_to_queue = num_packets;
}
static le_audio_cig_t * hci_cig_for_id(uint8_t cig_id){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_cigs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_cig_t * cig = (le_audio_cig_t *) btstack_linked_list_iterator_next(&it);
if ( cig->cig_id == cig_id ) {
return cig;
}
}
return NULL;
}
static void hci_iso_notify_can_send_now(void){
// BIG
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it);
// track number completed packet timestamps
if (big->num_completed_timestamp_current_valid){
big->num_completed_timestamp_current_valid = false;
if (big->num_completed_timestamp_previous_valid){
// detect delayed sending of all BIS: tolerate up to 50% delayed event handling
int32_t iso_interval_missed_threshold_ms = big->params->sdu_interval_us * 3 / 2000;
int32_t num_completed_timestamp_delta_ms = btstack_time_delta(big->num_completed_timestamp_current_ms,
big->num_completed_timestamp_previous_ms);
if (num_completed_timestamp_delta_ms > iso_interval_missed_threshold_ms){
// to catch up, skip packet on all BIS
uint8_t i;
for (i=0;i<big->num_bis;i++){
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]);
if (iso_stream){
iso_stream->num_packets_to_skip++;
}
}
}
}
big->num_completed_timestamp_previous_valid = true;
big->num_completed_timestamp_previous_ms = big->num_completed_timestamp_current_ms;
}
if (big->can_send_now_requested){
// check if no outgoing iso packets pending and no can send now have to be emitted
uint8_t i;
bool can_send = true;
uint8_t num_iso_queued_minimum = 0;
for (i=0;i<big->num_bis;i++){
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]);
if (iso_stream == NULL) continue;
// handle case where individual ISO packet was sent too late:
// for each additionally queued packet, a new one needs to get skipped
if (i==0){
num_iso_queued_minimum = iso_stream->num_packets_sent;
} else if (iso_stream->num_packets_sent > num_iso_queued_minimum){
uint8_t num_packets_to_skip = iso_stream->num_packets_sent - num_iso_queued_minimum;
iso_stream->num_packets_to_skip += num_packets_to_skip;
iso_stream->num_packets_sent -= num_packets_to_skip;
}
// check if we can send now
if ((iso_stream->num_packets_sent >= hci_stack->iso_packets_to_queue) || (iso_stream->emit_ready_to_send)){
can_send = false;
break;
}
}
if (can_send){
// propagate can send now to individual streams
big->can_send_now_requested = false;
for (i=0;i<big->num_bis;i++){
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]);
iso_stream->emit_ready_to_send = true;
}
}
}
}
if (hci_stack->hci_packet_buffer_reserved) return;
btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs);
while (btstack_linked_list_iterator_has_next(&it)){
le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it);
// report bis ready
uint8_t i;
for (i=0;i<big->num_bis;i++){
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]);
if ((iso_stream != NULL) && iso_stream->emit_ready_to_send){
iso_stream->emit_ready_to_send = false;
hci_emit_bis_can_send_now(big, i);
if (hci_stack->hci_packet_buffer_reserved) return;
}
}
}
// CIS
btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams);
while (btstack_linked_list_iterator_has_next(&it)) {
hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it);
if ((iso_stream->can_send_now_requested) &&
(iso_stream->num_packets_sent < hci_stack->iso_packets_to_queue)){
iso_stream->can_send_now_requested = false;
hci_emit_cis_can_send_now(iso_stream->cis_handle);
if (hci_stack->hci_packet_buffer_reserved) return;
}
}
}
static uint8_t gap_big_setup_iso_streams(uint8_t num_bis, uint8_t big_handle){
// make big handle unique and usuable for big and big sync
if (hci_big_for_handle(big_handle) != NULL){
return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS;
}
if (hci_big_sync_for_handle(big_handle) != NULL){
return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS;
}
if (num_bis == 0){
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
if (num_bis > MAX_NR_BIS){
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
// reserve ISO Streams
uint8_t i;
uint8_t status = ERROR_CODE_SUCCESS;
for (i=0;i<num_bis;i++){
hci_iso_stream_t * iso_stream = hci_iso_stream_create(HCI_ISO_TYPE_BIS, HCI_ISO_STREAM_STATE_REQUESTED, big_handle, i);
if (iso_stream == NULL) {
status = ERROR_CODE_MEMORY_CAPACITY_EXCEEDED;
break;
}
}
// free structs on error
if (status != ERROR_CODE_SUCCESS){
hci_iso_stream_finalize_by_type_and_group_id(HCI_ISO_TYPE_BIS, big_handle);
}
return status;
}
uint8_t gap_big_create(le_audio_big_t * storage, le_audio_big_params_t * big_params){
uint8_t status = gap_big_setup_iso_streams(big_params->num_bis, big_params->big_handle);
if (status != ERROR_CODE_SUCCESS){
return status;
}
le_audio_big_t * big = storage;
big->big_handle = big_params->big_handle;
big->params = big_params;
big->state = LE_AUDIO_BIG_STATE_CREATE;
big->num_bis = big_params->num_bis;
btstack_linked_list_add(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big);
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_big_sync_create(le_audio_big_sync_t * storage, le_audio_big_sync_params_t * big_sync_params){
uint8_t status = gap_big_setup_iso_streams(big_sync_params->num_bis, big_sync_params->big_handle);
if (status != ERROR_CODE_SUCCESS){
return status;
}
le_audio_big_sync_t * big_sync = storage;
big_sync->big_handle = big_sync_params->big_handle;
big_sync->params = big_sync_params;
big_sync->state = LE_AUDIO_BIG_STATE_CREATE;
big_sync->num_bis = big_sync_params->num_bis;
btstack_linked_list_add(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync);
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_big_terminate(uint8_t big_handle){
le_audio_big_t * big = hci_big_for_handle(big_handle);
if (big == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
switch (big->state){
case LE_AUDIO_BIG_STATE_CREATE:
btstack_linked_list_remove(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big);
hci_emit_big_terminated(big);
break;
case LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH:
big->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH_THEN_TERMINATE;
break;
case LE_AUDIO_BIG_STATE_W4_ESTABLISHED:
case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH:
case LE_AUDIO_BIG_STATE_ACTIVE:
big->state = LE_AUDIO_BIG_STATE_TERMINATE;
hci_run();
break;
default:
return ERROR_CODE_COMMAND_DISALLOWED;
}
return ERROR_CODE_SUCCESS;
}
uint8_t gap_big_sync_terminate(uint8_t big_handle){
le_audio_big_sync_t * big_sync = hci_big_sync_for_handle(big_handle);
if (big_sync == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
switch (big_sync->state){
case LE_AUDIO_BIG_STATE_CREATE:
btstack_linked_list_remove(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync);
hci_emit_big_sync_stopped(big_handle);
break;
case LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH:
big_sync->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH_THEN_TERMINATE;
break;
case LE_AUDIO_BIG_STATE_W4_ESTABLISHED:
case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH:
case LE_AUDIO_BIG_STATE_ACTIVE:
big_sync->state = LE_AUDIO_BIG_STATE_TERMINATE;
hci_run();
break;
default:
return ERROR_CODE_COMMAND_DISALLOWED;
}
return ERROR_CODE_SUCCESS;
}
uint8_t hci_request_bis_can_send_now_events(uint8_t big_handle){
le_audio_big_t * big = hci_big_for_handle(big_handle);
if (big == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
if (big->state != LE_AUDIO_BIG_STATE_ACTIVE){
return ERROR_CODE_COMMAND_DISALLOWED;
}
big->can_send_now_requested = true;
hci_iso_notify_can_send_now();
return ERROR_CODE_SUCCESS;
}
uint8_t hci_request_cis_can_send_now_events(hci_con_handle_t cis_con_handle){
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(cis_con_handle);
if (iso_stream == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
if ((iso_stream->iso_type != HCI_ISO_TYPE_CIS) && (iso_stream->state != HCI_ISO_STREAM_STATE_ESTABLISHED)) {
return ERROR_CODE_COMMAND_DISALLOWED;
}
iso_stream->can_send_now_requested = true;
hci_iso_notify_can_send_now();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_cig_create(le_audio_cig_t * storage, le_audio_cig_params_t * cig_params){
if (hci_cig_for_id(cig_params->cig_id) != NULL){
return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS;
}
if (cig_params->num_cis == 0){
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
if (cig_params->num_cis > MAX_NR_CIS){
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
// reserve ISO Streams
uint8_t i;
uint8_t status = ERROR_CODE_SUCCESS;
for (i=0;i<cig_params->num_cis;i++){
hci_iso_stream_t * iso_stream = hci_iso_stream_create(HCI_ISO_TYPE_CIS,HCI_ISO_STREAM_STATE_REQUESTED, cig_params->cig_id, i);
if (iso_stream == NULL) {
status = ERROR_CODE_MEMORY_CAPACITY_EXCEEDED;
break;
}
}
// free structs on error
if (status != ERROR_CODE_SUCCESS){
hci_iso_stream_finalize_by_type_and_group_id(HCI_ISO_TYPE_CIS, cig_params->cig_id);
return status;
}
le_audio_cig_t * cig = storage;
cig->cig_id = cig_params->cig_id;
cig->num_cis = cig_params->num_cis;
cig->params = cig_params;
cig->state = LE_AUDIO_CIG_STATE_CREATE;
for (i=0;i<cig->num_cis;i++){
cig->cis_con_handles[i] = HCI_CON_HANDLE_INVALID;
cig->acl_con_handles[i] = HCI_CON_HANDLE_INVALID;
cig->cis_setup_active[i] = false;
cig->cis_established[i] = false;
}
btstack_linked_list_add(&hci_stack->le_audio_cigs, (btstack_linked_item_t *) cig);
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_cig_remove(uint8_t cig_id){
le_audio_cig_t * cig = hci_cig_for_id(cig_id);
if (cig == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
// close active CIS
uint8_t i;
for (i=0;i<cig->num_cis;i++){
hci_iso_stream_t * stream = hci_iso_stream_for_con_handle(cig->cis_con_handles[i]);
if (stream != NULL){
stream->state = HCI_ISO_STREAM_STATE_W2_CLOSE;
}
}
cig->state = LE_AUDIO_CIG_STATE_REMOVE;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_cis_create(uint8_t cig_id, hci_con_handle_t cis_con_handles [], hci_con_handle_t acl_con_handles []){
le_audio_cig_t * cig = hci_cig_for_id(cig_id);
if (cig == NULL){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
if (cig->state != LE_AUDIO_CIG_STATE_W4_CIS_REQUEST){
return ERROR_CODE_COMMAND_DISALLOWED;
}
// store ACL Connection Handles
uint8_t i;
for (i=0;i<cig->num_cis;i++){
// check that all con handles exist and store
hci_con_handle_t cis_handle = cis_con_handles[i];
if (cis_handle == HCI_CON_HANDLE_INVALID){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
uint8_t j;
bool found = false;
for (j=0;j<cig->num_cis;j++){
if (cig->cis_con_handles[j] == cis_handle){
cig->acl_con_handles[j] = acl_con_handles[j];
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(cis_handle);
btstack_assert(iso_stream != NULL);
iso_stream->acl_handle = acl_con_handles[j];
found = true;
break;
}
}
if (!found){
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
}
cig->state = LE_AUDIO_CIG_STATE_CREATE_CIS;
hci_run();
return ERROR_CODE_SUCCESS;
}
static uint8_t hci_cis_accept_or_reject(hci_con_handle_t cis_handle, hci_iso_stream_state_t state){
hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(cis_handle);
if (iso_stream == NULL){
// if we got a CIS Request but fail to allocate a hci_iso_stream_t object, we won't find it here
return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED;
}
// set next state and continue
iso_stream->state = state;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint8_t gap_cis_accept(hci_con_handle_t cis_con_handle){
return hci_cis_accept_or_reject(cis_con_handle, HCI_ISO_STREAM_W2_ACCEPT);
}
uint8_t gap_cis_reject(hci_con_handle_t cis_con_handle){
return hci_cis_accept_or_reject(cis_con_handle, HCI_ISO_STREAM_W2_REJECT);
}
#endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */
// GAP Privacy - notify clients before random address update
static bool gap_privacy_client_all_ready(void){
// check if all ready
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->gap_privacy_clients);
while (btstack_linked_list_iterator_has_next(&it)) {
gap_privacy_client_t *client = (gap_privacy_client_t *) btstack_linked_list_iterator_next(&it);
if (client->state != GAP_PRIVACY_CLIENT_STATE_READY){
return false;
}
}
return true;
}
static void gap_privacy_clients_handle_ready(void){
// clear 'ready'
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->gap_privacy_clients);
while (btstack_linked_list_iterator_has_next(&it)) {
gap_privacy_client_t *client = (gap_privacy_client_t *) btstack_linked_list_iterator_next(&it);
client->state = GAP_PRIVACY_CLIENT_STATE_IDLE;
}
hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_PRIVACY_PENDING;
hci_run();
}
static void gap_privacy_clients_notify(bd_addr_t new_random_address){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->gap_privacy_clients);
while (btstack_linked_list_iterator_has_next(&it)) {
gap_privacy_client_t *client = (gap_privacy_client_t *) btstack_linked_list_iterator_next(&it);
if (client->state == GAP_PRIVACY_CLIENT_STATE_IDLE){
client->state = GAP_PRIVACY_CLIENT_STATE_PENDING;
(*client->callback)(client, new_random_address);
}
}
if (gap_privacy_client_all_ready()){
gap_privacy_clients_handle_ready();
}
}
void gap_privacy_client_register(gap_privacy_client_t * client){
client->state = GAP_PRIVACY_CLIENT_STATE_IDLE;
btstack_linked_list_add(&hci_stack->gap_privacy_clients, (btstack_linked_item_t *) client);
}
void gap_privacy_client_ready(gap_privacy_client_t * client){
client->state = GAP_PRIVACY_CLIENT_STATE_READY;
if (gap_privacy_client_all_ready()){
gap_privacy_clients_handle_ready();
}
}
void gap_privacy_client_unregister(gap_privacy_client_t * client){
btstack_linked_list_remove(&hci_stack->gap_privacy_clients, (btstack_linked_item_t *) client);
}
#endif /* ENABLE_BLE */
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
void hci_setup_test_connections_fuzz(void){
hci_connection_t * conn;
// default address: 66:55:44:33:00:01
bd_addr_t addr = { 0x66, 0x55, 0x44, 0x33, 0x00, 0x00};
// setup Controller info
hci_stack->num_cmd_packets = 255;
hci_stack->acl_packets_total_num = 255;
// setup incoming Classic ACL connection with con handle 0x0001, 66:55:44:33:22:01
addr[5] = 0x01;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL, HCI_ROLE_SLAVE);
conn->con_handle = addr[5];
conn->state = RECEIVED_CONNECTION_REQUEST;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup incoming Classic SCO connection with con handle 0x0002
addr[5] = 0x02;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO, HCI_ROLE_SLAVE);
conn->con_handle = addr[5];
conn->state = RECEIVED_CONNECTION_REQUEST;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup ready Classic ACL connection with con handle 0x0003
addr[5] = 0x03;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL, HCI_ROLE_SLAVE);
conn->con_handle = addr[5];
conn->state = OPEN;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup ready Classic SCO connection with con handle 0x0004
addr[5] = 0x04;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO, HCI_ROLE_SLAVE);
conn->con_handle = addr[5];
conn->state = OPEN;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup ready LE ACL connection with con handle 0x005 and public address
addr[5] = 0x05;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_LE_PUBLIC, HCI_ROLE_SLAVE);
conn->con_handle = addr[5];
conn->state = OPEN;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
conn->sm_connection.sm_connection_encrypted = 1;
}
void hci_free_connections_fuzz(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
btstack_linked_list_iterator_remove(&it);
btstack_memory_hci_connection_free(con);
}
}
void hci_simulate_working_fuzz(void){
hci_stack->le_scanning_param_update = false;
hci_init_done();
hci_stack->num_cmd_packets = 255;
}
#endif