btstack/port/stm32-l053r8-em9304/port.c
2017-07-04 21:13:38 +02:00

508 lines
16 KiB
C

/*
* Copyright (C) 2017 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define __BTSTACK_FILE__ "hci_transport_h4.c"
/*
* port.c
*
* BTstack port for the EM9304 Development Kit consisting of an
* - STM32 Nucleo L053 Board with an
* - EM9304 Bluetooth Controller in the default SPI Slave configuration
*/
#include <string.h>
#include "stm32l0xx_hal.h"
#include "port.h"
#include "main.h" // pin definitions
#include "bluetooth.h"
#include "btstack_run_loop.h"
#include "btstack_run_loop_embedded.h"
#include "btstack_defines.h"
#include "btstack_event.h"
#include "btstack_memory.h"
#include "hci_dump.h"
#include "btstack_debug.h"
// retarget printf
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
int _write(int file, char *ptr, int len){
uint8_t cr = '\r';
if (file == STDOUT_FILENO || file == STDERR_FILENO) {
int i;
for (i = 0; i < len; i++) {
if (ptr[i] == '\n') {
HAL_UART_Transmit( &huart2, &cr, 1, HAL_MAX_DELAY );
}
HAL_UART_Transmit( &huart2, (uint8_t *) &ptr[i], 1, HAL_MAX_DELAY );
}
return i;
}
errno = EIO;
return -1;
}
int _read(int file, char * ptr, int len){
(void)(file);
(void)(ptr);
(void)(len);
return -1;
}
int _close(int file){
(void)(file);
return -1;
}
int _isatty(int file){
(void)(file);
return -1;
}
int _lseek(int file){
(void)(file);
return -1;
}
int _fstat(int file){
(void)(file);
return -1;
}
// hal_time_ms.h
#include "hal_time_ms.h"
uint32_t hal_time_ms(void){
return HAL_GetTick();
}
// hal_cpu.h implementation
#include "hal_cpu.h"
void hal_cpu_disable_irqs(void){
__disable_irq();
}
void hal_cpu_enable_irqs(void){
__enable_irq();
}
void hal_cpu_enable_irqs_and_sleep(void){
__enable_irq();
__asm__("wfe"); // go to sleep if event flag isn't set. if set, just clear it. IRQs set event flag
}
// EM 9304 SPI Master HCI Implementation
#define STS_SLAVE_READY 0xc0
// SPI Write Command
static const uint8_t hal_spi_em9304_write_command[] = {
0x42,
0x00,
};
// SPI Read Command
static const uint8_t hal_spi_em9304_read_command[] = {
0x81,
0x00,
};
const uint8_t hci_reset_2[] = { 0x01, 0x03, 0x0c, 0x00 };
static volatile enum {
SPI_EM9304_IDLE,
SPI_EM9304_RX_W4_READ_COMMAND_SENT,
SPI_EM9304_RX_READ_COMMAND_SENT,
SPI_EM9304_RX_W4_DATA_RECEIVED,
SPI_EM9304_RX_DATA_RECEIVED,
SPI_EM9304_TX_W4_RDY,
SPI_EM9304_TX_W4_WRITE_COMMAND_SENT,
SPI_EM9304_TX_WRITE_COMMAND_SENT,
SPI_EM9304_TX_W4_DATA_SENT,
SPI_EM9304_TX_DATA_SENT,
} hal_spi_em9304_state;
#define SPI_EM9304_RX_BUFFER_SIZE 64
#define SPI_EM9304_TX_BUFFER_SIZE 64
#define SPI_EM9304_RING_BUFFER_SIZE 128
static uint8_t hal_spi_em9304_slave_status[2];
static const uint8_t hal_spi_em9304_zeros[SPI_EM9304_TX_BUFFER_SIZE];
static uint8_t hal_spi_em9304_rx_buffer[SPI_EM9304_RX_BUFFER_SIZE];
static uint16_t hal_spi_em9304_rx_request_len;
static uint16_t hal_spi_em9304_tx_request_len;
static btstack_ring_buffer_t hal_uart_dma_rx_ring_buffer;
static uint8_t hal_uart_dma_rx_ring_buffer_storage[SPI_EM9304_RING_BUFFER_SIZE];
static const uint8_t * hal_uart_dma_tx_data;
static uint16_t hal_uart_dma_tx_size;
static uint8_t * hal_uart_dma_rx_buffer;
static uint16_t hal_uart_dma_rx_len;
static void dummy_handler(void);
// handlers
static void (*rx_done_handler)(void) = &dummy_handler;
static void (*tx_done_handler)(void) = &dummy_handler;
static inline void hal_spi_em9304_trigger_run_loop(void){
btstack_run_loop_embedded_trigger();
}
static inline int hal_spi_em9304_rdy(void){
return HAL_GPIO_ReadPin(SPI1_RDY_GPIO_Port, SPI1_RDY_Pin) == GPIO_PIN_SET;
}
static void hal_spi_em9304_reset(void){
btstack_ring_buffer_init(&hal_uart_dma_rx_ring_buffer, &hal_uart_dma_rx_ring_buffer_storage[0], SPI_EM9304_RING_BUFFER_SIZE);
}
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi){
switch (hal_spi_em9304_state){
case SPI_EM9304_RX_W4_READ_COMMAND_SENT:
hal_spi_em9304_state = SPI_EM9304_RX_READ_COMMAND_SENT;
hal_spi_em9304_trigger_run_loop();
break;
case SPI_EM9304_TX_W4_WRITE_COMMAND_SENT:
hal_spi_em9304_state = SPI_EM9304_TX_WRITE_COMMAND_SENT;
hal_spi_em9304_trigger_run_loop();
break;
case SPI_EM9304_RX_W4_DATA_RECEIVED:
hal_spi_em9304_state = SPI_EM9304_RX_DATA_RECEIVED;
hal_spi_em9304_trigger_run_loop();
break;
default:
break;
}
}
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi){
switch (hal_spi_em9304_state){
case SPI_EM9304_RX_W4_DATA_RECEIVED:
hal_spi_em9304_state = SPI_EM9304_RX_DATA_RECEIVED;
hal_spi_em9304_trigger_run_loop();
break;
default:
break;
}
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi){
switch (hal_spi_em9304_state){
case SPI_EM9304_TX_W4_DATA_SENT:
hal_spi_em9304_state = SPI_EM9304_TX_DATA_SENT;
hal_spi_em9304_trigger_run_loop();
break;
default:
break;
}
}
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){
if (hal_spi_em9304_rdy()){
hal_spi_em9304_trigger_run_loop();
}
}
static void hal_spi_em9304_transfer_rx_data(void){
while (1){
int bytes_available = btstack_ring_buffer_bytes_available(&hal_uart_dma_rx_ring_buffer);
log_debug("transfer_rx_data: ring buffer has %u -> hci buffer needs %u", bytes_available, hal_uart_dma_rx_len);
if (!bytes_available) return;
if (!hal_uart_dma_rx_len) return;
int bytes_to_copy = btstack_min(bytes_available, hal_uart_dma_rx_len);
uint32_t bytes_read;
btstack_ring_buffer_read(&hal_uart_dma_rx_ring_buffer, hal_uart_dma_rx_buffer, bytes_to_copy, &bytes_read);
hal_uart_dma_rx_buffer += bytes_read;
hal_uart_dma_rx_len -= bytes_read;
if (hal_uart_dma_rx_len == 0){
(*rx_done_handler)();
}
}
}
static void hal_spi_em9304_start_tx_transaction(void){
// wait for RDY
hal_spi_em9304_state = SPI_EM9304_TX_W4_RDY;
// chip select
HAL_GPIO_WritePin(SPI1_CSN_GPIO_Port, SPI1_CSN_Pin, GPIO_PIN_RESET);
}
static void hal_spi_em9304_process(btstack_data_source_t *ds, btstack_data_source_callback_type_t callback_type){
(void) ds;
(void) callback_type;
uint16_t max_bytes_to_send;
switch (hal_spi_em9304_state){
case SPI_EM9304_IDLE:
// RDY && space in RX Buffer
if (hal_spi_em9304_rdy()
&& (btstack_ring_buffer_bytes_free(&hal_uart_dma_rx_ring_buffer) >= SPI_EM9304_RX_BUFFER_SIZE) ){
// chip select
HAL_GPIO_WritePin(SPI1_CSN_GPIO_Port, SPI1_CSN_Pin, GPIO_PIN_RESET);
// send read command
hal_spi_em9304_state = SPI_EM9304_RX_W4_READ_COMMAND_SENT;
HAL_SPI_TransmitReceive_DMA(&hspi1, (uint8_t*) hal_spi_em9304_read_command, hal_spi_em9304_slave_status, sizeof(hal_spi_em9304_read_command));
} else if (hal_uart_dma_tx_size){
hal_spi_em9304_start_tx_transaction();
}
break;
case SPI_EM9304_RX_READ_COMMAND_SENT:
// check slave status
log_debug("RX: STS1 0x%02X, STS2 0x%02X", hal_spi_em9304_slave_status[0], hal_spi_em9304_slave_status[1]);
// check if ready
if ((hal_spi_em9304_slave_status[0] != STS_SLAVE_READY)){
// chip deselect & retry
HAL_GPIO_WritePin(SPI1_CSN_GPIO_Port, SPI1_CSN_Pin, GPIO_PIN_SET);
hal_spi_em9304_state = SPI_EM9304_IDLE;
break;
}
// read data and send '0's
hal_spi_em9304_state = SPI_EM9304_RX_W4_DATA_RECEIVED;
hal_spi_em9304_rx_request_len = hal_spi_em9304_slave_status[1];
HAL_SPI_TransmitReceive_DMA(&hspi1, (uint8_t*) hal_spi_em9304_zeros, &hal_spi_em9304_rx_buffer[0], hal_spi_em9304_rx_request_len);
break;
case SPI_EM9304_RX_DATA_RECEIVED:
// chip deselect & done
HAL_GPIO_WritePin(SPI1_CSN_GPIO_Port, SPI1_CSN_Pin, GPIO_PIN_SET);
hal_spi_em9304_state = SPI_EM9304_IDLE;
// move data into ring buffer
btstack_ring_buffer_write(&hal_uart_dma_rx_ring_buffer, hal_spi_em9304_rx_buffer, hal_spi_em9304_rx_request_len);
hal_spi_em9304_rx_request_len = 0;
// deliver new data
hal_spi_em9304_transfer_rx_data();
break;
case SPI_EM9304_TX_W4_RDY:
// check if ready
if (!hal_spi_em9304_rdy()) break;
// send write command
hal_spi_em9304_state = SPI_EM9304_TX_W4_WRITE_COMMAND_SENT;
HAL_SPI_TransmitReceive_DMA(&hspi1, (uint8_t*) hal_spi_em9304_write_command, hal_spi_em9304_slave_status, sizeof(hal_spi_em9304_write_command));
break;
case SPI_EM9304_TX_WRITE_COMMAND_SENT:
// check slave status and em9304 rx buffer space
log_debug("TX: STS1 0x%02X, STS2 0x%02X", hal_spi_em9304_slave_status[0], hal_spi_em9304_slave_status[1]);
max_bytes_to_send = hal_spi_em9304_slave_status[1];
if ((hal_spi_em9304_slave_status[0] != STS_SLAVE_READY) || (max_bytes_to_send == 0)){
// chip deselect & retry
HAL_GPIO_WritePin(SPI1_CSN_GPIO_Port, SPI1_CSN_Pin, GPIO_PIN_SET);
hal_spi_em9304_state = SPI_EM9304_IDLE;
break;
}
// number bytes to send
hal_spi_em9304_tx_request_len = btstack_min(hal_uart_dma_tx_size, max_bytes_to_send);
// send command
hal_spi_em9304_state = SPI_EM9304_TX_W4_DATA_SENT;
HAL_SPI_Transmit_DMA(&hspi1, (uint8_t*) hal_uart_dma_tx_data, hal_spi_em9304_tx_request_len);
break;
case SPI_EM9304_TX_DATA_SENT:
// chip deselect & done
HAL_GPIO_WritePin(SPI1_CSN_GPIO_Port, SPI1_CSN_Pin, GPIO_PIN_SET);
hal_spi_em9304_state = SPI_EM9304_IDLE;
// chunk processed
hal_uart_dma_tx_size -= hal_spi_em9304_tx_request_len;
hal_uart_dma_tx_data += hal_spi_em9304_tx_request_len;
hal_spi_em9304_tx_request_len = 0;
// handle TX Complete
if (hal_uart_dma_tx_size){
// more data to send
hal_spi_em9304_start_tx_transaction();
} else {
// notify higher layer
(*tx_done_handler)();
}
break;
default:
break;
}
}
//
// #include "hal_uart_dma.h"
static void dummy_handler(void){};
void hal_spi_em9304_power_cycle(void){
HAL_GPIO_WritePin(EN_GPIO_Port, EN_Pin, GPIO_PIN_RESET);
HAL_Delay(10);
HAL_GPIO_WritePin(EN_GPIO_Port, EN_Pin, GPIO_PIN_SET);
}
void hal_uart_dma_init(void){
hal_spi_em9304_power_cycle();
hal_spi_em9304_reset();
}
void hal_uart_dma_set_block_received( void (*the_block_handler)(void)){
rx_done_handler = the_block_handler;
}
void hal_uart_dma_set_block_sent( void (*the_block_handler)(void)){
tx_done_handler = the_block_handler;
}
int hal_uart_dma_set_baud(uint32_t baud){
return 0;
}
void hal_uart_dma_send_block(const uint8_t *buffer, uint16_t length){
hal_uart_dma_tx_data = buffer;
hal_uart_dma_tx_size = length;
hal_spi_em9304_process(NULL, 0);
}
void hal_uart_dma_receive_block(uint8_t *buffer, uint16_t length){
log_debug("hal_uart_dma_receive_block: len %u, ring buffer has %u, UART_RX_LEN %u", length, btstack_ring_buffer_bytes_available(&hal_uart_dma_rx_ring_buffer), hal_uart_dma_rx_len);
hal_uart_dma_rx_buffer = buffer;
hal_uart_dma_rx_len = length;
hal_spi_em9304_transfer_rx_data();
hal_spi_em9304_process(NULL, 0);
}
void hal_uart_dma_set_csr_irq_handler( void (*csr_irq_handler)(void)){
}
void hal_uart_dma_set_sleep(uint8_t sleep){
}
// dummy config
static const hci_transport_config_uart_t config = {
HCI_TRANSPORT_CONFIG_UART,
115200,
4000000,
1,
NULL
};
static btstack_packet_callback_registration_t hci_event_callback_registration;
int btstack_main(int argc, char ** argv);
// main.c
static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
UNUSED(size);
UNUSED(channel);
if (packet_type != HCI_EVENT_PACKET) return;
switch(hci_event_packet_get_type(packet)){
case BTSTACK_EVENT_STATE:
if (btstack_event_state_get_state(packet) != HCI_STATE_WORKING) return;
printf("BTstack up and running.\n");
break;
default:
break;
}
}
// data source to keep SPI transport working
static btstack_data_source_t transport_data_source;
void port_main(void){
// start with BTstack init - especially configure HCI Transport
btstack_memory_init();
btstack_run_loop_init(btstack_run_loop_embedded_get_instance());
hci_dump_open( NULL, HCI_DUMP_STDOUT );
// set up polling data_source
btstack_run_loop_set_data_source_handler(&transport_data_source, &hal_spi_em9304_process);
btstack_run_loop_enable_data_source_callbacks(&transport_data_source, DATA_SOURCE_CALLBACK_POLL);
btstack_run_loop_add_data_source(&transport_data_source);
// init HCI
hci_init(hci_transport_h4_instance(btstack_uart_block_embedded_instance()), &config);
#if 0
// setup Link Key DB
const hal_flash_sector_t * hal_flash_sector_impl = hal_flash_sector_stm32_init_instance(
&hal_flash_sector_context,
HAL_FLASH_SECTOR_SIZE,
HAL_FLASH_SECTOR_BANK_0_SECTOR,
HAL_FLASH_SECTOR_BANK_1_SECTOR,
HAL_FLASH_SECTOR_BANK_0_ADDR,
HAL_FLASH_SECTOR_BANK_1_ADDR);
const btstack_tlv_t * btstack_tlv_impl = btstack_tlv_flash_sector_init_instance(
&btstack_tlv_flash_sector_context,
hal_flash_sector_impl,
&hal_flash_sector_context);
const btstack_link_key_db_t * btstack_link_key_db = btstack_link_key_db_tlv_get_instance(btstack_tlv_impl, &btstack_tlv_flash_sector_context);
hci_set_link_key_db(btstack_link_key_db);
#endif
// inform about BTstack state
hci_event_callback_registration.callback = &packet_handler;
hci_add_event_handler(&hci_event_callback_registration);
// hand over to btstack embedded code
btstack_main(0, NULL);
// go
btstack_run_loop_execute();
}