mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-03-24 22:43:35 +00:00
4146 lines
164 KiB
C
4146 lines
164 KiB
C
/*
|
||
* Copyright (C) 2014 BlueKitchen GmbH
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. Neither the name of the copyright holders nor the names of
|
||
* contributors may be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
* 4. Any redistribution, use, or modification is done solely for
|
||
* personal benefit and not for any commercial purpose or for
|
||
* monetary gain.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
|
||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
|
||
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* Please inquire about commercial licensing options at
|
||
* contact@bluekitchen-gmbh.com
|
||
*
|
||
*/
|
||
|
||
#define __BTSTACK_FILE__ "sm.c"
|
||
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <inttypes.h>
|
||
|
||
#include "ble/le_device_db.h"
|
||
#include "ble/core.h"
|
||
#include "ble/sm.h"
|
||
#include "bluetooth_company_id.h"
|
||
#include "btstack_debug.h"
|
||
#include "btstack_event.h"
|
||
#include "btstack_linked_list.h"
|
||
#include "btstack_memory.h"
|
||
#include "gap.h"
|
||
#include "hci.h"
|
||
#include "hci_dump.h"
|
||
#include "l2cap.h"
|
||
|
||
#if !defined(ENABLE_LE_PERIPHERAL) && !defined(ENABLE_LE_CENTRAL)
|
||
#error "LE Security Manager used, but neither ENABLE_LE_PERIPHERAL nor ENABLE_LE_CENTRAL defined. Please add at least one to btstack_config.h."
|
||
#endif
|
||
|
||
#if defined(ENABLE_LE_PERIPHERAL) && defined(ENABLE_LE_CENTRAL)
|
||
#define IS_RESPONDER(role) (role)
|
||
#else
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
// only central - never responder (avoid 'unused variable' warnings)
|
||
#define IS_RESPONDER(role) (0 && role)
|
||
#else
|
||
// only peripheral - always responder (avoid 'unused variable' warnings)
|
||
#define IS_RESPONDER(role) (1 || role)
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
// assert SM Public Key can be sent/received
|
||
#if HCI_ACL_PAYLOAD_SIZE < 69
|
||
#error "HCI_ACL_PAYLOAD_SIZE must be at least 69 bytes when using LE Secure Conection. Please increase HCI_ACL_PAYLOAD_SIZE or disable ENABLE_LE_SECURE_CONNECTIONS"
|
||
#endif
|
||
|
||
#ifdef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
|
||
#error "Support for DHKEY Support in HCI Controller not implemented yet. Please use software implementation"
|
||
#else
|
||
// #define USE_MBEDTLS_FOR_ECDH
|
||
#define USE_MICROECC_FOR_ECDH
|
||
#endif
|
||
#endif
|
||
|
||
// Software ECDH implementation provided by mbedtls
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
#include "mbedtls/config.h"
|
||
#include "mbedtls/platform.h"
|
||
#include "mbedtls/ecp.h"
|
||
#include "sm_mbedtls_allocator.h"
|
||
#endif
|
||
|
||
// Software ECDH implementation provided by micro-ecc
|
||
#ifdef USE_MICROECC_FOR_ECDH
|
||
#include "uECC.h"
|
||
#endif
|
||
|
||
#if defined(ENABLE_LE_SIGNED_WRITE) || defined(ENABLE_LE_SECURE_CONNECTIONS)
|
||
#define ENABLE_CMAC_ENGINE
|
||
#endif
|
||
|
||
//
|
||
// SM internal types and globals
|
||
//
|
||
|
||
typedef enum {
|
||
DKG_W4_WORKING,
|
||
DKG_CALC_IRK,
|
||
DKG_W4_IRK,
|
||
DKG_CALC_DHK,
|
||
DKG_W4_DHK,
|
||
DKG_READY
|
||
} derived_key_generation_t;
|
||
|
||
typedef enum {
|
||
RAU_W4_WORKING,
|
||
RAU_IDLE,
|
||
RAU_GET_RANDOM,
|
||
RAU_W4_RANDOM,
|
||
RAU_GET_ENC,
|
||
RAU_W4_ENC,
|
||
RAU_SET_ADDRESS,
|
||
} random_address_update_t;
|
||
|
||
typedef enum {
|
||
CMAC_IDLE,
|
||
CMAC_CALC_SUBKEYS,
|
||
CMAC_W4_SUBKEYS,
|
||
CMAC_CALC_MI,
|
||
CMAC_W4_MI,
|
||
CMAC_CALC_MLAST,
|
||
CMAC_W4_MLAST
|
||
} cmac_state_t;
|
||
|
||
typedef enum {
|
||
JUST_WORKS,
|
||
PK_RESP_INPUT, // Initiator displays PK, responder inputs PK
|
||
PK_INIT_INPUT, // Responder displays PK, initiator inputs PK
|
||
OK_BOTH_INPUT, // Only input on both, both input PK
|
||
NK_BOTH_INPUT, // Only numerical compparison (yes/no) on on both sides
|
||
OOB // OOB available on both sides
|
||
} stk_generation_method_t;
|
||
|
||
typedef enum {
|
||
SM_USER_RESPONSE_IDLE,
|
||
SM_USER_RESPONSE_PENDING,
|
||
SM_USER_RESPONSE_CONFIRM,
|
||
SM_USER_RESPONSE_PASSKEY,
|
||
SM_USER_RESPONSE_DECLINE
|
||
} sm_user_response_t;
|
||
|
||
typedef enum {
|
||
SM_AES128_IDLE,
|
||
SM_AES128_ACTIVE
|
||
} sm_aes128_state_t;
|
||
|
||
typedef enum {
|
||
ADDRESS_RESOLUTION_IDLE,
|
||
ADDRESS_RESOLUTION_GENERAL,
|
||
ADDRESS_RESOLUTION_FOR_CONNECTION,
|
||
} address_resolution_mode_t;
|
||
|
||
typedef enum {
|
||
ADDRESS_RESOLUTION_SUCEEDED,
|
||
ADDRESS_RESOLUTION_FAILED,
|
||
} address_resolution_event_t;
|
||
|
||
typedef enum {
|
||
EC_KEY_GENERATION_IDLE,
|
||
EC_KEY_GENERATION_ACTIVE,
|
||
EC_KEY_GENERATION_W4_KEY,
|
||
EC_KEY_GENERATION_DONE,
|
||
} ec_key_generation_state_t;
|
||
|
||
typedef enum {
|
||
SM_STATE_VAR_DHKEY_COMMAND_RECEIVED = 1 << 0
|
||
} sm_state_var_t;
|
||
|
||
//
|
||
// GLOBAL DATA
|
||
//
|
||
|
||
static uint8_t test_use_fixed_local_csrk;
|
||
|
||
// configuration
|
||
static uint8_t sm_accepted_stk_generation_methods;
|
||
static uint8_t sm_max_encryption_key_size;
|
||
static uint8_t sm_min_encryption_key_size;
|
||
static uint8_t sm_auth_req = 0;
|
||
static uint8_t sm_io_capabilities = IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
|
||
static uint8_t sm_slave_request_security;
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
static uint8_t sm_have_ec_keypair;
|
||
#endif
|
||
|
||
// Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
|
||
static sm_key_t sm_persistent_er;
|
||
static sm_key_t sm_persistent_ir;
|
||
|
||
// derived from sm_persistent_ir
|
||
static sm_key_t sm_persistent_dhk;
|
||
static sm_key_t sm_persistent_irk;
|
||
static uint8_t sm_persistent_irk_ready = 0; // used for testing
|
||
static derived_key_generation_t dkg_state;
|
||
|
||
// derived from sm_persistent_er
|
||
// ..
|
||
|
||
// random address update
|
||
static random_address_update_t rau_state;
|
||
static bd_addr_t sm_random_address;
|
||
|
||
// CMAC Calculation: General
|
||
#ifdef ENABLE_CMAC_ENGINE
|
||
static cmac_state_t sm_cmac_state;
|
||
static uint16_t sm_cmac_message_len;
|
||
static sm_key_t sm_cmac_k;
|
||
static sm_key_t sm_cmac_x;
|
||
static sm_key_t sm_cmac_m_last;
|
||
static uint8_t sm_cmac_block_current;
|
||
static uint8_t sm_cmac_block_count;
|
||
static uint8_t (*sm_cmac_get_byte)(uint16_t offset);
|
||
static void (*sm_cmac_done_handler)(uint8_t * hash);
|
||
#endif
|
||
|
||
// CMAC for ATT Signed Writes
|
||
#ifdef ENABLE_LE_SIGNED_WRITE
|
||
static uint8_t sm_cmac_header[3];
|
||
static const uint8_t * sm_cmac_message;
|
||
static uint8_t sm_cmac_sign_counter[4];
|
||
#endif
|
||
|
||
// CMAC for Secure Connection functions
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
static sm_connection_t * sm_cmac_connection;
|
||
static uint8_t sm_cmac_sc_buffer[80];
|
||
#endif
|
||
|
||
// resolvable private address lookup / CSRK calculation
|
||
static int sm_address_resolution_test;
|
||
static int sm_address_resolution_ah_calculation_active;
|
||
static uint8_t sm_address_resolution_addr_type;
|
||
static bd_addr_t sm_address_resolution_address;
|
||
static void * sm_address_resolution_context;
|
||
static address_resolution_mode_t sm_address_resolution_mode;
|
||
static btstack_linked_list_t sm_address_resolution_general_queue;
|
||
|
||
// aes128 crypto engine. store current sm_connection_t in sm_aes128_context
|
||
static sm_aes128_state_t sm_aes128_state;
|
||
static void * sm_aes128_context;
|
||
|
||
// use aes128 provided by MCU - not needed usually
|
||
#ifdef HAVE_AES128
|
||
static uint8_t aes128_result_flipped[16];
|
||
static btstack_timer_source_t aes128_timer;
|
||
void btstack_aes128_calc(uint8_t * key, uint8_t * plaintext, uint8_t * result);
|
||
#endif
|
||
|
||
// random engine. store context (ususally sm_connection_t)
|
||
static void * sm_random_context;
|
||
|
||
// to receive hci events
|
||
static btstack_packet_callback_registration_t hci_event_callback_registration;
|
||
|
||
/* to dispatch sm event */
|
||
static btstack_linked_list_t sm_event_handlers;
|
||
|
||
// LE Secure Connections
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
static ec_key_generation_state_t ec_key_generation_state;
|
||
static uint8_t ec_d[32];
|
||
static uint8_t ec_q[64];
|
||
#endif
|
||
|
||
// Software ECDH implementation provided by mbedtls
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
// group is always valid
|
||
static mbedtls_ecp_group mbedtls_ec_group;
|
||
#ifndef HAVE_MALLOC
|
||
// COMP Method with Window 2
|
||
// 1300 bytes with 23 allocations
|
||
// #define MBEDTLS_ALLOC_BUFFER_SIZE (1300+23*sizeof(void *))
|
||
// NAIVE Method with safe cond assignments (without safe cond, order changes and allocations fail)
|
||
#define MBEDTLS_ALLOC_BUFFER_SIZE (700+18*sizeof(void *))
|
||
static uint8_t mbedtls_memory_buffer[MBEDTLS_ALLOC_BUFFER_SIZE];
|
||
#endif
|
||
#endif
|
||
|
||
//
|
||
// Volume 3, Part H, Chapter 24
|
||
// "Security shall be initiated by the Security Manager in the device in the master role.
|
||
// The device in the slave role shall be the responding device."
|
||
// -> master := initiator, slave := responder
|
||
//
|
||
|
||
// data needed for security setup
|
||
typedef struct sm_setup_context {
|
||
|
||
btstack_timer_source_t sm_timeout;
|
||
|
||
// used in all phases
|
||
uint8_t sm_pairing_failed_reason;
|
||
|
||
// user response, (Phase 1 and/or 2)
|
||
uint8_t sm_user_response;
|
||
uint8_t sm_keypress_notification;
|
||
|
||
// defines which keys will be send after connection is encrypted - calculated during Phase 1, used Phase 3
|
||
int sm_key_distribution_send_set;
|
||
int sm_key_distribution_received_set;
|
||
|
||
// Phase 2 (Pairing over SMP)
|
||
stk_generation_method_t sm_stk_generation_method;
|
||
sm_key_t sm_tk;
|
||
uint8_t sm_use_secure_connections;
|
||
|
||
sm_key_t sm_c1_t3_value; // c1 calculation
|
||
sm_pairing_packet_t sm_m_preq; // pairing request - needed only for c1
|
||
sm_pairing_packet_t sm_s_pres; // pairing response - needed only for c1
|
||
sm_key_t sm_local_random;
|
||
sm_key_t sm_local_confirm;
|
||
sm_key_t sm_peer_random;
|
||
sm_key_t sm_peer_confirm;
|
||
uint8_t sm_m_addr_type; // address and type can be removed
|
||
uint8_t sm_s_addr_type; // ''
|
||
bd_addr_t sm_m_address; // ''
|
||
bd_addr_t sm_s_address; // ''
|
||
sm_key_t sm_ltk;
|
||
|
||
uint8_t sm_state_vars;
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
uint8_t sm_peer_q[64]; // also stores random for EC key generation during init
|
||
sm_key_t sm_peer_nonce; // might be combined with sm_peer_random
|
||
sm_key_t sm_local_nonce; // might be combined with sm_local_random
|
||
sm_key_t sm_peer_dhkey_check;
|
||
sm_key_t sm_local_dhkey_check;
|
||
sm_key_t sm_ra;
|
||
sm_key_t sm_rb;
|
||
sm_key_t sm_t; // used for f5 and h6
|
||
sm_key_t sm_mackey;
|
||
uint8_t sm_passkey_bit; // also stores number of generated random bytes for EC key generation
|
||
#endif
|
||
|
||
// Phase 3
|
||
|
||
// key distribution, we generate
|
||
uint16_t sm_local_y;
|
||
uint16_t sm_local_div;
|
||
uint16_t sm_local_ediv;
|
||
uint8_t sm_local_rand[8];
|
||
sm_key_t sm_local_ltk;
|
||
sm_key_t sm_local_csrk;
|
||
sm_key_t sm_local_irk;
|
||
// sm_local_address/addr_type not needed
|
||
|
||
// key distribution, received from peer
|
||
uint16_t sm_peer_y;
|
||
uint16_t sm_peer_div;
|
||
uint16_t sm_peer_ediv;
|
||
uint8_t sm_peer_rand[8];
|
||
sm_key_t sm_peer_ltk;
|
||
sm_key_t sm_peer_irk;
|
||
sm_key_t sm_peer_csrk;
|
||
uint8_t sm_peer_addr_type;
|
||
bd_addr_t sm_peer_address;
|
||
|
||
} sm_setup_context_t;
|
||
|
||
//
|
||
static sm_setup_context_t the_setup;
|
||
static sm_setup_context_t * setup = &the_setup;
|
||
|
||
// active connection - the one for which the_setup is used for
|
||
static uint16_t sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
|
||
|
||
// @returns 1 if oob data is available
|
||
// stores oob data in provided 16 byte buffer if not null
|
||
static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data) = NULL;
|
||
|
||
// horizontal: initiator capabilities
|
||
// vertial: responder capabilities
|
||
static const stk_generation_method_t stk_generation_method [5] [5] = {
|
||
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
|
||
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
|
||
{ PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT },
|
||
{ JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS },
|
||
{ PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT },
|
||
};
|
||
|
||
// uses numeric comparison if one side has DisplayYesNo and KeyboardDisplay combinations
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
static const stk_generation_method_t stk_generation_method_with_secure_connection[5][5] = {
|
||
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
|
||
{ JUST_WORKS, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT },
|
||
{ PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT },
|
||
{ JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS },
|
||
{ PK_RESP_INPUT, NK_BOTH_INPUT, PK_INIT_INPUT, JUST_WORKS, NK_BOTH_INPUT },
|
||
};
|
||
#endif
|
||
|
||
static void sm_run(void);
|
||
static void sm_done_for_handle(hci_con_handle_t con_handle);
|
||
static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle);
|
||
static inline int sm_calc_actual_encryption_key_size(int other);
|
||
static int sm_validate_stk_generation_method(void);
|
||
static void sm_handle_encryption_result(uint8_t * data);
|
||
|
||
static void log_info_hex16(const char * name, uint16_t value){
|
||
log_info("%-6s 0x%04x", name, value);
|
||
}
|
||
|
||
// @returns 1 if all bytes are 0
|
||
static int sm_is_null(uint8_t * data, int size){
|
||
int i;
|
||
for (i=0; i < size ; i++){
|
||
if (data[i]) return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
static int sm_is_null_random(uint8_t random[8]){
|
||
return sm_is_null(random, 8);
|
||
}
|
||
|
||
static int sm_is_null_key(uint8_t * key){
|
||
return sm_is_null(key, 16);
|
||
}
|
||
|
||
// Key utils
|
||
static void sm_reset_tk(void){
|
||
int i;
|
||
for (i=0;i<16;i++){
|
||
setup->sm_tk[i] = 0;
|
||
}
|
||
}
|
||
|
||
// "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
|
||
// and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
|
||
static void sm_truncate_key(sm_key_t key, int max_encryption_size){
|
||
int i;
|
||
for (i = max_encryption_size ; i < 16 ; i++){
|
||
key[15-i] = 0;
|
||
}
|
||
}
|
||
|
||
// SMP Timeout implementation
|
||
|
||
// Upon transmission of the Pairing Request command or reception of the Pairing Request command,
|
||
// the Security Manager Timer shall be reset and started.
|
||
//
|
||
// The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
|
||
//
|
||
// If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
|
||
// and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
|
||
// Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
|
||
// established.
|
||
|
||
static void sm_timeout_handler(btstack_timer_source_t * timer){
|
||
log_info("SM timeout");
|
||
sm_connection_t * sm_conn = (sm_connection_t*) btstack_run_loop_get_timer_context(timer);
|
||
sm_conn->sm_engine_state = SM_GENERAL_TIMEOUT;
|
||
sm_done_for_handle(sm_conn->sm_handle);
|
||
|
||
// trigger handling of next ready connection
|
||
sm_run();
|
||
}
|
||
static void sm_timeout_start(sm_connection_t * sm_conn){
|
||
btstack_run_loop_remove_timer(&setup->sm_timeout);
|
||
btstack_run_loop_set_timer_context(&setup->sm_timeout, sm_conn);
|
||
btstack_run_loop_set_timer_handler(&setup->sm_timeout, sm_timeout_handler);
|
||
btstack_run_loop_set_timer(&setup->sm_timeout, 30000); // 30 seconds sm timeout
|
||
btstack_run_loop_add_timer(&setup->sm_timeout);
|
||
}
|
||
static void sm_timeout_stop(void){
|
||
btstack_run_loop_remove_timer(&setup->sm_timeout);
|
||
}
|
||
static void sm_timeout_reset(sm_connection_t * sm_conn){
|
||
sm_timeout_stop();
|
||
sm_timeout_start(sm_conn);
|
||
}
|
||
|
||
// end of sm timeout
|
||
|
||
// GAP Random Address updates
|
||
static gap_random_address_type_t gap_random_adress_type;
|
||
static btstack_timer_source_t gap_random_address_update_timer;
|
||
static uint32_t gap_random_adress_update_period;
|
||
|
||
static void gap_random_address_trigger(void){
|
||
if (rau_state != RAU_IDLE) return;
|
||
log_info("gap_random_address_trigger");
|
||
rau_state = RAU_GET_RANDOM;
|
||
sm_run();
|
||
}
|
||
|
||
static void gap_random_address_update_handler(btstack_timer_source_t * timer){
|
||
UNUSED(timer);
|
||
|
||
log_info("GAP Random Address Update due");
|
||
btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
|
||
btstack_run_loop_add_timer(&gap_random_address_update_timer);
|
||
gap_random_address_trigger();
|
||
}
|
||
|
||
static void gap_random_address_update_start(void){
|
||
btstack_run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
|
||
btstack_run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
|
||
btstack_run_loop_add_timer(&gap_random_address_update_timer);
|
||
}
|
||
|
||
static void gap_random_address_update_stop(void){
|
||
btstack_run_loop_remove_timer(&gap_random_address_update_timer);
|
||
}
|
||
|
||
|
||
static void sm_random_start(void * context){
|
||
sm_random_context = context;
|
||
hci_send_cmd(&hci_le_rand);
|
||
}
|
||
|
||
#ifdef HAVE_AES128
|
||
static void aes128_completed(btstack_timer_source_t * ts){
|
||
UNUSED(ts);
|
||
sm_handle_encryption_result(&aes128_result_flipped[0]);
|
||
sm_run();
|
||
}
|
||
#endif
|
||
|
||
// pre: sm_aes128_state != SM_AES128_ACTIVE, hci_can_send_command == 1
|
||
// context is made availabe to aes128 result handler by this
|
||
static void sm_aes128_start(sm_key_t key, sm_key_t plaintext, void * context){
|
||
sm_aes128_state = SM_AES128_ACTIVE;
|
||
sm_aes128_context = context;
|
||
|
||
#ifdef HAVE_AES128
|
||
// calc result directly
|
||
sm_key_t result;
|
||
btstack_aes128_calc(key, plaintext, result);
|
||
|
||
// log
|
||
log_info_key("key", key);
|
||
log_info_key("txt", plaintext);
|
||
log_info_key("res", result);
|
||
|
||
// flip
|
||
reverse_128(&result[0], &aes128_result_flipped[0]);
|
||
|
||
// deliver via timer
|
||
btstack_run_loop_set_timer_handler(&aes128_timer, &aes128_completed);
|
||
btstack_run_loop_set_timer(&aes128_timer, 0); // no delay
|
||
btstack_run_loop_add_timer(&aes128_timer);
|
||
#else
|
||
sm_key_t key_flipped, plaintext_flipped;
|
||
reverse_128(key, key_flipped);
|
||
reverse_128(plaintext, plaintext_flipped);
|
||
hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
|
||
#endif
|
||
}
|
||
|
||
// ah(k,r) helper
|
||
// r = padding || r
|
||
// r - 24 bit value
|
||
static void sm_ah_r_prime(uint8_t r[3], uint8_t * r_prime){
|
||
// r'= padding || r
|
||
memset(r_prime, 0, 16);
|
||
memcpy(&r_prime[13], r, 3);
|
||
}
|
||
|
||
// d1 helper
|
||
// d' = padding || r || d
|
||
// d,r - 16 bit values
|
||
static void sm_d1_d_prime(uint16_t d, uint16_t r, uint8_t * d1_prime){
|
||
// d'= padding || r || d
|
||
memset(d1_prime, 0, 16);
|
||
big_endian_store_16(d1_prime, 12, r);
|
||
big_endian_store_16(d1_prime, 14, d);
|
||
}
|
||
|
||
// dm helper
|
||
// r’ = padding || r
|
||
// r - 64 bit value
|
||
static void sm_dm_r_prime(uint8_t r[8], uint8_t * r_prime){
|
||
memset(r_prime, 0, 16);
|
||
memcpy(&r_prime[8], r, 8);
|
||
}
|
||
|
||
// calculate arguments for first AES128 operation in C1 function
|
||
static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, uint8_t * t1){
|
||
|
||
// p1 = pres || preq || rat’ || iat’
|
||
// "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
|
||
// cant octet of pres becomes the most significant octet of p1.
|
||
// For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
|
||
// is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
|
||
// p1 is 0x05000800000302070710000001010001."
|
||
|
||
sm_key_t p1;
|
||
reverse_56(pres, &p1[0]);
|
||
reverse_56(preq, &p1[7]);
|
||
p1[14] = rat;
|
||
p1[15] = iat;
|
||
log_info_key("p1", p1);
|
||
log_info_key("r", r);
|
||
|
||
// t1 = r xor p1
|
||
int i;
|
||
for (i=0;i<16;i++){
|
||
t1[i] = r[i] ^ p1[i];
|
||
}
|
||
log_info_key("t1", t1);
|
||
}
|
||
|
||
// calculate arguments for second AES128 operation in C1 function
|
||
static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, uint8_t * t3){
|
||
// p2 = padding || ia || ra
|
||
// "The least significant octet of ra becomes the least significant octet of p2 and
|
||
// the most significant octet of padding becomes the most significant octet of p2.
|
||
// For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
|
||
// 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
|
||
|
||
sm_key_t p2;
|
||
memset(p2, 0, 16);
|
||
memcpy(&p2[4], ia, 6);
|
||
memcpy(&p2[10], ra, 6);
|
||
log_info_key("p2", p2);
|
||
|
||
// c1 = e(k, t2_xor_p2)
|
||
int i;
|
||
for (i=0;i<16;i++){
|
||
t3[i] = t2[i] ^ p2[i];
|
||
}
|
||
log_info_key("t3", t3);
|
||
}
|
||
|
||
static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, uint8_t * r_prime){
|
||
log_info_key("r1", r1);
|
||
log_info_key("r2", r2);
|
||
memcpy(&r_prime[8], &r2[8], 8);
|
||
memcpy(&r_prime[0], &r1[8], 8);
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
// Software implementations of crypto toolbox for LE Secure Connection
|
||
// TODO: replace with code to use AES Engine of HCI Controller
|
||
typedef uint8_t sm_key24_t[3];
|
||
typedef uint8_t sm_key56_t[7];
|
||
typedef uint8_t sm_key256_t[32];
|
||
|
||
#if 0
|
||
static void aes128_calc_cyphertext(const uint8_t key[16], const uint8_t plaintext[16], uint8_t cyphertext[16]){
|
||
uint32_t rk[RKLENGTH(KEYBITS)];
|
||
int nrounds = rijndaelSetupEncrypt(rk, &key[0], KEYBITS);
|
||
rijndaelEncrypt(rk, nrounds, plaintext, cyphertext);
|
||
}
|
||
|
||
static void calc_subkeys(sm_key_t k0, sm_key_t k1, sm_key_t k2){
|
||
memcpy(k1, k0, 16);
|
||
sm_shift_left_by_one_bit_inplace(16, k1);
|
||
if (k0[0] & 0x80){
|
||
k1[15] ^= 0x87;
|
||
}
|
||
memcpy(k2, k1, 16);
|
||
sm_shift_left_by_one_bit_inplace(16, k2);
|
||
if (k1[0] & 0x80){
|
||
k2[15] ^= 0x87;
|
||
}
|
||
}
|
||
|
||
static void aes_cmac(sm_key_t aes_cmac, const sm_key_t key, const uint8_t * data, int cmac_message_len){
|
||
sm_key_t k0, k1, k2, zero;
|
||
memset(zero, 0, 16);
|
||
|
||
aes128_calc_cyphertext(key, zero, k0);
|
||
calc_subkeys(k0, k1, k2);
|
||
|
||
int cmac_block_count = (cmac_message_len + 15) / 16;
|
||
|
||
// step 3: ..
|
||
if (cmac_block_count==0){
|
||
cmac_block_count = 1;
|
||
}
|
||
|
||
// step 4: set m_last
|
||
sm_key_t cmac_m_last;
|
||
int sm_cmac_last_block_complete = cmac_message_len != 0 && (cmac_message_len & 0x0f) == 0;
|
||
int i;
|
||
if (sm_cmac_last_block_complete){
|
||
for (i=0;i<16;i++){
|
||
cmac_m_last[i] = data[cmac_message_len - 16 + i] ^ k1[i];
|
||
}
|
||
} else {
|
||
int valid_octets_in_last_block = cmac_message_len & 0x0f;
|
||
for (i=0;i<16;i++){
|
||
if (i < valid_octets_in_last_block){
|
||
cmac_m_last[i] = data[(cmac_message_len & 0xfff0) + i] ^ k2[i];
|
||
continue;
|
||
}
|
||
if (i == valid_octets_in_last_block){
|
||
cmac_m_last[i] = 0x80 ^ k2[i];
|
||
continue;
|
||
}
|
||
cmac_m_last[i] = k2[i];
|
||
}
|
||
}
|
||
|
||
// printf("sm_cmac_start: len %u, block count %u\n", cmac_message_len, cmac_block_count);
|
||
// LOG_KEY(cmac_m_last);
|
||
|
||
// Step 5
|
||
sm_key_t cmac_x;
|
||
memset(cmac_x, 0, 16);
|
||
|
||
// Step 6
|
||
sm_key_t sm_cmac_y;
|
||
for (int block = 0 ; block < cmac_block_count-1 ; block++){
|
||
for (i=0;i<16;i++){
|
||
sm_cmac_y[i] = cmac_x[i] ^ data[block * 16 + i];
|
||
}
|
||
aes128_calc_cyphertext(key, sm_cmac_y, cmac_x);
|
||
}
|
||
for (i=0;i<16;i++){
|
||
sm_cmac_y[i] = cmac_x[i] ^ cmac_m_last[i];
|
||
}
|
||
|
||
// Step 7
|
||
aes128_calc_cyphertext(key, sm_cmac_y, aes_cmac);
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
static void sm_setup_event_base(uint8_t * event, int event_size, uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
|
||
event[0] = type;
|
||
event[1] = event_size - 2;
|
||
little_endian_store_16(event, 2, con_handle);
|
||
event[4] = addr_type;
|
||
reverse_bd_addr(address, &event[5]);
|
||
}
|
||
|
||
static void sm_dispatch_event(uint8_t packet_type, uint16_t channel, uint8_t * packet, uint16_t size){
|
||
UNUSED(channel);
|
||
|
||
// log event
|
||
hci_dump_packet(packet_type, 1, packet, size);
|
||
// dispatch to all event handlers
|
||
btstack_linked_list_iterator_t it;
|
||
btstack_linked_list_iterator_init(&it, &sm_event_handlers);
|
||
while (btstack_linked_list_iterator_has_next(&it)){
|
||
btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
|
||
entry->callback(packet_type, 0, packet, size);
|
||
}
|
||
}
|
||
|
||
static void sm_notify_client_base(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address){
|
||
uint8_t event[11];
|
||
sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
|
||
sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
|
||
}
|
||
|
||
static void sm_notify_client_passkey(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint32_t passkey){
|
||
uint8_t event[15];
|
||
sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
|
||
little_endian_store_32(event, 11, passkey);
|
||
sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
|
||
}
|
||
|
||
static void sm_notify_client_index(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint16_t index){
|
||
// fetch addr and addr type from db
|
||
bd_addr_t identity_address;
|
||
int identity_address_type;
|
||
le_device_db_info(index, &identity_address_type, identity_address, NULL);
|
||
|
||
uint8_t event[19];
|
||
sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
|
||
event[11] = identity_address_type;
|
||
reverse_bd_addr(identity_address, &event[12]);
|
||
event[18] = index;
|
||
sm_dispatch_event(HCI_EVENT_PACKET, 0, event, sizeof(event));
|
||
}
|
||
|
||
static void sm_notify_client_authorization(uint8_t type, hci_con_handle_t con_handle, uint8_t addr_type, bd_addr_t address, uint8_t result){
|
||
|
||
uint8_t event[18];
|
||
sm_setup_event_base(event, sizeof(event), type, con_handle, addr_type, address);
|
||
event[11] = result;
|
||
sm_dispatch_event(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
|
||
}
|
||
|
||
// decide on stk generation based on
|
||
// - pairing request
|
||
// - io capabilities
|
||
// - OOB data availability
|
||
static void sm_setup_tk(void){
|
||
|
||
// default: just works
|
||
setup->sm_stk_generation_method = JUST_WORKS;
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
setup->sm_use_secure_connections = ( sm_pairing_packet_get_auth_req(setup->sm_m_preq)
|
||
& sm_pairing_packet_get_auth_req(setup->sm_s_pres)
|
||
& SM_AUTHREQ_SECURE_CONNECTION ) != 0;
|
||
memset(setup->sm_ra, 0, 16);
|
||
memset(setup->sm_rb, 0, 16);
|
||
#else
|
||
setup->sm_use_secure_connections = 0;
|
||
#endif
|
||
|
||
// If both devices have not set the MITM option in the Authentication Requirements
|
||
// Flags, then the IO capabilities shall be ignored and the Just Works association
|
||
// model shall be used.
|
||
if (((sm_pairing_packet_get_auth_req(setup->sm_m_preq) & SM_AUTHREQ_MITM_PROTECTION) == 0)
|
||
&& ((sm_pairing_packet_get_auth_req(setup->sm_s_pres) & SM_AUTHREQ_MITM_PROTECTION) == 0)){
|
||
log_info("SM: MITM not required by both -> JUST WORKS");
|
||
return;
|
||
}
|
||
|
||
// TODO: with LE SC, OOB is used to transfer data OOB during pairing, single device with OOB is sufficient
|
||
|
||
// If both devices have out of band authentication data, then the Authentication
|
||
// Requirements Flags shall be ignored when selecting the pairing method and the
|
||
// Out of Band pairing method shall be used.
|
||
if (sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq)
|
||
&& sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres)){
|
||
log_info("SM: have OOB data");
|
||
log_info_key("OOB", setup->sm_tk);
|
||
setup->sm_stk_generation_method = OOB;
|
||
return;
|
||
}
|
||
|
||
// Reset TK as it has been setup in sm_init_setup
|
||
sm_reset_tk();
|
||
|
||
// Also use just works if unknown io capabilites
|
||
if ((sm_pairing_packet_get_io_capability(setup->sm_m_preq) > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_pairing_packet_get_io_capability(setup->sm_s_pres) > IO_CAPABILITY_KEYBOARD_DISPLAY)){
|
||
return;
|
||
}
|
||
|
||
// Otherwise the IO capabilities of the devices shall be used to determine the
|
||
// pairing method as defined in Table 2.4.
|
||
// see http://stackoverflow.com/a/1052837/393697 for how to specify pointer to 2-dimensional array
|
||
const stk_generation_method_t (*generation_method)[5] = stk_generation_method;
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
// table not define by default
|
||
if (setup->sm_use_secure_connections){
|
||
generation_method = stk_generation_method_with_secure_connection;
|
||
}
|
||
#endif
|
||
setup->sm_stk_generation_method = generation_method[sm_pairing_packet_get_io_capability(setup->sm_s_pres)][sm_pairing_packet_get_io_capability(setup->sm_m_preq)];
|
||
|
||
log_info("sm_setup_tk: master io cap: %u, slave io cap: %u -> method %u",
|
||
sm_pairing_packet_get_io_capability(setup->sm_m_preq), sm_pairing_packet_get_io_capability(setup->sm_s_pres), setup->sm_stk_generation_method);
|
||
}
|
||
|
||
static int sm_key_distribution_flags_for_set(uint8_t key_set){
|
||
int flags = 0;
|
||
if (key_set & SM_KEYDIST_ENC_KEY){
|
||
flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
|
||
flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
|
||
}
|
||
if (key_set & SM_KEYDIST_ID_KEY){
|
||
flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
|
||
flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
|
||
}
|
||
if (key_set & SM_KEYDIST_SIGN){
|
||
flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
|
||
}
|
||
return flags;
|
||
}
|
||
|
||
static void sm_setup_key_distribution(uint8_t key_set){
|
||
setup->sm_key_distribution_received_set = 0;
|
||
setup->sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
|
||
}
|
||
|
||
// CSRK Key Lookup
|
||
|
||
|
||
static int sm_address_resolution_idle(void){
|
||
return sm_address_resolution_mode == ADDRESS_RESOLUTION_IDLE;
|
||
}
|
||
|
||
static void sm_address_resolution_start_lookup(uint8_t addr_type, hci_con_handle_t con_handle, bd_addr_t addr, address_resolution_mode_t mode, void * context){
|
||
memcpy(sm_address_resolution_address, addr, 6);
|
||
sm_address_resolution_addr_type = addr_type;
|
||
sm_address_resolution_test = 0;
|
||
sm_address_resolution_mode = mode;
|
||
sm_address_resolution_context = context;
|
||
sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_STARTED, con_handle, addr_type, addr);
|
||
}
|
||
|
||
int sm_address_resolution_lookup(uint8_t address_type, bd_addr_t address){
|
||
// check if already in list
|
||
btstack_linked_list_iterator_t it;
|
||
sm_lookup_entry_t * entry;
|
||
btstack_linked_list_iterator_init(&it, &sm_address_resolution_general_queue);
|
||
while(btstack_linked_list_iterator_has_next(&it)){
|
||
entry = (sm_lookup_entry_t *) btstack_linked_list_iterator_next(&it);
|
||
if (entry->address_type != address_type) continue;
|
||
if (memcmp(entry->address, address, 6)) continue;
|
||
// already in list
|
||
return BTSTACK_BUSY;
|
||
}
|
||
entry = btstack_memory_sm_lookup_entry_get();
|
||
if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
|
||
entry->address_type = (bd_addr_type_t) address_type;
|
||
memcpy(entry->address, address, 6);
|
||
btstack_linked_list_add(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
|
||
sm_run();
|
||
return 0;
|
||
}
|
||
|
||
// while x_state++ for an enum is possible in C, it isn't in C++. we use this helpers to avoid compile errors for now
|
||
static inline void sm_next_responding_state(sm_connection_t * sm_conn){
|
||
sm_conn->sm_engine_state = (security_manager_state_t) (((int)sm_conn->sm_engine_state) + 1);
|
||
}
|
||
static inline void dkg_next_state(void){
|
||
dkg_state = (derived_key_generation_t) (((int)dkg_state) + 1);
|
||
}
|
||
static inline void rau_next_state(void){
|
||
rau_state = (random_address_update_t) (((int)rau_state) + 1);
|
||
}
|
||
|
||
// CMAC calculation using AES Engine
|
||
#ifdef ENABLE_CMAC_ENGINE
|
||
|
||
static inline void sm_cmac_next_state(void){
|
||
sm_cmac_state = (cmac_state_t) (((int)sm_cmac_state) + 1);
|
||
}
|
||
|
||
static int sm_cmac_last_block_complete(void){
|
||
if (sm_cmac_message_len == 0) return 0;
|
||
return (sm_cmac_message_len & 0x0f) == 0;
|
||
}
|
||
|
||
int sm_cmac_ready(void){
|
||
return sm_cmac_state == CMAC_IDLE;
|
||
}
|
||
|
||
// generic cmac calculation
|
||
void sm_cmac_general_start(const sm_key_t key, uint16_t message_len, uint8_t (*get_byte_callback)(uint16_t offset), void (*done_callback)(uint8_t hash[8])){
|
||
// Generalized CMAC
|
||
memcpy(sm_cmac_k, key, 16);
|
||
memset(sm_cmac_x, 0, 16);
|
||
sm_cmac_block_current = 0;
|
||
sm_cmac_message_len = message_len;
|
||
sm_cmac_done_handler = done_callback;
|
||
sm_cmac_get_byte = get_byte_callback;
|
||
|
||
// step 2: n := ceil(len/const_Bsize);
|
||
sm_cmac_block_count = (sm_cmac_message_len + 15) / 16;
|
||
|
||
// step 3: ..
|
||
if (sm_cmac_block_count==0){
|
||
sm_cmac_block_count = 1;
|
||
}
|
||
log_info("sm_cmac_general_start: len %u, block count %u", sm_cmac_message_len, sm_cmac_block_count);
|
||
|
||
// first, we need to compute l for k1, k2, and m_last
|
||
sm_cmac_state = CMAC_CALC_SUBKEYS;
|
||
|
||
// let's go
|
||
sm_run();
|
||
}
|
||
#endif
|
||
|
||
// cmac for ATT Message signing
|
||
#ifdef ENABLE_LE_SIGNED_WRITE
|
||
static uint8_t sm_cmac_signed_write_message_get_byte(uint16_t offset){
|
||
if (offset >= sm_cmac_message_len) {
|
||
log_error("sm_cmac_signed_write_message_get_byte. out of bounds, access %u, len %u", offset, sm_cmac_message_len);
|
||
return 0;
|
||
}
|
||
|
||
offset = sm_cmac_message_len - 1 - offset;
|
||
|
||
// sm_cmac_header[3] | message[] | sm_cmac_sign_counter[4]
|
||
if (offset < 3){
|
||
return sm_cmac_header[offset];
|
||
}
|
||
int actual_message_len_incl_header = sm_cmac_message_len - 4;
|
||
if (offset < actual_message_len_incl_header){
|
||
return sm_cmac_message[offset - 3];
|
||
}
|
||
return sm_cmac_sign_counter[offset - actual_message_len_incl_header];
|
||
}
|
||
|
||
void sm_cmac_signed_write_start(const sm_key_t k, uint8_t opcode, hci_con_handle_t con_handle, uint16_t message_len, const uint8_t * message, uint32_t sign_counter, void (*done_handler)(uint8_t * hash)){
|
||
// ATT Message Signing
|
||
sm_cmac_header[0] = opcode;
|
||
little_endian_store_16(sm_cmac_header, 1, con_handle);
|
||
little_endian_store_32(sm_cmac_sign_counter, 0, sign_counter);
|
||
uint16_t total_message_len = 3 + message_len + 4; // incl. virtually prepended att opcode, handle and appended sign_counter in LE
|
||
sm_cmac_message = message;
|
||
sm_cmac_general_start(k, total_message_len, &sm_cmac_signed_write_message_get_byte, done_handler);
|
||
}
|
||
#endif
|
||
|
||
#ifdef ENABLE_CMAC_ENGINE
|
||
static void sm_cmac_handle_aes_engine_ready(void){
|
||
switch (sm_cmac_state){
|
||
case CMAC_CALC_SUBKEYS: {
|
||
sm_key_t const_zero;
|
||
memset(const_zero, 0, 16);
|
||
sm_cmac_next_state();
|
||
sm_aes128_start(sm_cmac_k, const_zero, NULL);
|
||
break;
|
||
}
|
||
case CMAC_CALC_MI: {
|
||
int j;
|
||
sm_key_t y;
|
||
for (j=0;j<16;j++){
|
||
y[j] = sm_cmac_x[j] ^ sm_cmac_get_byte(sm_cmac_block_current*16 + j);
|
||
}
|
||
sm_cmac_block_current++;
|
||
sm_cmac_next_state();
|
||
sm_aes128_start(sm_cmac_k, y, NULL);
|
||
break;
|
||
}
|
||
case CMAC_CALC_MLAST: {
|
||
int i;
|
||
sm_key_t y;
|
||
for (i=0;i<16;i++){
|
||
y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
|
||
}
|
||
log_info_key("Y", y);
|
||
sm_cmac_block_current++;
|
||
sm_cmac_next_state();
|
||
sm_aes128_start(sm_cmac_k, y, NULL);
|
||
break;
|
||
}
|
||
default:
|
||
log_info("sm_cmac_handle_aes_engine_ready called in state %u", sm_cmac_state);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// CMAC Implementation using AES128 engine
|
||
static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
|
||
int i;
|
||
int carry = 0;
|
||
for (i=len-1; i >= 0 ; i--){
|
||
int new_carry = data[i] >> 7;
|
||
data[i] = data[i] << 1 | carry;
|
||
carry = new_carry;
|
||
}
|
||
}
|
||
|
||
static void sm_cmac_handle_encryption_result(sm_key_t data){
|
||
switch (sm_cmac_state){
|
||
case CMAC_W4_SUBKEYS: {
|
||
sm_key_t k1;
|
||
memcpy(k1, data, 16);
|
||
sm_shift_left_by_one_bit_inplace(16, k1);
|
||
if (data[0] & 0x80){
|
||
k1[15] ^= 0x87;
|
||
}
|
||
sm_key_t k2;
|
||
memcpy(k2, k1, 16);
|
||
sm_shift_left_by_one_bit_inplace(16, k2);
|
||
if (k1[0] & 0x80){
|
||
k2[15] ^= 0x87;
|
||
}
|
||
|
||
log_info_key("k", sm_cmac_k);
|
||
log_info_key("k1", k1);
|
||
log_info_key("k2", k2);
|
||
|
||
// step 4: set m_last
|
||
int i;
|
||
if (sm_cmac_last_block_complete()){
|
||
for (i=0;i<16;i++){
|
||
sm_cmac_m_last[i] = sm_cmac_get_byte(sm_cmac_message_len - 16 + i) ^ k1[i];
|
||
}
|
||
} else {
|
||
int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
|
||
for (i=0;i<16;i++){
|
||
if (i < valid_octets_in_last_block){
|
||
sm_cmac_m_last[i] = sm_cmac_get_byte((sm_cmac_message_len & 0xfff0) + i) ^ k2[i];
|
||
continue;
|
||
}
|
||
if (i == valid_octets_in_last_block){
|
||
sm_cmac_m_last[i] = 0x80 ^ k2[i];
|
||
continue;
|
||
}
|
||
sm_cmac_m_last[i] = k2[i];
|
||
}
|
||
}
|
||
|
||
// next
|
||
sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
|
||
break;
|
||
}
|
||
case CMAC_W4_MI:
|
||
memcpy(sm_cmac_x, data, 16);
|
||
sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
|
||
break;
|
||
case CMAC_W4_MLAST:
|
||
// done
|
||
log_info("Setting CMAC Engine to IDLE");
|
||
sm_cmac_state = CMAC_IDLE;
|
||
log_info_key("CMAC", data);
|
||
sm_cmac_done_handler(data);
|
||
break;
|
||
default:
|
||
log_info("sm_cmac_handle_encryption_result called in state %u", sm_cmac_state);
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
static void sm_trigger_user_response(sm_connection_t * sm_conn){
|
||
// notify client for: JUST WORKS confirm, Numeric comparison confirm, PASSKEY display or input
|
||
setup->sm_user_response = SM_USER_RESPONSE_IDLE;
|
||
switch (setup->sm_stk_generation_method){
|
||
case PK_RESP_INPUT:
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
setup->sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
|
||
} else {
|
||
sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
|
||
}
|
||
break;
|
||
case PK_INIT_INPUT:
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
sm_notify_client_passkey(SM_EVENT_PASSKEY_DISPLAY_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
|
||
} else {
|
||
setup->sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
|
||
}
|
||
break;
|
||
case OK_BOTH_INPUT:
|
||
setup->sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client_base(SM_EVENT_PASSKEY_INPUT_NUMBER, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
|
||
break;
|
||
case NK_BOTH_INPUT:
|
||
setup->sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client_passkey(SM_EVENT_NUMERIC_COMPARISON_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, big_endian_read_32(setup->sm_tk, 12));
|
||
break;
|
||
case JUST_WORKS:
|
||
setup->sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client_base(SM_EVENT_JUST_WORKS_REQUEST, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
|
||
break;
|
||
case OOB:
|
||
// client already provided OOB data, let's skip notification.
|
||
break;
|
||
}
|
||
}
|
||
|
||
static int sm_key_distribution_all_received(sm_connection_t * sm_conn){
|
||
int recv_flags;
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// slave / responder
|
||
recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres));
|
||
} else {
|
||
// master / initiator
|
||
recv_flags = sm_key_distribution_flags_for_set(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
|
||
}
|
||
log_debug("sm_key_distribution_all_received: received 0x%02x, expecting 0x%02x", setup->sm_key_distribution_received_set, recv_flags);
|
||
return recv_flags == setup->sm_key_distribution_received_set;
|
||
}
|
||
|
||
static void sm_done_for_handle(hci_con_handle_t con_handle){
|
||
if (sm_active_connection_handle == con_handle){
|
||
sm_timeout_stop();
|
||
sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
|
||
log_info("sm: connection 0x%x released setup context", con_handle);
|
||
}
|
||
}
|
||
|
||
static int sm_key_distribution_flags_for_auth_req(void){
|
||
int flags = SM_KEYDIST_ID_KEY | SM_KEYDIST_SIGN;
|
||
if (sm_auth_req & SM_AUTHREQ_BONDING){
|
||
// encryption information only if bonding requested
|
||
flags |= SM_KEYDIST_ENC_KEY;
|
||
}
|
||
return flags;
|
||
}
|
||
|
||
static void sm_reset_setup(void){
|
||
// fill in sm setup
|
||
setup->sm_state_vars = 0;
|
||
setup->sm_keypress_notification = 0xff;
|
||
sm_reset_tk();
|
||
}
|
||
|
||
static void sm_init_setup(sm_connection_t * sm_conn){
|
||
|
||
// fill in sm setup
|
||
setup->sm_peer_addr_type = sm_conn->sm_peer_addr_type;
|
||
memcpy(setup->sm_peer_address, sm_conn->sm_peer_address, 6);
|
||
|
||
// query client for OOB data
|
||
int have_oob_data = 0;
|
||
if (sm_get_oob_data) {
|
||
have_oob_data = (*sm_get_oob_data)(sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, setup->sm_tk);
|
||
}
|
||
|
||
sm_pairing_packet_t * local_packet;
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// slave
|
||
local_packet = &setup->sm_s_pres;
|
||
gap_le_get_own_address(&setup->sm_s_addr_type, setup->sm_s_address);
|
||
setup->sm_m_addr_type = sm_conn->sm_peer_addr_type;
|
||
memcpy(setup->sm_m_address, sm_conn->sm_peer_address, 6);
|
||
} else {
|
||
// master
|
||
local_packet = &setup->sm_m_preq;
|
||
gap_le_get_own_address(&setup->sm_m_addr_type, setup->sm_m_address);
|
||
setup->sm_s_addr_type = sm_conn->sm_peer_addr_type;
|
||
memcpy(setup->sm_s_address, sm_conn->sm_peer_address, 6);
|
||
|
||
int key_distribution_flags = sm_key_distribution_flags_for_auth_req();
|
||
sm_pairing_packet_set_initiator_key_distribution(setup->sm_m_preq, key_distribution_flags);
|
||
sm_pairing_packet_set_responder_key_distribution(setup->sm_m_preq, key_distribution_flags);
|
||
}
|
||
|
||
uint8_t auth_req = sm_auth_req;
|
||
sm_pairing_packet_set_io_capability(*local_packet, sm_io_capabilities);
|
||
sm_pairing_packet_set_oob_data_flag(*local_packet, have_oob_data);
|
||
sm_pairing_packet_set_auth_req(*local_packet, auth_req);
|
||
sm_pairing_packet_set_max_encryption_key_size(*local_packet, sm_max_encryption_key_size);
|
||
}
|
||
|
||
static int sm_stk_generation_init(sm_connection_t * sm_conn){
|
||
|
||
sm_pairing_packet_t * remote_packet;
|
||
int remote_key_request;
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// slave / responder
|
||
remote_packet = &setup->sm_m_preq;
|
||
remote_key_request = sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq);
|
||
} else {
|
||
// master / initiator
|
||
remote_packet = &setup->sm_s_pres;
|
||
remote_key_request = sm_pairing_packet_get_initiator_key_distribution(setup->sm_s_pres);
|
||
}
|
||
|
||
// check key size
|
||
sm_conn->sm_actual_encryption_key_size = sm_calc_actual_encryption_key_size(sm_pairing_packet_get_max_encryption_key_size(*remote_packet));
|
||
if (sm_conn->sm_actual_encryption_key_size == 0) return SM_REASON_ENCRYPTION_KEY_SIZE;
|
||
|
||
// decide on STK generation method
|
||
sm_setup_tk();
|
||
log_info("SMP: generation method %u", setup->sm_stk_generation_method);
|
||
|
||
// check if STK generation method is acceptable by client
|
||
if (!sm_validate_stk_generation_method()) return SM_REASON_AUTHENTHICATION_REQUIREMENTS;
|
||
|
||
// identical to responder
|
||
sm_setup_key_distribution(remote_key_request);
|
||
|
||
// JUST WORKS doens't provide authentication
|
||
sm_conn->sm_connection_authenticated = setup->sm_stk_generation_method == JUST_WORKS ? 0 : 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void sm_address_resolution_handle_event(address_resolution_event_t event){
|
||
|
||
// cache and reset context
|
||
int matched_device_id = sm_address_resolution_test;
|
||
address_resolution_mode_t mode = sm_address_resolution_mode;
|
||
void * context = sm_address_resolution_context;
|
||
|
||
// reset context
|
||
sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
|
||
sm_address_resolution_context = NULL;
|
||
sm_address_resolution_test = -1;
|
||
hci_con_handle_t con_handle = 0;
|
||
|
||
sm_connection_t * sm_connection;
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
sm_key_t ltk;
|
||
#endif
|
||
switch (mode){
|
||
case ADDRESS_RESOLUTION_GENERAL:
|
||
break;
|
||
case ADDRESS_RESOLUTION_FOR_CONNECTION:
|
||
sm_connection = (sm_connection_t *) context;
|
||
con_handle = sm_connection->sm_handle;
|
||
switch (event){
|
||
case ADDRESS_RESOLUTION_SUCEEDED:
|
||
sm_connection->sm_irk_lookup_state = IRK_LOOKUP_SUCCEEDED;
|
||
sm_connection->sm_le_db_index = matched_device_id;
|
||
log_info("ADDRESS_RESOLUTION_SUCEEDED, index %d", sm_connection->sm_le_db_index);
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
if (sm_connection->sm_role) break;
|
||
if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
|
||
sm_connection->sm_security_request_received = 0;
|
||
sm_connection->sm_bonding_requested = 0;
|
||
le_device_db_encryption_get(sm_connection->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL);
|
||
if (!sm_is_null_key(ltk)){
|
||
sm_connection->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
|
||
} else {
|
||
sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
|
||
}
|
||
#endif
|
||
break;
|
||
case ADDRESS_RESOLUTION_FAILED:
|
||
sm_connection->sm_irk_lookup_state = IRK_LOOKUP_FAILED;
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
if (sm_connection->sm_role) break;
|
||
if (!sm_connection->sm_bonding_requested && !sm_connection->sm_security_request_received) break;
|
||
sm_connection->sm_security_request_received = 0;
|
||
sm_connection->sm_bonding_requested = 0;
|
||
sm_connection->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
|
||
#endif
|
||
break;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (event){
|
||
case ADDRESS_RESOLUTION_SUCEEDED:
|
||
sm_notify_client_index(SM_EVENT_IDENTITY_RESOLVING_SUCCEEDED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address, matched_device_id);
|
||
break;
|
||
case ADDRESS_RESOLUTION_FAILED:
|
||
sm_notify_client_base(SM_EVENT_IDENTITY_RESOLVING_FAILED, con_handle, sm_address_resolution_addr_type, sm_address_resolution_address);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void sm_key_distribution_handle_all_received(sm_connection_t * sm_conn){
|
||
|
||
int le_db_index = -1;
|
||
|
||
// lookup device based on IRK
|
||
if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
|
||
int i;
|
||
for (i=0; i < le_device_db_count(); i++){
|
||
sm_key_t irk;
|
||
bd_addr_t address;
|
||
int address_type;
|
||
le_device_db_info(i, &address_type, address, irk);
|
||
if (memcmp(irk, setup->sm_peer_irk, 16) == 0){
|
||
log_info("sm: device found for IRK, updating");
|
||
le_db_index = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// if not found, lookup via public address if possible
|
||
log_info("sm peer addr type %u, peer addres %s", setup->sm_peer_addr_type, bd_addr_to_str(setup->sm_peer_address));
|
||
if (le_db_index < 0 && setup->sm_peer_addr_type == BD_ADDR_TYPE_LE_PUBLIC){
|
||
int i;
|
||
for (i=0; i < le_device_db_count(); i++){
|
||
bd_addr_t address;
|
||
int address_type;
|
||
le_device_db_info(i, &address_type, address, NULL);
|
||
log_info("device %u, sm peer addr type %u, peer addres %s", i, address_type, bd_addr_to_str(address));
|
||
if (address_type == BD_ADDR_TYPE_LE_PUBLIC && memcmp(address, setup->sm_peer_address, 6) == 0){
|
||
log_info("sm: device found for public address, updating");
|
||
le_db_index = i;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// if not found, add to db
|
||
if (le_db_index < 0) {
|
||
le_db_index = le_device_db_add(setup->sm_peer_addr_type, setup->sm_peer_address, setup->sm_peer_irk);
|
||
}
|
||
|
||
sm_notify_client_index(SM_EVENT_IDENTITY_CREATED, sm_conn->sm_handle, setup->sm_peer_addr_type, setup->sm_peer_address, le_db_index);
|
||
|
||
if (le_db_index >= 0){
|
||
|
||
#ifdef ENABLE_LE_SIGNED_WRITE
|
||
// store local CSRK
|
||
if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
|
||
log_info("sm: store local CSRK");
|
||
le_device_db_local_csrk_set(le_db_index, setup->sm_local_csrk);
|
||
le_device_db_local_counter_set(le_db_index, 0);
|
||
}
|
||
|
||
// store remote CSRK
|
||
if (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
|
||
log_info("sm: store remote CSRK");
|
||
le_device_db_remote_csrk_set(le_db_index, setup->sm_peer_csrk);
|
||
le_device_db_remote_counter_set(le_db_index, 0);
|
||
}
|
||
#endif
|
||
// store encryption information for secure connections: LTK generated by ECDH
|
||
if (setup->sm_use_secure_connections){
|
||
log_info("sm: store SC LTK (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
|
||
uint8_t zero_rand[8];
|
||
memset(zero_rand, 0, 8);
|
||
le_device_db_encryption_set(le_db_index, 0, zero_rand, setup->sm_ltk, sm_conn->sm_actual_encryption_key_size,
|
||
sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
|
||
}
|
||
|
||
// store encryption infromation for legacy pairing: peer LTK, EDIV, RAND
|
||
else if ( (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION)
|
||
&& (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION )){
|
||
log_info("sm: set encryption information (key size %u, authenticatd %u)", sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated);
|
||
le_device_db_encryption_set(le_db_index, setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
|
||
sm_conn->sm_actual_encryption_key_size, sm_conn->sm_connection_authenticated, sm_conn->sm_connection_authorization_state == AUTHORIZATION_GRANTED);
|
||
|
||
}
|
||
}
|
||
|
||
// keep le_db_index
|
||
sm_conn->sm_le_db_index = le_db_index;
|
||
}
|
||
|
||
static void sm_pairing_error(sm_connection_t * sm_conn, uint8_t reason){
|
||
setup->sm_pairing_failed_reason = reason;
|
||
sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
|
||
}
|
||
|
||
static inline void sm_pdu_received_in_wrong_state(sm_connection_t * sm_conn){
|
||
sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
|
||
static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn);
|
||
static int sm_passkey_used(stk_generation_method_t method);
|
||
static int sm_just_works_or_numeric_comparison(stk_generation_method_t method);
|
||
|
||
static void sm_log_ec_keypair(void){
|
||
log_info("Elliptic curve: X");
|
||
log_info_hexdump(&ec_q[0],32);
|
||
log_info("Elliptic curve: Y");
|
||
log_info_hexdump(&ec_q[32],32);
|
||
}
|
||
|
||
static void sm_sc_start_calculating_local_confirm(sm_connection_t * sm_conn){
|
||
if (sm_passkey_used(setup->sm_stk_generation_method)){
|
||
sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
|
||
}
|
||
}
|
||
|
||
static void sm_sc_state_after_receiving_random(sm_connection_t * sm_conn){
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// Responder
|
||
sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
|
||
} else {
|
||
// Initiator role
|
||
switch (setup->sm_stk_generation_method){
|
||
case JUST_WORKS:
|
||
sm_sc_prepare_dhkey_check(sm_conn);
|
||
break;
|
||
|
||
case NK_BOTH_INPUT:
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_G2;
|
||
break;
|
||
case PK_INIT_INPUT:
|
||
case PK_RESP_INPUT:
|
||
case OK_BOTH_INPUT:
|
||
if (setup->sm_passkey_bit < 20) {
|
||
sm_sc_start_calculating_local_confirm(sm_conn);
|
||
} else {
|
||
sm_sc_prepare_dhkey_check(sm_conn);
|
||
}
|
||
break;
|
||
case OOB:
|
||
// TODO: implement SC OOB
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static uint8_t sm_sc_cmac_get_byte(uint16_t offset){
|
||
return sm_cmac_sc_buffer[offset];
|
||
}
|
||
|
||
static void sm_sc_cmac_done(uint8_t * hash){
|
||
log_info("sm_sc_cmac_done: ");
|
||
log_info_hexdump(hash, 16);
|
||
|
||
sm_connection_t * sm_conn = sm_cmac_connection;
|
||
sm_cmac_connection = NULL;
|
||
link_key_type_t link_key_type;
|
||
|
||
switch (sm_conn->sm_engine_state){
|
||
case SM_SC_W4_CMAC_FOR_CONFIRMATION:
|
||
memcpy(setup->sm_local_confirm, hash, 16);
|
||
sm_conn->sm_engine_state = SM_SC_SEND_CONFIRMATION;
|
||
break;
|
||
case SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION:
|
||
// check
|
||
if (0 != memcmp(hash, setup->sm_peer_confirm, 16)){
|
||
sm_pairing_error(sm_conn, SM_REASON_CONFIRM_VALUE_FAILED);
|
||
break;
|
||
}
|
||
sm_sc_state_after_receiving_random(sm_conn);
|
||
break;
|
||
case SM_SC_W4_CALCULATE_G2: {
|
||
uint32_t vab = big_endian_read_32(hash, 12) % 1000000;
|
||
big_endian_store_32(setup->sm_tk, 12, vab);
|
||
sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
|
||
sm_trigger_user_response(sm_conn);
|
||
break;
|
||
}
|
||
case SM_SC_W4_CALCULATE_F5_SALT:
|
||
memcpy(setup->sm_t, hash, 16);
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_MACKEY;
|
||
break;
|
||
case SM_SC_W4_CALCULATE_F5_MACKEY:
|
||
memcpy(setup->sm_mackey, hash, 16);
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_LTK;
|
||
break;
|
||
case SM_SC_W4_CALCULATE_F5_LTK:
|
||
// truncate sm_ltk, but keep full LTK for cross-transport key derivation in sm_local_ltk
|
||
// Errata Service Release to the Bluetooth Specification: ESR09
|
||
// E6405 – Cross transport key derivation from a key of size less than 128 bits
|
||
// Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
|
||
memcpy(setup->sm_ltk, hash, 16);
|
||
memcpy(setup->sm_local_ltk, hash, 16);
|
||
sm_truncate_key(setup->sm_ltk, sm_conn->sm_actual_encryption_key_size);
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK;
|
||
break;
|
||
case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
|
||
memcpy(setup->sm_local_dhkey_check, hash, 16);
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
if (setup->sm_state_vars & SM_STATE_VAR_DHKEY_COMMAND_RECEIVED){
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
|
||
}
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
|
||
}
|
||
break;
|
||
case SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
|
||
if (0 != memcmp(hash, setup->sm_peer_dhkey_check, 16) ){
|
||
sm_pairing_error(sm_conn, SM_REASON_DHKEY_CHECK_FAILED);
|
||
break;
|
||
}
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
sm_conn->sm_engine_state = SM_SC_SEND_DHKEY_CHECK_COMMAND;
|
||
} else {
|
||
// initiator
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
|
||
}
|
||
break;
|
||
case SM_SC_W4_CALCULATE_H6_ILK:
|
||
memcpy(setup->sm_t, hash, 16);
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY;
|
||
break;
|
||
case SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY:
|
||
#ifdef ENABLE_CLASSIC
|
||
reverse_128(hash, setup->sm_t);
|
||
link_key_type = sm_conn->sm_connection_authenticated ?
|
||
AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256 : UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256;
|
||
log_info("Derived classic link key from LE using h6, type %u", (int) link_key_type);
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
gap_store_link_key_for_bd_addr(setup->sm_m_address, setup->sm_t, link_key_type);
|
||
} else {
|
||
gap_store_link_key_for_bd_addr(setup->sm_s_address, setup->sm_t, link_key_type);
|
||
}
|
||
#endif
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
|
||
} else {
|
||
gap_store_link_key_for_bd_addr(setup->sm_s_address, setup->sm_t, link_key_type);
|
||
sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
|
||
}
|
||
sm_done_for_handle(sm_conn->sm_handle);
|
||
break;
|
||
default:
|
||
log_error("sm_sc_cmac_done in state %u", sm_conn->sm_engine_state);
|
||
break;
|
||
}
|
||
sm_run();
|
||
}
|
||
|
||
static void f4_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
|
||
const uint16_t message_len = 65;
|
||
sm_cmac_connection = sm_conn;
|
||
memcpy(sm_cmac_sc_buffer, u, 32);
|
||
memcpy(sm_cmac_sc_buffer+32, v, 32);
|
||
sm_cmac_sc_buffer[64] = z;
|
||
log_info("f4 key");
|
||
log_info_hexdump(x, 16);
|
||
log_info("f4 message");
|
||
log_info_hexdump(sm_cmac_sc_buffer, message_len);
|
||
sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
static const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
|
||
static const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
|
||
static const uint8_t f5_length[] = { 0x01, 0x00};
|
||
|
||
static void sm_sc_calculate_dhkey(sm_key256_t dhkey){
|
||
memset(dhkey, 0, 32);
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
// da * Pb
|
||
mbedtls_mpi d;
|
||
mbedtls_ecp_point Q;
|
||
mbedtls_ecp_point DH;
|
||
mbedtls_mpi_init(&d);
|
||
mbedtls_ecp_point_init(&Q);
|
||
mbedtls_ecp_point_init(&DH);
|
||
mbedtls_mpi_read_binary(&d, ec_d, 32);
|
||
mbedtls_mpi_read_binary(&Q.X, &setup->sm_peer_q[0] , 32);
|
||
mbedtls_mpi_read_binary(&Q.Y, &setup->sm_peer_q[32], 32);
|
||
mbedtls_mpi_lset(&Q.Z, 1);
|
||
mbedtls_ecp_mul(&mbedtls_ec_group, &DH, &d, &Q, NULL, NULL);
|
||
mbedtls_mpi_write_binary(&DH.X, dhkey, 32);
|
||
mbedtls_ecp_point_free(&DH);
|
||
mbedtls_mpi_free(&d);
|
||
mbedtls_ecp_point_free(&Q);
|
||
#endif
|
||
#ifdef USE_MICROECC_FOR_ECDH
|
||
#if uECC_SUPPORTS_secp256r1
|
||
// standard version
|
||
uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey, uECC_secp256r1());
|
||
#else
|
||
// static version
|
||
uECC_shared_secret(setup->sm_peer_q, ec_d, dhkey);
|
||
#endif
|
||
#endif
|
||
log_info("dhkey");
|
||
log_info_hexdump(dhkey, 32);
|
||
}
|
||
|
||
static void f5_calculate_salt(sm_connection_t * sm_conn){
|
||
// calculate DHKEY
|
||
sm_key256_t dhkey;
|
||
sm_sc_calculate_dhkey(dhkey);
|
||
|
||
// calculate salt for f5
|
||
const uint16_t message_len = 32;
|
||
sm_cmac_connection = sm_conn;
|
||
memcpy(sm_cmac_sc_buffer, dhkey, message_len);
|
||
sm_cmac_general_start(f5_salt, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
static inline void f5_mackkey(sm_connection_t * sm_conn, sm_key_t t, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
|
||
const uint16_t message_len = 53;
|
||
sm_cmac_connection = sm_conn;
|
||
|
||
// f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
|
||
sm_cmac_sc_buffer[0] = 0;
|
||
memcpy(sm_cmac_sc_buffer+01, f5_key_id, 4);
|
||
memcpy(sm_cmac_sc_buffer+05, n1, 16);
|
||
memcpy(sm_cmac_sc_buffer+21, n2, 16);
|
||
memcpy(sm_cmac_sc_buffer+37, a1, 7);
|
||
memcpy(sm_cmac_sc_buffer+44, a2, 7);
|
||
memcpy(sm_cmac_sc_buffer+51, f5_length, 2);
|
||
log_info("f5 key");
|
||
log_info_hexdump(t, 16);
|
||
log_info("f5 message for MacKey");
|
||
log_info_hexdump(sm_cmac_sc_buffer, message_len);
|
||
sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
static void f5_calculate_mackey(sm_connection_t * sm_conn){
|
||
sm_key56_t bd_addr_master, bd_addr_slave;
|
||
bd_addr_master[0] = setup->sm_m_addr_type;
|
||
bd_addr_slave[0] = setup->sm_s_addr_type;
|
||
memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
|
||
memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
f5_mackkey(sm_conn, setup->sm_t, setup->sm_peer_nonce, setup->sm_local_nonce, bd_addr_master, bd_addr_slave);
|
||
} else {
|
||
// initiator
|
||
f5_mackkey(sm_conn, setup->sm_t, setup->sm_local_nonce, setup->sm_peer_nonce, bd_addr_master, bd_addr_slave);
|
||
}
|
||
}
|
||
|
||
// note: must be called right after f5_mackey, as sm_cmac_buffer[1..52] will be reused
|
||
static inline void f5_ltk(sm_connection_t * sm_conn, sm_key_t t){
|
||
const uint16_t message_len = 53;
|
||
sm_cmac_connection = sm_conn;
|
||
sm_cmac_sc_buffer[0] = 1;
|
||
// 1..52 setup before
|
||
log_info("f5 key");
|
||
log_info_hexdump(t, 16);
|
||
log_info("f5 message for LTK");
|
||
log_info_hexdump(sm_cmac_sc_buffer, message_len);
|
||
sm_cmac_general_start(t, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
static void f5_calculate_ltk(sm_connection_t * sm_conn){
|
||
f5_ltk(sm_conn, setup->sm_t);
|
||
}
|
||
|
||
static void f6_engine(sm_connection_t * sm_conn, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
|
||
const uint16_t message_len = 65;
|
||
sm_cmac_connection = sm_conn;
|
||
memcpy(sm_cmac_sc_buffer, n1, 16);
|
||
memcpy(sm_cmac_sc_buffer+16, n2, 16);
|
||
memcpy(sm_cmac_sc_buffer+32, r, 16);
|
||
memcpy(sm_cmac_sc_buffer+48, io_cap, 3);
|
||
memcpy(sm_cmac_sc_buffer+51, a1, 7);
|
||
memcpy(sm_cmac_sc_buffer+58, a2, 7);
|
||
log_info("f6 key");
|
||
log_info_hexdump(w, 16);
|
||
log_info("f6 message");
|
||
log_info_hexdump(sm_cmac_sc_buffer, message_len);
|
||
sm_cmac_general_start(w, 65, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
// g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
|
||
// - U is 256 bits
|
||
// - V is 256 bits
|
||
// - X is 128 bits
|
||
// - Y is 128 bits
|
||
static void g2_engine(sm_connection_t * sm_conn, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
|
||
const uint16_t message_len = 80;
|
||
sm_cmac_connection = sm_conn;
|
||
memcpy(sm_cmac_sc_buffer, u, 32);
|
||
memcpy(sm_cmac_sc_buffer+32, v, 32);
|
||
memcpy(sm_cmac_sc_buffer+64, y, 16);
|
||
log_info("g2 key");
|
||
log_info_hexdump(x, 16);
|
||
log_info("g2 message");
|
||
log_info_hexdump(sm_cmac_sc_buffer, message_len);
|
||
sm_cmac_general_start(x, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
static void g2_calculate(sm_connection_t * sm_conn) {
|
||
// calc Va if numeric comparison
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
g2_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, setup->sm_local_nonce);;
|
||
} else {
|
||
// initiator
|
||
g2_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, setup->sm_peer_nonce);
|
||
}
|
||
}
|
||
|
||
static void sm_sc_calculate_local_confirm(sm_connection_t * sm_conn){
|
||
uint8_t z = 0;
|
||
if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
|
||
// some form of passkey
|
||
uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
|
||
z = 0x80 | ((pk >> setup->sm_passkey_bit) & 1);
|
||
setup->sm_passkey_bit++;
|
||
}
|
||
f4_engine(sm_conn, ec_q, setup->sm_peer_q, setup->sm_local_nonce, z);
|
||
}
|
||
|
||
static void sm_sc_calculate_remote_confirm(sm_connection_t * sm_conn){
|
||
uint8_t z = 0;
|
||
if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT){
|
||
// some form of passkey
|
||
uint32_t pk = big_endian_read_32(setup->sm_tk, 12);
|
||
// sm_passkey_bit was increased before sending confirm value
|
||
z = 0x80 | ((pk >> (setup->sm_passkey_bit-1)) & 1);
|
||
}
|
||
f4_engine(sm_conn, setup->sm_peer_q, ec_q, setup->sm_peer_nonce, z);
|
||
}
|
||
|
||
static void sm_sc_prepare_dhkey_check(sm_connection_t * sm_conn){
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F5_SALT;
|
||
}
|
||
|
||
static void sm_sc_calculate_f6_for_dhkey_check(sm_connection_t * sm_conn){
|
||
// calculate DHKCheck
|
||
sm_key56_t bd_addr_master, bd_addr_slave;
|
||
bd_addr_master[0] = setup->sm_m_addr_type;
|
||
bd_addr_slave[0] = setup->sm_s_addr_type;
|
||
memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
|
||
memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
|
||
uint8_t iocap_a[3];
|
||
iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
|
||
iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
|
||
iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
|
||
uint8_t iocap_b[3];
|
||
iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
|
||
iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
|
||
iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
|
||
} else {
|
||
// initiator
|
||
f6_engine(sm_conn, setup->sm_mackey, setup->sm_local_nonce, setup->sm_peer_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
|
||
}
|
||
}
|
||
|
||
static void sm_sc_calculate_f6_to_verify_dhkey_check(sm_connection_t * sm_conn){
|
||
// validate E = f6()
|
||
sm_key56_t bd_addr_master, bd_addr_slave;
|
||
bd_addr_master[0] = setup->sm_m_addr_type;
|
||
bd_addr_slave[0] = setup->sm_s_addr_type;
|
||
memcpy(&bd_addr_master[1], setup->sm_m_address, 6);
|
||
memcpy(&bd_addr_slave[1], setup->sm_s_address, 6);
|
||
|
||
uint8_t iocap_a[3];
|
||
iocap_a[0] = sm_pairing_packet_get_auth_req(setup->sm_m_preq);
|
||
iocap_a[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_m_preq);
|
||
iocap_a[2] = sm_pairing_packet_get_io_capability(setup->sm_m_preq);
|
||
uint8_t iocap_b[3];
|
||
iocap_b[0] = sm_pairing_packet_get_auth_req(setup->sm_s_pres);
|
||
iocap_b[1] = sm_pairing_packet_get_oob_data_flag(setup->sm_s_pres);
|
||
iocap_b[2] = sm_pairing_packet_get_io_capability(setup->sm_s_pres);
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_rb, iocap_a, bd_addr_master, bd_addr_slave);
|
||
} else {
|
||
// initiator
|
||
f6_engine(sm_conn, setup->sm_mackey, setup->sm_peer_nonce, setup->sm_local_nonce, setup->sm_ra, iocap_b, bd_addr_slave, bd_addr_master);
|
||
}
|
||
}
|
||
|
||
|
||
//
|
||
// Link Key Conversion Function h6
|
||
//
|
||
// h6(W, keyID) = AES-CMACW(keyID)
|
||
// - W is 128 bits
|
||
// - keyID is 32 bits
|
||
static void h6_engine(sm_connection_t * sm_conn, const sm_key_t w, const uint32_t key_id){
|
||
const uint16_t message_len = 4;
|
||
sm_cmac_connection = sm_conn;
|
||
big_endian_store_32(sm_cmac_sc_buffer, 0, key_id);
|
||
log_info("h6 key");
|
||
log_info_hexdump(w, 16);
|
||
log_info("h6 message");
|
||
log_info_hexdump(sm_cmac_sc_buffer, message_len);
|
||
sm_cmac_general_start(w, message_len, &sm_sc_cmac_get_byte, &sm_sc_cmac_done);
|
||
}
|
||
|
||
// For SC, setup->sm_local_ltk holds full LTK (sm_ltk is already truncated)
|
||
// Errata Service Release to the Bluetooth Specification: ESR09
|
||
// E6405 – Cross transport key derivation from a key of size less than 128 bits
|
||
// "Note: When the BR/EDR link key is being derived from the LTK, the derivation is done before the LTK gets masked."
|
||
static void h6_calculate_ilk(sm_connection_t * sm_conn){
|
||
h6_engine(sm_conn, setup->sm_local_ltk, 0x746D7031); // "tmp1"
|
||
}
|
||
|
||
static void h6_calculate_br_edr_link_key(sm_connection_t * sm_conn){
|
||
h6_engine(sm_conn, setup->sm_t, 0x6c656272); // "lebr"
|
||
}
|
||
|
||
#endif
|
||
|
||
// key management legacy connections:
|
||
// - potentially two different LTKs based on direction. each device stores LTK provided by peer
|
||
// - master stores LTK, EDIV, RAND. responder optionally stored master LTK (only if it needs to reconnect)
|
||
// - initiators reconnects: initiator uses stored LTK, EDIV, RAND generated by responder
|
||
// - responder reconnects: responder uses LTK receveived from master
|
||
|
||
// key management secure connections:
|
||
// - both devices store same LTK from ECDH key exchange.
|
||
|
||
#if defined(ENABLE_LE_SECURE_CONNECTIONS) || defined(ENABLE_LE_CENTRAL)
|
||
static void sm_load_security_info(sm_connection_t * sm_connection){
|
||
int encryption_key_size;
|
||
int authenticated;
|
||
int authorized;
|
||
|
||
// fetch data from device db - incl. authenticated/authorized/key size. Note all sm_connection_X require encryption enabled
|
||
le_device_db_encryption_get(sm_connection->sm_le_db_index, &setup->sm_peer_ediv, setup->sm_peer_rand, setup->sm_peer_ltk,
|
||
&encryption_key_size, &authenticated, &authorized);
|
||
log_info("db index %u, key size %u, authenticated %u, authorized %u", sm_connection->sm_le_db_index, encryption_key_size, authenticated, authorized);
|
||
sm_connection->sm_actual_encryption_key_size = encryption_key_size;
|
||
sm_connection->sm_connection_authenticated = authenticated;
|
||
sm_connection->sm_connection_authorization_state = authorized ? AUTHORIZATION_GRANTED : AUTHORIZATION_UNKNOWN;
|
||
}
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
static void sm_start_calculating_ltk_from_ediv_and_rand(sm_connection_t * sm_connection){
|
||
memcpy(setup->sm_local_rand, sm_connection->sm_local_rand, 8);
|
||
setup->sm_local_ediv = sm_connection->sm_local_ediv;
|
||
// re-establish used key encryption size
|
||
// no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
|
||
sm_connection->sm_actual_encryption_key_size = (setup->sm_local_rand[7] & 0x0f) + 1;
|
||
// no db for authenticated flag hack: flag is stored in bit 4 of LSB
|
||
sm_connection->sm_connection_authenticated = (setup->sm_local_rand[7] & 0x10) >> 4;
|
||
log_info("sm: received ltk request with key size %u, authenticated %u",
|
||
sm_connection->sm_actual_encryption_key_size, sm_connection->sm_connection_authenticated);
|
||
sm_connection->sm_engine_state = SM_RESPONDER_PH4_Y_GET_ENC;
|
||
}
|
||
#endif
|
||
|
||
static void sm_run(void){
|
||
|
||
btstack_linked_list_iterator_t it;
|
||
|
||
// assert that stack has already bootet
|
||
if (hci_get_state() != HCI_STATE_WORKING) return;
|
||
|
||
// assert that we can send at least commands
|
||
if (!hci_can_send_command_packet_now()) return;
|
||
|
||
//
|
||
// non-connection related behaviour
|
||
//
|
||
|
||
// distributed key generation
|
||
switch (dkg_state){
|
||
case DKG_CALC_IRK:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_IDLE) {
|
||
// IRK = d1(IR, 1, 0)
|
||
sm_key_t d1_prime;
|
||
sm_d1_d_prime(1, 0, d1_prime); // plaintext
|
||
dkg_next_state();
|
||
sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
|
||
return;
|
||
}
|
||
break;
|
||
case DKG_CALC_DHK:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_IDLE) {
|
||
// DHK = d1(IR, 3, 0)
|
||
sm_key_t d1_prime;
|
||
sm_d1_d_prime(3, 0, d1_prime); // plaintext
|
||
dkg_next_state();
|
||
sm_aes128_start(sm_persistent_ir, d1_prime, NULL);
|
||
return;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){
|
||
#ifndef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
|
||
sm_random_start(NULL);
|
||
#else
|
||
ec_key_generation_state = EC_KEY_GENERATION_W4_KEY;
|
||
hci_send_cmd(&hci_le_read_local_p256_public_key);
|
||
#endif
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
// random address updates
|
||
switch (rau_state){
|
||
case RAU_GET_RANDOM:
|
||
rau_next_state();
|
||
sm_random_start(NULL);
|
||
return;
|
||
case RAU_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_IDLE) {
|
||
sm_key_t r_prime;
|
||
sm_ah_r_prime(sm_random_address, r_prime);
|
||
rau_next_state();
|
||
sm_aes128_start(sm_persistent_irk, r_prime, NULL);
|
||
return;
|
||
}
|
||
break;
|
||
case RAU_SET_ADDRESS:
|
||
log_info("New random address: %s", bd_addr_to_str(sm_random_address));
|
||
rau_state = RAU_IDLE;
|
||
hci_send_cmd(&hci_le_set_random_address, sm_random_address);
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#ifdef ENABLE_CMAC_ENGINE
|
||
// CMAC
|
||
switch (sm_cmac_state){
|
||
case CMAC_CALC_SUBKEYS:
|
||
case CMAC_CALC_MI:
|
||
case CMAC_CALC_MLAST:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
sm_cmac_handle_aes_engine_ready();
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
// CSRK Lookup
|
||
// -- if csrk lookup ready, find connection that require csrk lookup
|
||
if (sm_address_resolution_idle()){
|
||
hci_connections_get_iterator(&it);
|
||
while(btstack_linked_list_iterator_has_next(&it)){
|
||
hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
|
||
sm_connection_t * sm_connection = &hci_connection->sm_connection;
|
||
if (sm_connection->sm_irk_lookup_state == IRK_LOOKUP_W4_READY){
|
||
// and start lookup
|
||
sm_address_resolution_start_lookup(sm_connection->sm_peer_addr_type, sm_connection->sm_handle, sm_connection->sm_peer_address, ADDRESS_RESOLUTION_FOR_CONNECTION, sm_connection);
|
||
sm_connection->sm_irk_lookup_state = IRK_LOOKUP_STARTED;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// -- if csrk lookup ready, resolved addresses for received addresses
|
||
if (sm_address_resolution_idle()) {
|
||
if (!btstack_linked_list_empty(&sm_address_resolution_general_queue)){
|
||
sm_lookup_entry_t * entry = (sm_lookup_entry_t *) sm_address_resolution_general_queue;
|
||
btstack_linked_list_remove(&sm_address_resolution_general_queue, (btstack_linked_item_t *) entry);
|
||
sm_address_resolution_start_lookup(entry->address_type, 0, entry->address, ADDRESS_RESOLUTION_GENERAL, NULL);
|
||
btstack_memory_sm_lookup_entry_free(entry);
|
||
}
|
||
}
|
||
|
||
// -- Continue with CSRK device lookup by public or resolvable private address
|
||
if (!sm_address_resolution_idle()){
|
||
log_info("LE Device Lookup: device %u/%u", sm_address_resolution_test, le_device_db_count());
|
||
while (sm_address_resolution_test < le_device_db_count()){
|
||
int addr_type;
|
||
bd_addr_t addr;
|
||
sm_key_t irk;
|
||
le_device_db_info(sm_address_resolution_test, &addr_type, addr, irk);
|
||
log_info("device type %u, addr: %s", addr_type, bd_addr_to_str(addr));
|
||
|
||
if (sm_address_resolution_addr_type == addr_type && memcmp(addr, sm_address_resolution_address, 6) == 0){
|
||
log_info("LE Device Lookup: found CSRK by { addr_type, address} ");
|
||
sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
|
||
break;
|
||
}
|
||
|
||
if (sm_address_resolution_addr_type == 0){
|
||
sm_address_resolution_test++;
|
||
continue;
|
||
}
|
||
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
|
||
log_info("LE Device Lookup: calculate AH");
|
||
log_info_key("IRK", irk);
|
||
|
||
sm_key_t r_prime;
|
||
sm_ah_r_prime(sm_address_resolution_address, r_prime);
|
||
sm_address_resolution_ah_calculation_active = 1;
|
||
sm_aes128_start(irk, r_prime, sm_address_resolution_context); // keep context
|
||
return;
|
||
}
|
||
|
||
if (sm_address_resolution_test >= le_device_db_count()){
|
||
log_info("LE Device Lookup: not found");
|
||
sm_address_resolution_handle_event(ADDRESS_RESOLUTION_FAILED);
|
||
}
|
||
}
|
||
|
||
// handle basic actions that don't requires the full context
|
||
hci_connections_get_iterator(&it);
|
||
while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
|
||
hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
|
||
sm_connection_t * sm_connection = &hci_connection->sm_connection;
|
||
switch(sm_connection->sm_engine_state){
|
||
// responder side
|
||
case SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
|
||
sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
|
||
hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
|
||
return;
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
case SM_SC_RECEIVED_LTK_REQUEST:
|
||
switch (sm_connection->sm_irk_lookup_state){
|
||
case IRK_LOOKUP_FAILED:
|
||
log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Failed)");
|
||
sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
|
||
hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
#endif
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
//
|
||
// active connection handling
|
||
// -- use loop to handle next connection if lock on setup context is released
|
||
|
||
while (1) {
|
||
|
||
// Find connections that requires setup context and make active if no other is locked
|
||
hci_connections_get_iterator(&it);
|
||
while((sm_active_connection_handle == HCI_CON_HANDLE_INVALID) && btstack_linked_list_iterator_has_next(&it)){
|
||
hci_connection_t * hci_connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
|
||
sm_connection_t * sm_connection = &hci_connection->sm_connection;
|
||
// - if no connection locked and we're ready/waiting for setup context, fetch it and start
|
||
int done = 1;
|
||
int err;
|
||
UNUSED(err);
|
||
switch (sm_connection->sm_engine_state) {
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
case SM_RESPONDER_SEND_SECURITY_REQUEST:
|
||
// send packet if possible,
|
||
if (l2cap_can_send_fixed_channel_packet_now(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)){
|
||
const uint8_t buffer[2] = { SM_CODE_SECURITY_REQUEST, SM_AUTHREQ_BONDING};
|
||
sm_connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_REQUEST;
|
||
l2cap_send_connectionless(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
} else {
|
||
l2cap_request_can_send_fix_channel_now_event(sm_connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
|
||
}
|
||
// don't lock sxetup context yet
|
||
done = 0;
|
||
break;
|
||
case SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED:
|
||
sm_reset_setup();
|
||
sm_init_setup(sm_connection);
|
||
// recover pairing request
|
||
memcpy(&setup->sm_m_preq, &sm_connection->sm_m_preq, sizeof(sm_pairing_packet_t));
|
||
err = sm_stk_generation_init(sm_connection);
|
||
if (err){
|
||
setup->sm_pairing_failed_reason = err;
|
||
sm_connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
|
||
break;
|
||
}
|
||
sm_timeout_start(sm_connection);
|
||
// generate random number first, if we need to show passkey
|
||
if (setup->sm_stk_generation_method == PK_INIT_INPUT){
|
||
sm_connection->sm_engine_state = SM_PH2_GET_RANDOM_TK;
|
||
break;
|
||
}
|
||
sm_connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
|
||
break;
|
||
case SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST:
|
||
sm_reset_setup();
|
||
sm_start_calculating_ltk_from_ediv_and_rand(sm_connection);
|
||
break;
|
||
#endif
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
case SM_INITIATOR_PH0_HAS_LTK:
|
||
sm_reset_setup();
|
||
sm_load_security_info(sm_connection);
|
||
sm_connection->sm_engine_state = SM_INITIATOR_PH0_SEND_START_ENCRYPTION;
|
||
break;
|
||
case SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST:
|
||
sm_reset_setup();
|
||
sm_init_setup(sm_connection);
|
||
sm_timeout_start(sm_connection);
|
||
sm_connection->sm_engine_state = SM_INITIATOR_PH1_SEND_PAIRING_REQUEST;
|
||
break;
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
case SM_SC_RECEIVED_LTK_REQUEST:
|
||
switch (sm_connection->sm_irk_lookup_state){
|
||
case IRK_LOOKUP_SUCCEEDED:
|
||
// assuming Secure Connection, we have a stored LTK and the EDIV/RAND are null
|
||
// start using context by loading security info
|
||
sm_reset_setup();
|
||
sm_load_security_info(sm_connection);
|
||
if (setup->sm_peer_ediv == 0 && sm_is_null_random(setup->sm_peer_rand) && !sm_is_null_key(setup->sm_peer_ltk)){
|
||
memcpy(setup->sm_ltk, setup->sm_peer_ltk, 16);
|
||
sm_connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
|
||
break;
|
||
}
|
||
log_info("LTK Request: ediv & random are empty, but no stored LTK (IRK Lookup Succeeded)");
|
||
sm_connection->sm_engine_state = SM_RESPONDER_IDLE;
|
||
hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_connection->sm_handle);
|
||
// don't lock setup context yet
|
||
return;
|
||
default:
|
||
// just wait until IRK lookup is completed
|
||
// don't lock setup context yet
|
||
done = 0;
|
||
break;
|
||
}
|
||
break;
|
||
#endif
|
||
default:
|
||
done = 0;
|
||
break;
|
||
}
|
||
if (done){
|
||
sm_active_connection_handle = sm_connection->sm_handle;
|
||
log_info("sm: connection 0x%04x locked setup context as %s, state %u", sm_active_connection_handle, sm_connection->sm_role ? "responder" : "initiator", sm_connection->sm_engine_state);
|
||
}
|
||
}
|
||
|
||
//
|
||
// active connection handling
|
||
//
|
||
|
||
if (sm_active_connection_handle == HCI_CON_HANDLE_INVALID) return;
|
||
|
||
// assert that we could send a SM PDU - not needed for all of the following
|
||
if (!l2cap_can_send_fixed_channel_packet_now(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL)) {
|
||
log_info("cannot send now, requesting can send now event");
|
||
l2cap_request_can_send_fix_channel_now_event(sm_active_connection_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
|
||
return;
|
||
}
|
||
|
||
sm_connection_t * connection = sm_get_connection_for_handle(sm_active_connection_handle);
|
||
if (!connection) {
|
||
log_info("no connection for handle 0x%04x", sm_active_connection_handle);
|
||
return;
|
||
}
|
||
|
||
// send keypress notifications
|
||
if (setup->sm_keypress_notification != 0xff){
|
||
uint8_t buffer[2];
|
||
buffer[0] = SM_CODE_KEYPRESS_NOTIFICATION;
|
||
buffer[1] = setup->sm_keypress_notification;
|
||
setup->sm_keypress_notification = 0xff;
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
return;
|
||
}
|
||
|
||
sm_key_t plaintext;
|
||
int key_distribution_flags;
|
||
UNUSED(key_distribution_flags);
|
||
|
||
log_info("sm_run: state %u", connection->sm_engine_state);
|
||
|
||
switch (connection->sm_engine_state){
|
||
|
||
// general
|
||
case SM_GENERAL_SEND_PAIRING_FAILED: {
|
||
uint8_t buffer[2];
|
||
buffer[0] = SM_CODE_PAIRING_FAILED;
|
||
buffer[1] = setup->sm_pairing_failed_reason;
|
||
connection->sm_engine_state = connection->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_done_for_handle(connection->sm_handle);
|
||
break;
|
||
}
|
||
|
||
// responding state
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
case SM_SC_W2_GET_RANDOM_A:
|
||
sm_random_start(connection);
|
||
connection->sm_engine_state = SM_SC_W4_GET_RANDOM_A;
|
||
break;
|
||
case SM_SC_W2_GET_RANDOM_B:
|
||
sm_random_start(connection);
|
||
connection->sm_engine_state = SM_SC_W4_GET_RANDOM_B;
|
||
break;
|
||
case SM_SC_W2_CMAC_FOR_CONFIRMATION:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CONFIRMATION;
|
||
sm_sc_calculate_local_confirm(connection);
|
||
break;
|
||
case SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CMAC_FOR_CHECK_CONFIRMATION;
|
||
sm_sc_calculate_remote_confirm(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK;
|
||
sm_sc_calculate_f6_for_dhkey_check(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
|
||
sm_sc_calculate_f6_to_verify_dhkey_check(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_F5_SALT:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_SALT;
|
||
f5_calculate_salt(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_F5_MACKEY:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_MACKEY;
|
||
f5_calculate_mackey(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_F5_LTK:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_F5_LTK;
|
||
f5_calculate_ltk(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_G2:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_G2;
|
||
g2_calculate(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_H6_ILK:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_ILK;
|
||
h6_calculate_ilk(connection);
|
||
break;
|
||
case SM_SC_W2_CALCULATE_H6_BR_EDR_LINK_KEY:
|
||
if (!sm_cmac_ready()) break;
|
||
connection->sm_engine_state = SM_SC_W4_CALCULATE_H6_BR_EDR_LINK_KEY;
|
||
h6_calculate_br_edr_link_key(connection);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
// initiator side
|
||
case SM_INITIATOR_PH0_SEND_START_ENCRYPTION: {
|
||
sm_key_t peer_ltk_flipped;
|
||
reverse_128(setup->sm_peer_ltk, peer_ltk_flipped);
|
||
connection->sm_engine_state = SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED;
|
||
log_info("sm: hci_le_start_encryption ediv 0x%04x", setup->sm_peer_ediv);
|
||
uint32_t rand_high = big_endian_read_32(setup->sm_peer_rand, 0);
|
||
uint32_t rand_low = big_endian_read_32(setup->sm_peer_rand, 4);
|
||
hci_send_cmd(&hci_le_start_encryption, connection->sm_handle,rand_low, rand_high, setup->sm_peer_ediv, peer_ltk_flipped);
|
||
return;
|
||
}
|
||
|
||
case SM_INITIATOR_PH1_SEND_PAIRING_REQUEST:
|
||
sm_pairing_packet_set_code(setup->sm_m_preq, SM_CODE_PAIRING_REQUEST);
|
||
connection->sm_engine_state = SM_INITIATOR_PH1_W4_PAIRING_RESPONSE;
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_m_preq, sizeof(sm_pairing_packet_t));
|
||
sm_timeout_reset(connection);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
|
||
case SM_SC_SEND_PUBLIC_KEY_COMMAND: {
|
||
uint8_t buffer[65];
|
||
buffer[0] = SM_CODE_PAIRING_PUBLIC_KEY;
|
||
//
|
||
reverse_256(&ec_q[0], &buffer[1]);
|
||
reverse_256(&ec_q[32], &buffer[33]);
|
||
|
||
// stk generation method
|
||
// passkey entry: notify app to show passkey or to request passkey
|
||
switch (setup->sm_stk_generation_method){
|
||
case JUST_WORKS:
|
||
case NK_BOTH_INPUT:
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
// responder
|
||
sm_sc_start_calculating_local_confirm(connection);
|
||
} else {
|
||
// initiator
|
||
connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
|
||
}
|
||
break;
|
||
case PK_INIT_INPUT:
|
||
case PK_RESP_INPUT:
|
||
case OK_BOTH_INPUT:
|
||
// use random TK for display
|
||
memcpy(setup->sm_ra, setup->sm_tk, 16);
|
||
memcpy(setup->sm_rb, setup->sm_tk, 16);
|
||
setup->sm_passkey_bit = 0;
|
||
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
// responder
|
||
connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
|
||
} else {
|
||
// initiator
|
||
connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
|
||
}
|
||
sm_trigger_user_response(connection);
|
||
break;
|
||
case OOB:
|
||
// TODO: implement SC OOB
|
||
break;
|
||
}
|
||
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
break;
|
||
}
|
||
case SM_SC_SEND_CONFIRMATION: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_CONFIRM;
|
||
reverse_128(setup->sm_local_confirm, &buffer[1]);
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
|
||
} else {
|
||
connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
|
||
}
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
break;
|
||
}
|
||
case SM_SC_SEND_PAIRING_RANDOM: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_RANDOM;
|
||
reverse_128(setup->sm_local_nonce, &buffer[1]);
|
||
if (setup->sm_stk_generation_method != JUST_WORKS && setup->sm_stk_generation_method != NK_BOTH_INPUT && setup->sm_passkey_bit < 20){
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
// responder
|
||
connection->sm_engine_state = SM_SC_W4_CONFIRMATION;
|
||
} else {
|
||
// initiator
|
||
connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
|
||
}
|
||
} else {
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
// responder
|
||
if (setup->sm_stk_generation_method == NK_BOTH_INPUT){
|
||
connection->sm_engine_state = SM_SC_W2_CALCULATE_G2;
|
||
} else {
|
||
sm_sc_prepare_dhkey_check(connection);
|
||
}
|
||
} else {
|
||
// initiator
|
||
connection->sm_engine_state = SM_SC_W4_PAIRING_RANDOM;
|
||
}
|
||
}
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
break;
|
||
}
|
||
case SM_SC_SEND_DHKEY_CHECK_COMMAND: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_DHKEY_CHECK;
|
||
reverse_128(setup->sm_local_dhkey_check, &buffer[1]);
|
||
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_SC_W4_LTK_REQUEST_SC;
|
||
} else {
|
||
connection->sm_engine_state = SM_SC_W4_DHKEY_CHECK_COMMAND;
|
||
}
|
||
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
break;
|
||
}
|
||
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
case SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE:
|
||
// echo initiator for now
|
||
sm_pairing_packet_set_code(setup->sm_s_pres,SM_CODE_PAIRING_RESPONSE);
|
||
key_distribution_flags = sm_key_distribution_flags_for_auth_req();
|
||
|
||
if (setup->sm_use_secure_connections){
|
||
connection->sm_engine_state = SM_SC_W4_PUBLIC_KEY_COMMAND;
|
||
// skip LTK/EDIV for SC
|
||
log_info("sm: dropping encryption information flag");
|
||
key_distribution_flags &= ~SM_KEYDIST_ENC_KEY;
|
||
} else {
|
||
connection->sm_engine_state = SM_RESPONDER_PH1_W4_PAIRING_CONFIRM;
|
||
}
|
||
|
||
sm_pairing_packet_set_initiator_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_initiator_key_distribution(setup->sm_m_preq) & key_distribution_flags);
|
||
sm_pairing_packet_set_responder_key_distribution(setup->sm_s_pres, sm_pairing_packet_get_responder_key_distribution(setup->sm_m_preq) & key_distribution_flags);
|
||
// update key distribution after ENC was dropped
|
||
sm_setup_key_distribution(sm_pairing_packet_get_responder_key_distribution(setup->sm_s_pres));
|
||
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) &setup->sm_s_pres, sizeof(sm_pairing_packet_t));
|
||
sm_timeout_reset(connection);
|
||
// SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
|
||
if (!setup->sm_use_secure_connections || setup->sm_stk_generation_method == JUST_WORKS){
|
||
sm_trigger_user_response(connection);
|
||
}
|
||
return;
|
||
#endif
|
||
|
||
case SM_PH2_SEND_PAIRING_RANDOM: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_RANDOM;
|
||
reverse_128(setup->sm_local_random, &buffer[1]);
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_RESPONDER_PH2_W4_LTK_REQUEST;
|
||
} else {
|
||
connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_RANDOM;
|
||
}
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
break;
|
||
}
|
||
|
||
case SM_PH2_GET_RANDOM_TK:
|
||
case SM_PH2_C1_GET_RANDOM_A:
|
||
case SM_PH2_C1_GET_RANDOM_B:
|
||
case SM_PH3_GET_RANDOM:
|
||
case SM_PH3_GET_DIV:
|
||
sm_next_responding_state(connection);
|
||
sm_random_start(connection);
|
||
return;
|
||
|
||
case SM_PH2_C1_GET_ENC_B:
|
||
case SM_PH2_C1_GET_ENC_D:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(setup->sm_tk, setup->sm_c1_t3_value, connection);
|
||
return;
|
||
|
||
case SM_PH3_LTK_GET_ENC:
|
||
case SM_RESPONDER_PH4_LTK_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_IDLE) {
|
||
sm_key_t d_prime;
|
||
sm_d1_d_prime(setup->sm_local_div, 0, d_prime);
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(sm_persistent_er, d_prime, connection);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case SM_PH3_CSRK_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_IDLE) {
|
||
sm_key_t d_prime;
|
||
sm_d1_d_prime(setup->sm_local_div, 1, d_prime);
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(sm_persistent_er, d_prime, connection);
|
||
return;
|
||
}
|
||
break;
|
||
|
||
case SM_PH2_C1_GET_ENC_C:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
// calculate m_confirm using aes128 engine - step 1
|
||
sm_c1_t1(setup->sm_peer_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(setup->sm_tk, plaintext, connection);
|
||
break;
|
||
case SM_PH2_C1_GET_ENC_A:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
// calculate confirm using aes128 engine - step 1
|
||
sm_c1_t1(setup->sm_local_random, (uint8_t*) &setup->sm_m_preq, (uint8_t*) &setup->sm_s_pres, setup->sm_m_addr_type, setup->sm_s_addr_type, plaintext);
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(setup->sm_tk, plaintext, connection);
|
||
break;
|
||
case SM_PH2_CALC_STK:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
// calculate STK
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
sm_s1_r_prime(setup->sm_local_random, setup->sm_peer_random, plaintext);
|
||
} else {
|
||
sm_s1_r_prime(setup->sm_peer_random, setup->sm_local_random, plaintext);
|
||
}
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(setup->sm_tk, plaintext, connection);
|
||
break;
|
||
case SM_PH3_Y_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
// PH3B2 - calculate Y from - enc
|
||
// Y = dm(DHK, Rand)
|
||
sm_dm_r_prime(setup->sm_local_rand, plaintext);
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(sm_persistent_dhk, plaintext, connection);
|
||
return;
|
||
case SM_PH2_C1_SEND_PAIRING_CONFIRM: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_CONFIRM;
|
||
reverse_128(setup->sm_local_confirm, &buffer[1]);
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_RESPONDER_PH2_W4_PAIRING_RANDOM;
|
||
} else {
|
||
connection->sm_engine_state = SM_INITIATOR_PH2_W4_PAIRING_CONFIRM;
|
||
}
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
return;
|
||
}
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
case SM_RESPONDER_PH2_SEND_LTK_REPLY: {
|
||
sm_key_t stk_flipped;
|
||
reverse_128(setup->sm_ltk, stk_flipped);
|
||
connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
|
||
hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, stk_flipped);
|
||
return;
|
||
}
|
||
case SM_RESPONDER_PH4_SEND_LTK_REPLY: {
|
||
sm_key_t ltk_flipped;
|
||
reverse_128(setup->sm_ltk, ltk_flipped);
|
||
connection->sm_engine_state = SM_RESPONDER_IDLE;
|
||
hci_send_cmd(&hci_le_long_term_key_request_reply, connection->sm_handle, ltk_flipped);
|
||
return;
|
||
}
|
||
case SM_RESPONDER_PH4_Y_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_state == SM_AES128_ACTIVE) break;
|
||
log_info("LTK Request: recalculating with ediv 0x%04x", setup->sm_local_ediv);
|
||
// Y = dm(DHK, Rand)
|
||
sm_dm_r_prime(setup->sm_local_rand, plaintext);
|
||
sm_next_responding_state(connection);
|
||
sm_aes128_start(sm_persistent_dhk, plaintext, connection);
|
||
return;
|
||
#endif
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
case SM_INITIATOR_PH3_SEND_START_ENCRYPTION: {
|
||
sm_key_t stk_flipped;
|
||
reverse_128(setup->sm_ltk, stk_flipped);
|
||
connection->sm_engine_state = SM_PH2_W4_CONNECTION_ENCRYPTED;
|
||
hci_send_cmd(&hci_le_start_encryption, connection->sm_handle, 0, 0, 0, stk_flipped);
|
||
return;
|
||
}
|
||
#endif
|
||
|
||
case SM_PH3_DISTRIBUTE_KEYS:
|
||
if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
|
||
setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
|
||
reverse_128(setup->sm_ltk, &buffer[1]);
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
return;
|
||
}
|
||
if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
|
||
setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
|
||
uint8_t buffer[11];
|
||
buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
|
||
little_endian_store_16(buffer, 1, setup->sm_local_ediv);
|
||
reverse_64(setup->sm_local_rand, &buffer[3]);
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
return;
|
||
}
|
||
if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
|
||
setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_IDENTITY_INFORMATION;
|
||
reverse_128(sm_persistent_irk, &buffer[1]);
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
return;
|
||
}
|
||
if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
|
||
setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
|
||
bd_addr_t local_address;
|
||
uint8_t buffer[8];
|
||
buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
|
||
gap_le_get_own_address(&buffer[1], local_address);
|
||
reverse_bd_addr(local_address, &buffer[2]);
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
return;
|
||
}
|
||
if (setup->sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
|
||
setup->sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
|
||
|
||
// hack to reproduce test runs
|
||
if (test_use_fixed_local_csrk){
|
||
memset(setup->sm_local_csrk, 0xcc, 16);
|
||
}
|
||
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_SIGNING_INFORMATION;
|
||
reverse_128(setup->sm_local_csrk, &buffer[1]);
|
||
l2cap_send_connectionless(connection->sm_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset(connection);
|
||
return;
|
||
}
|
||
|
||
// keys are sent
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
// slave -> receive master keys if any
|
||
if (sm_key_distribution_all_received(connection)){
|
||
sm_key_distribution_handle_all_received(connection);
|
||
connection->sm_engine_state = SM_RESPONDER_IDLE;
|
||
sm_done_for_handle(connection->sm_handle);
|
||
} else {
|
||
connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
|
||
}
|
||
} else {
|
||
// master -> all done
|
||
connection->sm_engine_state = SM_INITIATOR_CONNECTED;
|
||
sm_done_for_handle(connection->sm_handle);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// check again if active connection was released
|
||
if (sm_active_connection_handle != HCI_CON_HANDLE_INVALID) break;
|
||
}
|
||
}
|
||
|
||
// note: aes engine is ready as we just got the aes result
|
||
static void sm_handle_encryption_result(uint8_t * data){
|
||
|
||
sm_aes128_state = SM_AES128_IDLE;
|
||
|
||
if (sm_address_resolution_ah_calculation_active){
|
||
sm_address_resolution_ah_calculation_active = 0;
|
||
// compare calulated address against connecting device
|
||
uint8_t hash[3];
|
||
reverse_24(data, hash);
|
||
if (memcmp(&sm_address_resolution_address[3], hash, 3) == 0){
|
||
log_info("LE Device Lookup: matched resolvable private address");
|
||
sm_address_resolution_handle_event(ADDRESS_RESOLUTION_SUCEEDED);
|
||
return;
|
||
}
|
||
// no match, try next
|
||
sm_address_resolution_test++;
|
||
return;
|
||
}
|
||
|
||
switch (dkg_state){
|
||
case DKG_W4_IRK:
|
||
reverse_128(data, sm_persistent_irk);
|
||
log_info_key("irk", sm_persistent_irk);
|
||
dkg_next_state();
|
||
return;
|
||
case DKG_W4_DHK:
|
||
reverse_128(data, sm_persistent_dhk);
|
||
log_info_key("dhk", sm_persistent_dhk);
|
||
dkg_next_state();
|
||
// SM Init Finished
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (rau_state){
|
||
case RAU_W4_ENC:
|
||
reverse_24(data, &sm_random_address[3]);
|
||
rau_next_state();
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
#ifdef ENABLE_CMAC_ENGINE
|
||
switch (sm_cmac_state){
|
||
case CMAC_W4_SUBKEYS:
|
||
case CMAC_W4_MI:
|
||
case CMAC_W4_MLAST:
|
||
{
|
||
sm_key_t t;
|
||
reverse_128(data, t);
|
||
sm_cmac_handle_encryption_result(t);
|
||
}
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
#endif
|
||
|
||
// retrieve sm_connection provided to sm_aes128_start_encryption
|
||
sm_connection_t * connection = (sm_connection_t*) sm_aes128_context;
|
||
if (!connection) return;
|
||
switch (connection->sm_engine_state){
|
||
case SM_PH2_C1_W4_ENC_A:
|
||
case SM_PH2_C1_W4_ENC_C:
|
||
{
|
||
sm_key_t t2;
|
||
reverse_128(data, t2);
|
||
sm_c1_t3(t2, setup->sm_m_address, setup->sm_s_address, setup->sm_c1_t3_value);
|
||
}
|
||
sm_next_responding_state(connection);
|
||
return;
|
||
case SM_PH2_C1_W4_ENC_B:
|
||
reverse_128(data, setup->sm_local_confirm);
|
||
log_info_key("c1!", setup->sm_local_confirm);
|
||
connection->sm_engine_state = SM_PH2_C1_SEND_PAIRING_CONFIRM;
|
||
return;
|
||
case SM_PH2_C1_W4_ENC_D:
|
||
{
|
||
sm_key_t peer_confirm_test;
|
||
reverse_128(data, peer_confirm_test);
|
||
log_info_key("c1!", peer_confirm_test);
|
||
if (memcmp(setup->sm_peer_confirm, peer_confirm_test, 16) != 0){
|
||
setup->sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
|
||
connection->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
|
||
return;
|
||
}
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
|
||
} else {
|
||
connection->sm_engine_state = SM_PH2_CALC_STK;
|
||
}
|
||
}
|
||
return;
|
||
case SM_PH2_W4_STK:
|
||
reverse_128(data, setup->sm_ltk);
|
||
sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
|
||
log_info_key("stk", setup->sm_ltk);
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
|
||
} else {
|
||
connection->sm_engine_state = SM_INITIATOR_PH3_SEND_START_ENCRYPTION;
|
||
}
|
||
return;
|
||
case SM_PH3_Y_W4_ENC:{
|
||
sm_key_t y128;
|
||
reverse_128(data, y128);
|
||
setup->sm_local_y = big_endian_read_16(y128, 14);
|
||
log_info_hex16("y", setup->sm_local_y);
|
||
// PH3B3 - calculate EDIV
|
||
setup->sm_local_ediv = setup->sm_local_y ^ setup->sm_local_div;
|
||
log_info_hex16("ediv", setup->sm_local_ediv);
|
||
// PH3B4 - calculate LTK - enc
|
||
// LTK = d1(ER, DIV, 0))
|
||
connection->sm_engine_state = SM_PH3_LTK_GET_ENC;
|
||
return;
|
||
}
|
||
case SM_RESPONDER_PH4_Y_W4_ENC:{
|
||
sm_key_t y128;
|
||
reverse_128(data, y128);
|
||
setup->sm_local_y = big_endian_read_16(y128, 14);
|
||
log_info_hex16("y", setup->sm_local_y);
|
||
|
||
// PH3B3 - calculate DIV
|
||
setup->sm_local_div = setup->sm_local_y ^ setup->sm_local_ediv;
|
||
log_info_hex16("ediv", setup->sm_local_ediv);
|
||
// PH3B4 - calculate LTK - enc
|
||
// LTK = d1(ER, DIV, 0))
|
||
connection->sm_engine_state = SM_RESPONDER_PH4_LTK_GET_ENC;
|
||
return;
|
||
}
|
||
case SM_PH3_LTK_W4_ENC:
|
||
reverse_128(data, setup->sm_ltk);
|
||
log_info_key("ltk", setup->sm_ltk);
|
||
// calc CSRK next
|
||
connection->sm_engine_state = SM_PH3_CSRK_GET_ENC;
|
||
return;
|
||
case SM_PH3_CSRK_W4_ENC:
|
||
reverse_128(data, setup->sm_local_csrk);
|
||
log_info_key("csrk", setup->sm_local_csrk);
|
||
if (setup->sm_key_distribution_send_set){
|
||
connection->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
|
||
} else {
|
||
// no keys to send, just continue
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
// slave -> receive master keys
|
||
connection->sm_engine_state = SM_PH3_RECEIVE_KEYS;
|
||
} else {
|
||
if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){
|
||
connection->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK;
|
||
} else {
|
||
// master -> all done
|
||
connection->sm_engine_state = SM_INITIATOR_CONNECTED;
|
||
sm_done_for_handle(connection->sm_handle);
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
case SM_RESPONDER_PH4_LTK_W4_ENC:
|
||
reverse_128(data, setup->sm_ltk);
|
||
sm_truncate_key(setup->sm_ltk, connection->sm_actual_encryption_key_size);
|
||
log_info_key("ltk", setup->sm_ltk);
|
||
connection->sm_engine_state = SM_RESPONDER_PH4_SEND_LTK_REPLY;
|
||
return;
|
||
#endif
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
#ifndef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
|
||
#if !defined(WICED_VERSION) || defined(USE_MBEDTLS_FOR_ECDH)
|
||
// @return OK
|
||
static int sm_generate_f_rng(unsigned char * buffer, unsigned size){
|
||
if (ec_key_generation_state != EC_KEY_GENERATION_ACTIVE) return 0;
|
||
int offset = setup->sm_passkey_bit;
|
||
log_info("sm_generate_f_rng: size %u - offset %u", (int) size, offset);
|
||
while (size) {
|
||
*buffer++ = setup->sm_peer_q[offset++];
|
||
size--;
|
||
}
|
||
setup->sm_passkey_bit = offset;
|
||
return 1;
|
||
}
|
||
#endif
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
// @return error
|
||
static int sm_generate_f_rng_mbedtls(void * context, unsigned char * buffer, size_t size){
|
||
UNUSED(context);
|
||
return sm_generate_f_rng(buffer, size) == 1;
|
||
}
|
||
#endif
|
||
#endif
|
||
#endif
|
||
|
||
// note: random generator is ready. this doesn NOT imply that aes engine is unused!
|
||
static void sm_handle_random_result(uint8_t * data){
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
#ifndef HAVE_HCI_CONTROLLER_DHKEY_SUPPORT
|
||
|
||
if (ec_key_generation_state == EC_KEY_GENERATION_ACTIVE){
|
||
int num_bytes = setup->sm_passkey_bit;
|
||
memcpy(&setup->sm_peer_q[num_bytes], data, 8);
|
||
num_bytes += 8;
|
||
setup->sm_passkey_bit = num_bytes;
|
||
|
||
if (num_bytes >= 64){
|
||
|
||
// init pre-generated random data from sm_peer_q
|
||
setup->sm_passkey_bit = 0;
|
||
|
||
// generate EC key
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
mbedtls_mpi d;
|
||
mbedtls_ecp_point P;
|
||
mbedtls_mpi_init(&d);
|
||
mbedtls_ecp_point_init(&P);
|
||
int res = mbedtls_ecp_gen_keypair(&mbedtls_ec_group, &d, &P, &sm_generate_f_rng_mbedtls, NULL);
|
||
log_info("gen keypair %x", res);
|
||
mbedtls_mpi_write_binary(&P.X, &ec_q[0], 32);
|
||
mbedtls_mpi_write_binary(&P.Y, &ec_q[32], 32);
|
||
mbedtls_mpi_write_binary(&d, ec_d, 32);
|
||
mbedtls_ecp_point_free(&P);
|
||
mbedtls_mpi_free(&d);
|
||
#endif
|
||
|
||
#ifdef USE_MICROECC_FOR_ECDH
|
||
|
||
#ifndef WICED_VERSION
|
||
log_info("set uECC RNG for initial key generation with 64 random bytes");
|
||
// micro-ecc from WICED SDK uses its wiced_crypto_get_random by default - no need to set it
|
||
uECC_set_rng(&sm_generate_f_rng);
|
||
#endif /* WICED_VERSION */
|
||
|
||
#if uECC_SUPPORTS_secp256r1
|
||
// standard version
|
||
uECC_make_key(ec_q, ec_d, uECC_secp256r1());
|
||
#else
|
||
// static version
|
||
uECC_make_key(ec_q, ec_d);
|
||
#endif /* USE_MICROECC_FOR_ECDH */
|
||
|
||
#endif /* USE_MICROECC_FOR_ECDH */
|
||
|
||
ec_key_generation_state = EC_KEY_GENERATION_DONE;
|
||
log_info("Elliptic curve: d");
|
||
log_info_hexdump(ec_d,32);
|
||
sm_log_ec_keypair();
|
||
}
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
switch (rau_state){
|
||
case RAU_W4_RANDOM:
|
||
// non-resolvable vs. resolvable
|
||
switch (gap_random_adress_type){
|
||
case GAP_RANDOM_ADDRESS_RESOLVABLE:
|
||
// resolvable: use random as prand and calc address hash
|
||
// "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
|
||
memcpy(sm_random_address, data, 3);
|
||
sm_random_address[0] &= 0x3f;
|
||
sm_random_address[0] |= 0x40;
|
||
rau_state = RAU_GET_ENC;
|
||
break;
|
||
case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
|
||
default:
|
||
// "The two most significant bits of the address shall be equal to ‘0’""
|
||
memcpy(sm_random_address, data, 6);
|
||
sm_random_address[0] &= 0x3f;
|
||
rau_state = RAU_SET_ADDRESS;
|
||
break;
|
||
}
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// retrieve sm_connection provided to sm_random_start
|
||
sm_connection_t * connection = (sm_connection_t *) sm_random_context;
|
||
if (!connection) return;
|
||
switch (connection->sm_engine_state){
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
case SM_SC_W4_GET_RANDOM_A:
|
||
memcpy(&setup->sm_local_nonce[0], data, 8);
|
||
connection->sm_engine_state = SM_SC_W2_GET_RANDOM_B;
|
||
break;
|
||
case SM_SC_W4_GET_RANDOM_B:
|
||
memcpy(&setup->sm_local_nonce[8], data, 8);
|
||
// initiator & jw/nc -> send pairing random
|
||
if (connection->sm_role == 0 && sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
|
||
connection->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
|
||
break;
|
||
} else {
|
||
connection->sm_engine_state = SM_SC_W2_CMAC_FOR_CONFIRMATION;
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
case SM_PH2_W4_RANDOM_TK:
|
||
{
|
||
// map random to 0-999999 without speding much cycles on a modulus operation
|
||
uint32_t tk = little_endian_read_32(data,0);
|
||
tk = tk & 0xfffff; // 1048575
|
||
if (tk >= 999999){
|
||
tk = tk - 999999;
|
||
}
|
||
sm_reset_tk();
|
||
big_endian_store_32(setup->sm_tk, 12, tk);
|
||
if (IS_RESPONDER(connection->sm_role)){
|
||
connection->sm_engine_state = SM_RESPONDER_PH1_SEND_PAIRING_RESPONSE;
|
||
} else {
|
||
if (setup->sm_use_secure_connections){
|
||
connection->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
|
||
} else {
|
||
connection->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
|
||
sm_trigger_user_response(connection);
|
||
// response_idle == nothing <--> sm_trigger_user_response() did not require response
|
||
if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
|
||
connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
|
||
}
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
case SM_PH2_C1_W4_RANDOM_A:
|
||
memcpy(&setup->sm_local_random[0], data, 8); // random endinaness
|
||
connection->sm_engine_state = SM_PH2_C1_GET_RANDOM_B;
|
||
return;
|
||
case SM_PH2_C1_W4_RANDOM_B:
|
||
memcpy(&setup->sm_local_random[8], data, 8); // random endinaness
|
||
connection->sm_engine_state = SM_PH2_C1_GET_ENC_A;
|
||
return;
|
||
case SM_PH3_W4_RANDOM:
|
||
reverse_64(data, setup->sm_local_rand);
|
||
// no db for encryption size hack: encryption size is stored in lowest nibble of setup->sm_local_rand
|
||
setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xf0) + (connection->sm_actual_encryption_key_size - 1);
|
||
// no db for authenticated flag hack: store flag in bit 4 of LSB
|
||
setup->sm_local_rand[7] = (setup->sm_local_rand[7] & 0xef) + (connection->sm_connection_authenticated << 4);
|
||
connection->sm_engine_state = SM_PH3_GET_DIV;
|
||
return;
|
||
case SM_PH3_W4_DIV:
|
||
// use 16 bit from random value as div
|
||
setup->sm_local_div = big_endian_read_16(data, 0);
|
||
log_info_hex16("div", setup->sm_local_div);
|
||
connection->sm_engine_state = SM_PH3_Y_GET_ENC;
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void sm_event_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
|
||
|
||
UNUSED(channel);
|
||
UNUSED(size);
|
||
|
||
sm_connection_t * sm_conn;
|
||
hci_con_handle_t con_handle;
|
||
|
||
switch (packet_type) {
|
||
|
||
case HCI_EVENT_PACKET:
|
||
switch (hci_event_packet_get_type(packet)) {
|
||
|
||
case BTSTACK_EVENT_STATE:
|
||
// bt stack activated, get started
|
||
if (btstack_event_state_get_state(packet) == HCI_STATE_WORKING){
|
||
log_info("HCI Working!");
|
||
|
||
// set local addr for le device db
|
||
bd_addr_t local_bd_addr;
|
||
gap_local_bd_addr(local_bd_addr);
|
||
le_device_db_set_local_bd_addr(local_bd_addr);
|
||
|
||
dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
if (!sm_have_ec_keypair){
|
||
setup->sm_passkey_bit = 0;
|
||
ec_key_generation_state = EC_KEY_GENERATION_ACTIVE;
|
||
}
|
||
#endif
|
||
// trigger Random Address generation if requested before
|
||
switch (gap_random_adress_type){
|
||
case GAP_RANDOM_ADDRESS_TYPE_OFF:
|
||
rau_state = RAU_IDLE;
|
||
break;
|
||
case GAP_RANDOM_ADDRESS_TYPE_STATIC:
|
||
rau_state = RAU_SET_ADDRESS;
|
||
break;
|
||
default:
|
||
rau_state = RAU_GET_RANDOM;
|
||
break;
|
||
}
|
||
sm_run();
|
||
}
|
||
break;
|
||
|
||
case HCI_EVENT_LE_META:
|
||
switch (packet[2]) {
|
||
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
|
||
|
||
log_info("sm: connected");
|
||
|
||
if (packet[3]) return; // connection failed
|
||
|
||
con_handle = little_endian_read_16(packet, 4);
|
||
sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) break;
|
||
|
||
sm_conn->sm_handle = con_handle;
|
||
sm_conn->sm_role = packet[6];
|
||
sm_conn->sm_peer_addr_type = packet[7];
|
||
reverse_bd_addr(&packet[8], sm_conn->sm_peer_address);
|
||
|
||
log_info("New sm_conn, role %s", sm_conn->sm_role ? "slave" : "master");
|
||
|
||
// reset security properties
|
||
sm_conn->sm_connection_encrypted = 0;
|
||
sm_conn->sm_connection_authenticated = 0;
|
||
sm_conn->sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
|
||
sm_conn->sm_le_db_index = -1;
|
||
|
||
// prepare CSRK lookup (does not involve setup)
|
||
sm_conn->sm_irk_lookup_state = IRK_LOOKUP_W4_READY;
|
||
|
||
// just connected -> everything else happens in sm_run()
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// slave - state already could be SM_RESPONDER_SEND_SECURITY_REQUEST instead
|
||
if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
|
||
if (sm_slave_request_security) {
|
||
// request security if requested by app
|
||
sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
|
||
} else {
|
||
// otherwise, wait for pairing request
|
||
sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
|
||
}
|
||
}
|
||
break;
|
||
} else {
|
||
// master
|
||
sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
|
||
}
|
||
break;
|
||
|
||
case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
|
||
con_handle = little_endian_read_16(packet, 3);
|
||
sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) break;
|
||
|
||
log_info("LTK Request: state %u", sm_conn->sm_engine_state);
|
||
if (sm_conn->sm_engine_state == SM_RESPONDER_PH2_W4_LTK_REQUEST){
|
||
sm_conn->sm_engine_state = SM_PH2_CALC_STK;
|
||
break;
|
||
}
|
||
if (sm_conn->sm_engine_state == SM_SC_W4_LTK_REQUEST_SC){
|
||
// PH2 SEND LTK as we need to exchange keys in PH3
|
||
sm_conn->sm_engine_state = SM_RESPONDER_PH2_SEND_LTK_REPLY;
|
||
break;
|
||
}
|
||
|
||
// store rand and ediv
|
||
reverse_64(&packet[5], sm_conn->sm_local_rand);
|
||
sm_conn->sm_local_ediv = little_endian_read_16(packet, 13);
|
||
|
||
// For Legacy Pairing (<=> EDIV != 0 || RAND != NULL), we need to recalculated our LTK as a
|
||
// potentially stored LTK is from the master
|
||
if (sm_conn->sm_local_ediv != 0 || !sm_is_null_random(sm_conn->sm_local_rand)){
|
||
sm_conn->sm_engine_state = SM_RESPONDER_PH0_RECEIVED_LTK_REQUEST;
|
||
break;
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
sm_conn->sm_engine_state = SM_SC_RECEIVED_LTK_REQUEST;
|
||
#else
|
||
log_info("LTK Request: ediv & random are empty, but LE Secure Connections not supported");
|
||
sm_conn->sm_engine_state = SM_RESPONDER_PH0_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
|
||
#endif
|
||
break;
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
case HCI_SUBEVENT_LE_READ_LOCAL_P256_PUBLIC_KEY_COMPLETE:
|
||
if (hci_subevent_le_read_local_p256_public_key_complete_get_status(packet)){
|
||
log_error("Read Local P256 Public Key failed");
|
||
break;
|
||
}
|
||
hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_x(packet, &ec_q[0]);
|
||
hci_subevent_le_read_local_p256_public_key_complete_get_dhkey_y(packet, &ec_q[32]);
|
||
ec_key_generation_state = EC_KEY_GENERATION_DONE;
|
||
sm_log_ec_keypair();
|
||
break;
|
||
#endif
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case HCI_EVENT_ENCRYPTION_CHANGE:
|
||
con_handle = little_endian_read_16(packet, 3);
|
||
sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) break;
|
||
|
||
sm_conn->sm_connection_encrypted = packet[5];
|
||
log_info("Encryption state change: %u, key size %u", sm_conn->sm_connection_encrypted,
|
||
sm_conn->sm_actual_encryption_key_size);
|
||
log_info("event handler, state %u", sm_conn->sm_engine_state);
|
||
if (!sm_conn->sm_connection_encrypted) break;
|
||
// continue if part of initial pairing
|
||
switch (sm_conn->sm_engine_state){
|
||
case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
|
||
sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
|
||
sm_done_for_handle(sm_conn->sm_handle);
|
||
break;
|
||
case SM_PH2_W4_CONNECTION_ENCRYPTED:
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// slave
|
||
if (setup->sm_use_secure_connections){
|
||
sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
|
||
}
|
||
} else {
|
||
// master
|
||
if (sm_key_distribution_all_received(sm_conn)){
|
||
// skip receiving keys as there are none
|
||
sm_key_distribution_handle_all_received(sm_conn);
|
||
sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case HCI_EVENT_ENCRYPTION_KEY_REFRESH_COMPLETE:
|
||
con_handle = little_endian_read_16(packet, 3);
|
||
sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) break;
|
||
|
||
log_info("Encryption key refresh complete, key size %u", sm_conn->sm_actual_encryption_key_size);
|
||
log_info("event handler, state %u", sm_conn->sm_engine_state);
|
||
// continue if part of initial pairing
|
||
switch (sm_conn->sm_engine_state){
|
||
case SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED:
|
||
sm_conn->sm_engine_state = SM_INITIATOR_CONNECTED;
|
||
sm_done_for_handle(sm_conn->sm_handle);
|
||
break;
|
||
case SM_PH2_W4_CONNECTION_ENCRYPTED:
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// slave
|
||
sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
|
||
} else {
|
||
// master
|
||
sm_conn->sm_engine_state = SM_PH3_RECEIVE_KEYS;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
|
||
case HCI_EVENT_DISCONNECTION_COMPLETE:
|
||
con_handle = little_endian_read_16(packet, 3);
|
||
sm_done_for_handle(con_handle);
|
||
sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) break;
|
||
|
||
// delete stored bonding on disconnect with authentication failure in ph0
|
||
if (sm_conn->sm_role == 0
|
||
&& sm_conn->sm_engine_state == SM_INITIATOR_PH0_W4_CONNECTION_ENCRYPTED
|
||
&& packet[2] == ERROR_CODE_AUTHENTICATION_FAILURE){
|
||
le_device_db_remove(sm_conn->sm_le_db_index);
|
||
}
|
||
|
||
sm_conn->sm_engine_state = SM_GENERAL_IDLE;
|
||
sm_conn->sm_handle = 0;
|
||
break;
|
||
|
||
case HCI_EVENT_COMMAND_COMPLETE:
|
||
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_encrypt)){
|
||
sm_handle_encryption_result(&packet[6]);
|
||
break;
|
||
}
|
||
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_le_rand)){
|
||
sm_handle_random_result(&packet[6]);
|
||
break;
|
||
}
|
||
if (HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_read_bd_addr)){
|
||
// Hack for Nordic nRF5 series that doesn't have public address:
|
||
// - with patches from port/nrf5-zephyr, hci_read_bd_addr returns random static address
|
||
// - we use this as default for advertisements/connections
|
||
if (hci_get_manufacturer() == BLUETOOTH_COMPANY_ID_NORDIC_SEMICONDUCTOR_ASA){
|
||
log_info("nRF5: using (fake) public address as random static address");
|
||
bd_addr_t addr;
|
||
reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], addr);
|
||
gap_random_address_set(addr);
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
sm_run();
|
||
}
|
||
|
||
static inline int sm_calc_actual_encryption_key_size(int other){
|
||
if (other < sm_min_encryption_key_size) return 0;
|
||
if (other < sm_max_encryption_key_size) return other;
|
||
return sm_max_encryption_key_size;
|
||
}
|
||
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
static int sm_just_works_or_numeric_comparison(stk_generation_method_t method){
|
||
switch (method){
|
||
case JUST_WORKS:
|
||
case NK_BOTH_INPUT:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
// responder
|
||
|
||
static int sm_passkey_used(stk_generation_method_t method){
|
||
switch (method){
|
||
case PK_RESP_INPUT:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/**
|
||
* @return ok
|
||
*/
|
||
static int sm_validate_stk_generation_method(void){
|
||
// check if STK generation method is acceptable by client
|
||
switch (setup->sm_stk_generation_method){
|
||
case JUST_WORKS:
|
||
return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
|
||
case PK_RESP_INPUT:
|
||
case PK_INIT_INPUT:
|
||
case OK_BOTH_INPUT:
|
||
return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
|
||
case OOB:
|
||
return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
|
||
case NK_BOTH_INPUT:
|
||
return (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON) != 0;
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
static void sm_pdu_handler(uint8_t packet_type, hci_con_handle_t con_handle, uint8_t *packet, uint16_t size){
|
||
|
||
UNUSED(size);
|
||
|
||
if (packet_type == HCI_EVENT_PACKET && packet[0] == L2CAP_EVENT_CAN_SEND_NOW){
|
||
sm_run();
|
||
}
|
||
|
||
if (packet_type != SM_DATA_PACKET) return;
|
||
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return;
|
||
|
||
if (packet[0] == SM_CODE_PAIRING_FAILED){
|
||
sm_conn->sm_engine_state = sm_conn->sm_role ? SM_RESPONDER_IDLE : SM_INITIATOR_CONNECTED;
|
||
return;
|
||
}
|
||
|
||
log_debug("sm_pdu_handler: state %u, pdu 0x%02x", sm_conn->sm_engine_state, packet[0]);
|
||
|
||
int err;
|
||
UNUSED(err);
|
||
|
||
if (packet[0] == SM_CODE_KEYPRESS_NOTIFICATION){
|
||
uint8_t buffer[5];
|
||
buffer[0] = SM_EVENT_KEYPRESS_NOTIFICATION;
|
||
buffer[1] = 3;
|
||
little_endian_store_16(buffer, 2, con_handle);
|
||
buffer[4] = packet[1];
|
||
sm_dispatch_event(HCI_EVENT_PACKET, 0, buffer, sizeof(buffer));
|
||
return;
|
||
}
|
||
|
||
switch (sm_conn->sm_engine_state){
|
||
|
||
// a sm timeout requries a new physical connection
|
||
case SM_GENERAL_TIMEOUT:
|
||
return;
|
||
|
||
#ifdef ENABLE_LE_CENTRAL
|
||
|
||
// Initiator
|
||
case SM_INITIATOR_CONNECTED:
|
||
if ((packet[0] != SM_CODE_SECURITY_REQUEST) || (sm_conn->sm_role)){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_FAILED){
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
|
||
break;
|
||
}
|
||
if (sm_conn->sm_irk_lookup_state == IRK_LOOKUP_SUCCEEDED){
|
||
sm_key_t ltk;
|
||
le_device_db_encryption_get(sm_conn->sm_le_db_index, NULL, NULL, ltk, NULL, NULL, NULL);
|
||
if (!sm_is_null_key(ltk)){
|
||
log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
|
||
}
|
||
break;
|
||
}
|
||
// otherwise, store security request
|
||
sm_conn->sm_security_request_received = 1;
|
||
break;
|
||
|
||
case SM_INITIATOR_PH1_W4_PAIRING_RESPONSE:
|
||
if (packet[0] != SM_CODE_PAIRING_RESPONSE){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
// store pairing request
|
||
memcpy(&setup->sm_s_pres, packet, sizeof(sm_pairing_packet_t));
|
||
err = sm_stk_generation_init(sm_conn);
|
||
if (err){
|
||
setup->sm_pairing_failed_reason = err;
|
||
sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
|
||
break;
|
||
}
|
||
|
||
// generate random number first, if we need to show passkey
|
||
if (setup->sm_stk_generation_method == PK_RESP_INPUT){
|
||
sm_conn->sm_engine_state = SM_PH2_GET_RANDOM_TK;
|
||
break;
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
if (setup->sm_use_secure_connections){
|
||
// SC Numeric Comparison will trigger user response after public keys & nonces have been exchanged
|
||
if (setup->sm_stk_generation_method == JUST_WORKS){
|
||
sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
|
||
sm_trigger_user_response(sm_conn);
|
||
if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
|
||
sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
|
||
}
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
|
||
}
|
||
break;
|
||
}
|
||
#endif
|
||
sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
|
||
sm_trigger_user_response(sm_conn);
|
||
// response_idle == nothing <--> sm_trigger_user_response() did not require response
|
||
if (setup->sm_user_response == SM_USER_RESPONSE_IDLE){
|
||
sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
|
||
}
|
||
break;
|
||
|
||
case SM_INITIATOR_PH2_W4_PAIRING_CONFIRM:
|
||
if (packet[0] != SM_CODE_PAIRING_CONFIRM){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
|
||
// store s_confirm
|
||
reverse_128(&packet[1], setup->sm_peer_confirm);
|
||
sm_conn->sm_engine_state = SM_PH2_SEND_PAIRING_RANDOM;
|
||
break;
|
||
|
||
case SM_INITIATOR_PH2_W4_PAIRING_RANDOM:
|
||
if (packet[0] != SM_CODE_PAIRING_RANDOM){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;;
|
||
}
|
||
|
||
// received random value
|
||
reverse_128(&packet[1], setup->sm_peer_random);
|
||
sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
|
||
break;
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
// Responder
|
||
case SM_RESPONDER_IDLE:
|
||
case SM_RESPONDER_SEND_SECURITY_REQUEST:
|
||
case SM_RESPONDER_PH1_W4_PAIRING_REQUEST:
|
||
if (packet[0] != SM_CODE_PAIRING_REQUEST){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;;
|
||
}
|
||
|
||
// store pairing request
|
||
memcpy(&sm_conn->sm_m_preq, packet, sizeof(sm_pairing_packet_t));
|
||
sm_conn->sm_engine_state = SM_RESPONDER_PH1_PAIRING_REQUEST_RECEIVED;
|
||
break;
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
case SM_SC_W4_PUBLIC_KEY_COMMAND:
|
||
if (packet[0] != SM_CODE_PAIRING_PUBLIC_KEY){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
|
||
// store public key for DH Key calculation
|
||
reverse_256(&packet[01], &setup->sm_peer_q[0]);
|
||
reverse_256(&packet[33], &setup->sm_peer_q[32]);
|
||
|
||
// validate public key
|
||
err = 0;
|
||
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
mbedtls_ecp_point Q;
|
||
mbedtls_ecp_point_init( &Q );
|
||
mbedtls_mpi_read_binary(&Q.X, &setup->sm_peer_q[0], 32);
|
||
mbedtls_mpi_read_binary(&Q.Y, &setup->sm_peer_q[32], 32);
|
||
mbedtls_mpi_lset(&Q.Z, 1);
|
||
err = mbedtls_ecp_check_pubkey(&mbedtls_ec_group, &Q);
|
||
mbedtls_ecp_point_free( & Q);
|
||
#endif
|
||
#ifdef USE_MICROECC_FOR_ECDH
|
||
#if uECC_SUPPORTS_secp256r1
|
||
// standard version
|
||
err = uECC_valid_public_key(setup->sm_peer_q, uECC_secp256r1()) == 0;
|
||
#else
|
||
// static version
|
||
err = uECC_valid_public_key(setup->sm_peer_q) == 0;
|
||
#endif
|
||
#endif
|
||
|
||
if (err){
|
||
log_error("sm: peer public key invalid %x", err);
|
||
// uses "unspecified reason", there is no "public key invalid" error code
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
|
||
} else {
|
||
// initiator
|
||
// stk generation method
|
||
// passkey entry: notify app to show passkey or to request passkey
|
||
switch (setup->sm_stk_generation_method){
|
||
case JUST_WORKS:
|
||
case NK_BOTH_INPUT:
|
||
sm_conn->sm_engine_state = SM_SC_W4_CONFIRMATION;
|
||
break;
|
||
case PK_RESP_INPUT:
|
||
sm_sc_start_calculating_local_confirm(sm_conn);
|
||
break;
|
||
case PK_INIT_INPUT:
|
||
case OK_BOTH_INPUT:
|
||
if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
|
||
sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
|
||
break;
|
||
}
|
||
sm_sc_start_calculating_local_confirm(sm_conn);
|
||
break;
|
||
case OOB:
|
||
// TODO: implement SC OOB
|
||
break;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SM_SC_W4_CONFIRMATION:
|
||
if (packet[0] != SM_CODE_PAIRING_CONFIRM){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
// received confirm value
|
||
reverse_128(&packet[1], setup->sm_peer_confirm);
|
||
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
// responder
|
||
if (sm_passkey_used(setup->sm_stk_generation_method)){
|
||
if (setup->sm_user_response != SM_USER_RESPONSE_PASSKEY){
|
||
// still waiting for passkey
|
||
sm_conn->sm_engine_state = SM_SC_W4_USER_RESPONSE;
|
||
break;
|
||
}
|
||
}
|
||
sm_sc_start_calculating_local_confirm(sm_conn);
|
||
} else {
|
||
// initiator
|
||
if (sm_just_works_or_numeric_comparison(setup->sm_stk_generation_method)){
|
||
sm_conn->sm_engine_state = SM_SC_W2_GET_RANDOM_A;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_SC_SEND_PAIRING_RANDOM;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SM_SC_W4_PAIRING_RANDOM:
|
||
if (packet[0] != SM_CODE_PAIRING_RANDOM){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
|
||
// received random value
|
||
reverse_128(&packet[1], setup->sm_peer_nonce);
|
||
|
||
// validate confirm value if Cb = f4(Pkb, Pka, Nb, z)
|
||
// only check for JUST WORK/NC in initiator role AND passkey entry
|
||
if (sm_conn->sm_role || sm_passkey_used(setup->sm_stk_generation_method)) {
|
||
sm_conn->sm_engine_state = SM_SC_W2_CMAC_FOR_CHECK_CONFIRMATION;
|
||
}
|
||
|
||
sm_sc_state_after_receiving_random(sm_conn);
|
||
break;
|
||
|
||
case SM_SC_W2_CALCULATE_G2:
|
||
case SM_SC_W4_CALCULATE_G2:
|
||
case SM_SC_W2_CALCULATE_F5_SALT:
|
||
case SM_SC_W4_CALCULATE_F5_SALT:
|
||
case SM_SC_W2_CALCULATE_F5_MACKEY:
|
||
case SM_SC_W4_CALCULATE_F5_MACKEY:
|
||
case SM_SC_W2_CALCULATE_F5_LTK:
|
||
case SM_SC_W4_CALCULATE_F5_LTK:
|
||
case SM_SC_W2_CALCULATE_F6_FOR_DHKEY_CHECK:
|
||
case SM_SC_W4_DHKEY_CHECK_COMMAND:
|
||
case SM_SC_W4_CALCULATE_F6_FOR_DHKEY_CHECK:
|
||
if (packet[0] != SM_CODE_PAIRING_DHKEY_CHECK){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
// store DHKey Check
|
||
setup->sm_state_vars |= SM_STATE_VAR_DHKEY_COMMAND_RECEIVED;
|
||
reverse_128(&packet[01], setup->sm_peer_dhkey_check);
|
||
|
||
// have we been only waiting for dhkey check command?
|
||
if (sm_conn->sm_engine_state == SM_SC_W4_DHKEY_CHECK_COMMAND){
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_F6_TO_VERIFY_DHKEY_CHECK;
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
case SM_RESPONDER_PH1_W4_PAIRING_CONFIRM:
|
||
if (packet[0] != SM_CODE_PAIRING_CONFIRM){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;
|
||
}
|
||
|
||
// received confirm value
|
||
reverse_128(&packet[1], setup->sm_peer_confirm);
|
||
|
||
// notify client to hide shown passkey
|
||
if (setup->sm_stk_generation_method == PK_INIT_INPUT){
|
||
sm_notify_client_base(SM_EVENT_PASSKEY_DISPLAY_CANCEL, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address);
|
||
}
|
||
|
||
// handle user cancel pairing?
|
||
if (setup->sm_user_response == SM_USER_RESPONSE_DECLINE){
|
||
setup->sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
|
||
sm_conn->sm_engine_state = SM_GENERAL_SEND_PAIRING_FAILED;
|
||
break;
|
||
}
|
||
|
||
// wait for user action?
|
||
if (setup->sm_user_response == SM_USER_RESPONSE_PENDING){
|
||
sm_conn->sm_engine_state = SM_PH1_W4_USER_RESPONSE;
|
||
break;
|
||
}
|
||
|
||
// calculate and send local_confirm
|
||
sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
|
||
break;
|
||
|
||
case SM_RESPONDER_PH2_W4_PAIRING_RANDOM:
|
||
if (packet[0] != SM_CODE_PAIRING_RANDOM){
|
||
sm_pdu_received_in_wrong_state(sm_conn);
|
||
break;;
|
||
}
|
||
|
||
// received random value
|
||
reverse_128(&packet[1], setup->sm_peer_random);
|
||
sm_conn->sm_engine_state = SM_PH2_C1_GET_ENC_C;
|
||
break;
|
||
#endif
|
||
|
||
case SM_PH3_RECEIVE_KEYS:
|
||
switch(packet[0]){
|
||
case SM_CODE_ENCRYPTION_INFORMATION:
|
||
setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
|
||
reverse_128(&packet[1], setup->sm_peer_ltk);
|
||
break;
|
||
|
||
case SM_CODE_MASTER_IDENTIFICATION:
|
||
setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
|
||
setup->sm_peer_ediv = little_endian_read_16(packet, 1);
|
||
reverse_64(&packet[3], setup->sm_peer_rand);
|
||
break;
|
||
|
||
case SM_CODE_IDENTITY_INFORMATION:
|
||
setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
|
||
reverse_128(&packet[1], setup->sm_peer_irk);
|
||
break;
|
||
|
||
case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
|
||
setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
|
||
setup->sm_peer_addr_type = packet[1];
|
||
reverse_bd_addr(&packet[2], setup->sm_peer_address);
|
||
break;
|
||
|
||
case SM_CODE_SIGNING_INFORMATION:
|
||
setup->sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
|
||
reverse_128(&packet[1], setup->sm_peer_csrk);
|
||
break;
|
||
default:
|
||
// Unexpected PDU
|
||
log_info("Unexpected PDU %u in SM_PH3_RECEIVE_KEYS", packet[0]);
|
||
break;
|
||
}
|
||
// done with key distribution?
|
||
if (sm_key_distribution_all_received(sm_conn)){
|
||
|
||
sm_key_distribution_handle_all_received(sm_conn);
|
||
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
if (setup->sm_use_secure_connections && (setup->sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION)){
|
||
sm_conn->sm_engine_state = SM_SC_W2_CALCULATE_H6_ILK;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_RESPONDER_IDLE;
|
||
sm_done_for_handle(sm_conn->sm_handle);
|
||
}
|
||
} else {
|
||
if (setup->sm_use_secure_connections){
|
||
sm_conn->sm_engine_state = SM_PH3_DISTRIBUTE_KEYS;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_PH3_GET_RANDOM;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
// Unexpected PDU
|
||
log_info("Unexpected PDU %u in state %u", packet[0], sm_conn->sm_engine_state);
|
||
break;
|
||
}
|
||
|
||
// try to send preparared packet
|
||
sm_run();
|
||
}
|
||
|
||
// Security Manager Client API
|
||
void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t addr, uint8_t * oob_data)){
|
||
sm_get_oob_data = get_oob_data_callback;
|
||
}
|
||
|
||
void sm_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
|
||
btstack_linked_list_add_tail(&sm_event_handlers, (btstack_linked_item_t*) callback_handler);
|
||
}
|
||
|
||
void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
|
||
sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
|
||
}
|
||
|
||
void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
|
||
sm_min_encryption_key_size = min_size;
|
||
sm_max_encryption_key_size = max_size;
|
||
}
|
||
|
||
void sm_set_authentication_requirements(uint8_t auth_req){
|
||
sm_auth_req = auth_req;
|
||
}
|
||
|
||
void sm_set_io_capabilities(io_capability_t io_capability){
|
||
sm_io_capabilities = io_capability;
|
||
}
|
||
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
void sm_set_request_security(int enable){
|
||
sm_slave_request_security = enable;
|
||
}
|
||
#endif
|
||
|
||
void sm_set_er(sm_key_t er){
|
||
memcpy(sm_persistent_er, er, 16);
|
||
}
|
||
|
||
void sm_set_ir(sm_key_t ir){
|
||
memcpy(sm_persistent_ir, ir, 16);
|
||
}
|
||
|
||
// Testing support only
|
||
void sm_test_set_irk(sm_key_t irk){
|
||
memcpy(sm_persistent_irk, irk, 16);
|
||
sm_persistent_irk_ready = 1;
|
||
}
|
||
|
||
void sm_test_use_fixed_local_csrk(void){
|
||
test_use_fixed_local_csrk = 1;
|
||
}
|
||
|
||
void sm_init(void){
|
||
// set some (BTstack default) ER and IR
|
||
int i;
|
||
sm_key_t er;
|
||
sm_key_t ir;
|
||
for (i=0;i<16;i++){
|
||
er[i] = 0x30 + i;
|
||
ir[i] = 0x90 + i;
|
||
}
|
||
sm_set_er(er);
|
||
sm_set_ir(ir);
|
||
// defaults
|
||
sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
|
||
| SM_STK_GENERATION_METHOD_OOB
|
||
| SM_STK_GENERATION_METHOD_PASSKEY
|
||
| SM_STK_GENERATION_METHOD_NUMERIC_COMPARISON;
|
||
|
||
sm_max_encryption_key_size = 16;
|
||
sm_min_encryption_key_size = 7;
|
||
|
||
#ifdef ENABLE_CMAC_ENGINE
|
||
sm_cmac_state = CMAC_IDLE;
|
||
#endif
|
||
dkg_state = DKG_W4_WORKING;
|
||
rau_state = RAU_W4_WORKING;
|
||
sm_aes128_state = SM_AES128_IDLE;
|
||
sm_address_resolution_test = -1; // no private address to resolve yet
|
||
sm_address_resolution_ah_calculation_active = 0;
|
||
sm_address_resolution_mode = ADDRESS_RESOLUTION_IDLE;
|
||
sm_address_resolution_general_queue = NULL;
|
||
|
||
gap_random_adress_update_period = 15 * 60 * 1000L;
|
||
sm_active_connection_handle = HCI_CON_HANDLE_INVALID;
|
||
|
||
test_use_fixed_local_csrk = 0;
|
||
|
||
// register for HCI Events from HCI
|
||
hci_event_callback_registration.callback = &sm_event_packet_handler;
|
||
hci_add_event_handler(&hci_event_callback_registration);
|
||
|
||
// and L2CAP PDUs + L2CAP_EVENT_CAN_SEND_NOW
|
||
l2cap_register_fixed_channel(sm_pdu_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
ec_key_generation_state = EC_KEY_GENERATION_IDLE;
|
||
#endif
|
||
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
#ifndef HAVE_MALLOC
|
||
sm_mbedtls_allocator_init(mbedtls_memory_buffer, sizeof(mbedtls_memory_buffer));
|
||
#endif
|
||
mbedtls_ecp_group_init(&mbedtls_ec_group);
|
||
mbedtls_ecp_group_load(&mbedtls_ec_group, MBEDTLS_ECP_DP_SECP256R1);
|
||
#endif
|
||
}
|
||
|
||
void sm_use_fixed_ec_keypair(uint8_t * qx, uint8_t * qy, uint8_t * d){
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
memcpy(&ec_q[0], qx, 32);
|
||
memcpy(&ec_q[32], qy, 32);
|
||
memcpy(ec_d, d, 32);
|
||
sm_have_ec_keypair = 1;
|
||
ec_key_generation_state = EC_KEY_GENERATION_DONE;
|
||
#else
|
||
UNUSED(qx);
|
||
UNUSED(qy);
|
||
UNUSED(d);
|
||
#endif
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
#ifndef USE_MBEDTLS_FOR_ECDH
|
||
static void parse_hex(uint8_t * buffer, const char * hex_string){
|
||
while (*hex_string){
|
||
int high_nibble = nibble_for_char(*hex_string++);
|
||
int low_nibble = nibble_for_char(*hex_string++);
|
||
*buffer++ = (high_nibble << 4) | low_nibble;
|
||
}
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
void sm_test_use_fixed_ec_keypair(void){
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
const char * ec_d_string = "3f49f6d4a3c55f3874c9b3e3d2103f504aff607beb40b7995899b8a6cd3c1abd";
|
||
const char * ec_qx_string = "20b003d2f297be2c5e2c83a7e9f9a5b9eff49111acf4fddbcc0301480e359de6";
|
||
const char * ec_qy_string = "dc809c49652aeb6d63329abf5a52155c766345c28fed3024741c8ed01589d28b";
|
||
#ifdef USE_MBEDTLS_FOR_ECDH
|
||
// use test keypair from spec
|
||
mbedtls_mpi x;
|
||
mbedtls_mpi_init(&x);
|
||
mbedtls_mpi_read_string( &x, 16, ec_d_string);
|
||
mbedtls_mpi_write_binary(&x, ec_d, 32);
|
||
mbedtls_mpi_read_string( &x, 16, ec_qx_string);
|
||
mbedtls_mpi_write_binary(&x, &ec_q[0], 32);
|
||
mbedtls_mpi_read_string( &x, 16, ec_qy_string);
|
||
mbedtls_mpi_write_binary(&x, &ec_q[32], 32);
|
||
mbedtls_mpi_free(&x);
|
||
#else
|
||
parse_hex(ec_d, ec_d_string);
|
||
parse_hex(&ec_q[0], ec_qx_string);
|
||
parse_hex(&ec_q[32], ec_qy_string);
|
||
#endif
|
||
sm_have_ec_keypair = 1;
|
||
ec_key_generation_state = EC_KEY_GENERATION_DONE;
|
||
#endif
|
||
}
|
||
|
||
static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
|
||
hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
|
||
if (!hci_con) return NULL;
|
||
return &hci_con->sm_connection;
|
||
}
|
||
|
||
// @returns 0 if not encrypted, 7-16 otherwise
|
||
int sm_encryption_key_size(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return 0; // wrong connection
|
||
if (!sm_conn->sm_connection_encrypted) return 0;
|
||
return sm_conn->sm_actual_encryption_key_size;
|
||
}
|
||
|
||
int sm_authenticated(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return 0; // wrong connection
|
||
if (!sm_conn->sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
|
||
return sm_conn->sm_connection_authenticated;
|
||
}
|
||
|
||
authorization_state_t sm_authorization_state(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return AUTHORIZATION_UNKNOWN; // wrong connection
|
||
if (!sm_conn->sm_connection_encrypted) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
|
||
if (!sm_conn->sm_connection_authenticated) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
|
||
return sm_conn->sm_connection_authorization_state;
|
||
}
|
||
|
||
static void sm_send_security_request_for_connection(sm_connection_t * sm_conn){
|
||
switch (sm_conn->sm_engine_state){
|
||
case SM_GENERAL_IDLE:
|
||
case SM_RESPONDER_IDLE:
|
||
sm_conn->sm_engine_state = SM_RESPONDER_SEND_SECURITY_REQUEST;
|
||
sm_run();
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* @brief Trigger Security Request
|
||
*/
|
||
void sm_send_security_request(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return;
|
||
sm_send_security_request_for_connection(sm_conn);
|
||
}
|
||
|
||
// request pairing
|
||
void sm_request_pairing(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
|
||
log_info("sm_request_pairing in role %u, state %u", sm_conn->sm_role, sm_conn->sm_engine_state);
|
||
if (IS_RESPONDER(sm_conn->sm_role)){
|
||
sm_send_security_request_for_connection(sm_conn);
|
||
} else {
|
||
// used as a trigger to start central/master/initiator security procedures
|
||
uint16_t ediv;
|
||
sm_key_t ltk;
|
||
if (sm_conn->sm_engine_state == SM_INITIATOR_CONNECTED){
|
||
switch (sm_conn->sm_irk_lookup_state){
|
||
case IRK_LOOKUP_FAILED:
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
|
||
break;
|
||
case IRK_LOOKUP_SUCCEEDED:
|
||
le_device_db_encryption_get(sm_conn->sm_le_db_index, &ediv, NULL, ltk, NULL, NULL, NULL);
|
||
if (!sm_is_null_key(ltk) || ediv){
|
||
log_info("sm: Setting up previous ltk/ediv/rand for device index %u", sm_conn->sm_le_db_index);
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH0_HAS_LTK;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_INITIATOR_PH1_W2_SEND_PAIRING_REQUEST;
|
||
}
|
||
break;
|
||
default:
|
||
sm_conn->sm_bonding_requested = 1;
|
||
break;
|
||
}
|
||
} else if (sm_conn->sm_engine_state == SM_GENERAL_IDLE){
|
||
sm_conn->sm_bonding_requested = 1;
|
||
}
|
||
}
|
||
sm_run();
|
||
}
|
||
|
||
// called by client app on authorization request
|
||
void sm_authorization_decline(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
sm_conn->sm_connection_authorization_state = AUTHORIZATION_DECLINED;
|
||
sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 0);
|
||
}
|
||
|
||
void sm_authorization_grant(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
sm_conn->sm_connection_authorization_state = AUTHORIZATION_GRANTED;
|
||
sm_notify_client_authorization(SM_EVENT_AUTHORIZATION_RESULT, sm_conn->sm_handle, sm_conn->sm_peer_addr_type, sm_conn->sm_peer_address, 1);
|
||
}
|
||
|
||
// GAP Bonding API
|
||
|
||
void sm_bonding_decline(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
setup->sm_user_response = SM_USER_RESPONSE_DECLINE;
|
||
|
||
if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
|
||
switch (setup->sm_stk_generation_method){
|
||
case PK_RESP_INPUT:
|
||
case PK_INIT_INPUT:
|
||
case OK_BOTH_INPUT:
|
||
sm_pairing_error(sm_conn, SM_GENERAL_SEND_PAIRING_FAILED);
|
||
break;
|
||
case NK_BOTH_INPUT:
|
||
sm_pairing_error(sm_conn, SM_REASON_NUMERIC_COMPARISON_FAILED);
|
||
break;
|
||
case JUST_WORKS:
|
||
case OOB:
|
||
sm_pairing_error(sm_conn, SM_REASON_UNSPECIFIED_REASON);
|
||
break;
|
||
}
|
||
}
|
||
sm_run();
|
||
}
|
||
|
||
void sm_just_works_confirm(hci_con_handle_t con_handle){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
setup->sm_user_response = SM_USER_RESPONSE_CONFIRM;
|
||
if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
|
||
if (setup->sm_use_secure_connections){
|
||
sm_conn->sm_engine_state = SM_SC_SEND_PUBLIC_KEY_COMMAND;
|
||
} else {
|
||
sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
|
||
}
|
||
}
|
||
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
|
||
sm_sc_prepare_dhkey_check(sm_conn);
|
||
}
|
||
#endif
|
||
|
||
sm_run();
|
||
}
|
||
|
||
void sm_numeric_comparison_confirm(hci_con_handle_t con_handle){
|
||
// for now, it's the same
|
||
sm_just_works_confirm(con_handle);
|
||
}
|
||
|
||
void sm_passkey_input(hci_con_handle_t con_handle, uint32_t passkey){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
sm_reset_tk();
|
||
big_endian_store_32(setup->sm_tk, 12, passkey);
|
||
setup->sm_user_response = SM_USER_RESPONSE_PASSKEY;
|
||
if (sm_conn->sm_engine_state == SM_PH1_W4_USER_RESPONSE){
|
||
sm_conn->sm_engine_state = SM_PH2_C1_GET_RANDOM_A;
|
||
}
|
||
#ifdef ENABLE_LE_SECURE_CONNECTIONS
|
||
memcpy(setup->sm_ra, setup->sm_tk, 16);
|
||
memcpy(setup->sm_rb, setup->sm_tk, 16);
|
||
if (sm_conn->sm_engine_state == SM_SC_W4_USER_RESPONSE){
|
||
sm_sc_start_calculating_local_confirm(sm_conn);
|
||
}
|
||
#endif
|
||
sm_run();
|
||
}
|
||
|
||
void sm_keypress_notification(hci_con_handle_t con_handle, uint8_t action){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return; // wrong connection
|
||
if (action > SM_KEYPRESS_PASSKEY_ENTRY_COMPLETED) return;
|
||
setup->sm_keypress_notification = action;
|
||
sm_run();
|
||
}
|
||
|
||
/**
|
||
* @brief Identify device in LE Device DB
|
||
* @param handle
|
||
* @returns index from le_device_db or -1 if not found/identified
|
||
*/
|
||
int sm_le_device_index(hci_con_handle_t con_handle ){
|
||
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
|
||
if (!sm_conn) return -1;
|
||
return sm_conn->sm_le_db_index;
|
||
}
|
||
|
||
static int gap_random_address_type_requires_updates(void){
|
||
if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0;
|
||
if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return 0;
|
||
return 1;
|
||
}
|
||
|
||
static uint8_t own_address_type(void){
|
||
switch (gap_random_adress_type){
|
||
case GAP_RANDOM_ADDRESS_TYPE_OFF:
|
||
return BD_ADDR_TYPE_LE_PUBLIC;
|
||
default:
|
||
return BD_ADDR_TYPE_LE_RANDOM;
|
||
}
|
||
}
|
||
|
||
// GAP LE API
|
||
void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
|
||
gap_random_address_update_stop();
|
||
gap_random_adress_type = random_address_type;
|
||
hci_le_set_own_address_type(own_address_type());
|
||
if (!gap_random_address_type_requires_updates()) return;
|
||
gap_random_address_update_start();
|
||
gap_random_address_trigger();
|
||
}
|
||
|
||
gap_random_address_type_t gap_random_address_get_mode(void){
|
||
return gap_random_adress_type;
|
||
}
|
||
|
||
void gap_random_address_set_update_period(int period_ms){
|
||
gap_random_adress_update_period = period_ms;
|
||
if (!gap_random_address_type_requires_updates()) return;
|
||
gap_random_address_update_stop();
|
||
gap_random_address_update_start();
|
||
}
|
||
|
||
void gap_random_address_set(bd_addr_t addr){
|
||
gap_random_address_set_mode(GAP_RANDOM_ADDRESS_TYPE_STATIC);
|
||
memcpy(sm_random_address, addr, 6);
|
||
if (rau_state == RAU_W4_WORKING) return;
|
||
rau_state = RAU_SET_ADDRESS;
|
||
sm_run();
|
||
}
|
||
|
||
#ifdef ENABLE_LE_PERIPHERAL
|
||
/*
|
||
* @brief Set Advertisement Paramters
|
||
* @param adv_int_min
|
||
* @param adv_int_max
|
||
* @param adv_type
|
||
* @param direct_address_type
|
||
* @param direct_address
|
||
* @param channel_map
|
||
* @param filter_policy
|
||
*
|
||
* @note own_address_type is used from gap_random_address_set_mode
|
||
*/
|
||
void gap_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
|
||
uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy){
|
||
hci_le_advertisements_set_params(adv_int_min, adv_int_max, adv_type,
|
||
direct_address_typ, direct_address, channel_map, filter_policy);
|
||
}
|
||
#endif
|
||
|