btstack/src/hci_transport_h5.c
2017-11-02 10:46:57 +01:00

938 lines
37 KiB
C

/*
* Copyright (C) 2016 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define __BTSTACK_FILE__ "hci_transport_h5.c"
/*
* hci_transport_h5.c
*
* HCI Transport API implementation for basic H5 protocol
*
* Created by Matthias Ringw ald on 4/29/09.
*/
#include <inttypes.h>
#include "hci.h"
#include "btstack_slip.h"
#include "btstack_debug.h"
#include "hci_transport.h"
#include "btstack_uart_block.h"
typedef enum {
LINK_UNINITIALIZED,
LINK_INITIALIZED,
LINK_ACTIVE
} hci_transport_link_state_t;
typedef enum {
HCI_TRANSPORT_LINK_SEND_SYNC = 1 << 0,
HCI_TRANSPORT_LINK_SEND_SYNC_RESPONSE = 1 << 1,
HCI_TRANSPORT_LINK_SEND_CONFIG = 1 << 2,
HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE_EMPTY = 1 << 3,
HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE = 1 << 4,
HCI_TRANSPORT_LINK_SEND_SLEEP = 1 << 5,
HCI_TRANSPORT_LINK_SEND_WOKEN = 1 << 6,
HCI_TRANSPORT_LINK_SEND_WAKEUP = 1 << 7,
HCI_TRANSPORT_LINK_SEND_QUEUED_PACKET = 1 << 8,
HCI_TRANSPORT_LINK_SEND_ACK_PACKET = 1 << 9,
HCI_TRANSPORT_LINK_ENTER_SLEEP = 1 << 10,
} hci_transport_link_actions_t;
// Configuration Field. No packet buffers -> sliding window = 1, no OOF flow control, support data integrity check
#define LINK_CONFIG_SLIDING_WINDOW_SIZE 1
#define LINK_CONFIG_OOF_FLOW_CONTROL 0
#define LINK_CONFIG_DATA_INTEGRITY_CHECK 1
#define LINK_CONFIG_VERSION_NR 0
#define LINK_CONFIG_FIELD (LINK_CONFIG_SLIDING_WINDOW_SIZE | (LINK_CONFIG_OOF_FLOW_CONTROL << 3) | (LINK_CONFIG_DATA_INTEGRITY_CHECK << 4) | (LINK_CONFIG_VERSION_NR << 5))
// periodic sending during link establishment
#define LINK_PERIOD_MS 250
// resend wakeup
#define LINK_WAKEUP_MS 50
// additional packet types
#define LINK_ACKNOWLEDGEMENT_TYPE 0x00
#define LINK_CONTROL_PACKET_TYPE 0x0f
// max size of write requests
#define LINK_SLIP_TX_CHUNK_LEN 64
// ---
static const uint8_t link_control_sync[] = { 0x01, 0x7e};
static const uint8_t link_control_sync_response[] = { 0x02, 0x7d};
static const uint8_t link_control_config[] = { 0x03, 0xfc, LINK_CONFIG_FIELD};
static const uint8_t link_control_config_prefix_len = 2;
static const uint8_t link_control_config_response_empty[] = { 0x04, 0x7b};
static const uint8_t link_control_config_response[] = { 0x04, 0x7b, LINK_CONFIG_FIELD};
static const uint8_t link_control_config_response_prefix_len = 2;
static const uint8_t link_control_wakeup[] = { 0x05, 0xfa};
static const uint8_t link_control_woken[] = { 0x06, 0xf9};
static const uint8_t link_control_sleep[] = { 0x07, 0x78};
// max size of link control messages
#define LINK_CONTROL_MAX_LEN 3
// incoming pre-bufffer + 4 bytes H5 header + max(acl header + acl payload, event header + event data) + 2 bytes opt CRC
static uint8_t hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + 6 + HCI_PACKET_BUFFER_SIZE];
// outgoing slip encoded buffer. +4 to assert that DIC fits in buffer. +1 to assert that last SOF fits in buffer.
static uint8_t slip_outgoing_buffer[LINK_SLIP_TX_CHUNK_LEN+4+1];
static uint16_t slip_outgoing_dic;
static uint16_t slip_outgoing_dic_present;
static int slip_write_active;
// H5 Link State
static hci_transport_link_state_t link_state;
static btstack_timer_source_t link_timer;
static uint8_t link_seq_nr;
static uint8_t link_ack_nr;
static uint16_t link_resend_timeout_ms;
static uint8_t link_peer_asleep;
static uint8_t link_peer_supports_data_integrity_check;
// auto sleep-mode
static btstack_timer_source_t inactivity_timer;
static uint16_t link_inactivity_timeout_ms; // auto-sleep if set
// Outgoing packet
static uint8_t hci_packet_type;
static uint16_t hci_packet_size;
static uint8_t * hci_packet;
// hci packet handler
static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size);
static int hci_transport_link_actions;
// UART Driver + Config
static const btstack_uart_block_t * btstack_uart;
static btstack_uart_config_t uart_config;
static btstack_uart_sleep_mode_t btstack_uart_sleep_mode;
static int hci_transport_bcsp_mode;
// Prototypes
static void hci_transport_h5_process_frame(uint16_t frame_size);
static int hci_transport_link_have_outgoing_packet(void);
static void hci_transport_link_send_queued_packet(void);
static void hci_transport_link_set_timer(uint16_t timeout_ms);
static void hci_transport_link_timeout_handler(btstack_timer_source_t * timer);
static void hci_transport_link_run(void);
static void hci_transport_slip_init(void);
// -----------------------------
// CRC16-CCITT Calculation - compromise: use 32 byte table - 512 byte table would be faster, but that's too large
static const uint16_t crc16_ccitt_table[] ={
0x0000, 0x1081, 0x2102, 0x3183,
0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xa50a, 0xb58b,
0xc60c, 0xd68d, 0xe70e, 0xf78f
};
static uint16_t crc16_ccitt_update (uint16_t crc, uint8_t ch){
crc = (crc >> 4) ^ crc16_ccitt_table[(crc ^ ch) & 0x000f];
crc = (crc >> 4) ^ crc16_ccitt_table[(crc ^ (ch >> 4)) & 0x000f];
return crc;
}
static uint16_t btstack_reverse_bits_16(uint16_t value){
int reverse = 0;
int i;
for (i = 0; i < 16; i++) {
reverse = reverse << 1;
reverse |= value & 1;
value = value >> 1;
}
return reverse;
}
static uint16_t crc16_calc_for_slip_frame(const uint8_t * header, const uint8_t * payload, uint16_t len){
int i;
uint16_t crc = 0xffff;
for (i=0 ; i < 4 ; i++){
crc = crc16_ccitt_update(crc, header[i]);
}
for (i=0 ; i < len ; i++){
crc = crc16_ccitt_update(crc, payload[i]);
}
return btstack_reverse_bits_16(crc);
}
// -----------------------------
static void hci_transport_inactivity_timeout_handler(btstack_timer_source_t * ts){
log_info("inactivity timeout. link state %d, peer asleep %u, actions 0x%02x, outgoing packet %u",
link_state, link_peer_asleep, hci_transport_link_actions, hci_transport_link_have_outgoing_packet());
if (hci_transport_link_have_outgoing_packet()) return;
if (link_state != LINK_ACTIVE) return;
if (hci_transport_link_actions) return;
if (link_peer_asleep) return;
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_SLEEP;
hci_transport_link_run();
}
static void hci_transport_inactivity_timer_set(void){
if (!link_inactivity_timeout_ms) return;
btstack_run_loop_set_timer_handler(&inactivity_timer, &hci_transport_inactivity_timeout_handler);
btstack_run_loop_set_timer(&inactivity_timer, link_inactivity_timeout_ms);
btstack_run_loop_remove_timer(&inactivity_timer);
btstack_run_loop_add_timer(&inactivity_timer);
}
// -----------------------------
// SLIP Outgoing
// Fill chunk and write
static void hci_transport_slip_encode_chunk_and_send(int pos){
while (btstack_slip_encoder_has_data() & (pos < LINK_SLIP_TX_CHUNK_LEN)) {
slip_outgoing_buffer[pos++] = btstack_slip_encoder_get_byte();
}
if (!btstack_slip_encoder_has_data()){
// Payload encoded, append DIC if present.
// note: slip_outgoing_buffer is guaranteed to be big enough to add DIC + SOF after LINK_SLIP_TX_CHUNK_LEN
if (slip_outgoing_dic_present){
uint8_t dic_buffer[2];
big_endian_store_16(dic_buffer, 0, slip_outgoing_dic);
btstack_slip_encoder_start(dic_buffer, 2);
while (btstack_slip_encoder_has_data()){
slip_outgoing_buffer[pos++] = btstack_slip_encoder_get_byte();
}
}
// Start of Frame
slip_outgoing_buffer[pos++] = BTSTACK_SLIP_SOF;
}
slip_write_active = 1;
log_debug("slip: send %d bytes", pos);
btstack_uart->send_block(slip_outgoing_buffer, pos);
}
static inline void hci_transport_slip_send_next_chunk(void){
hci_transport_slip_encode_chunk_and_send(0);
}
// format: 0xc0 HEADER PACKET [DIC] 0xc0
// @param uint8_t header[4]
static void hci_transport_slip_send_frame(const uint8_t * header, const uint8_t * packet, uint16_t packet_size, uint16_t data_integrity_check){
int pos = 0;
// store data integrity check info
slip_outgoing_dic = data_integrity_check;
slip_outgoing_dic_present = header[0] & 0x40;
// Start of Frame
slip_outgoing_buffer[pos++] = BTSTACK_SLIP_SOF;
// Header
btstack_slip_encoder_start(header, 4);
while (btstack_slip_encoder_has_data()){
slip_outgoing_buffer[pos++] = btstack_slip_encoder_get_byte();
}
// Packet
btstack_slip_encoder_start(packet, packet_size);
// Fill rest of chunk from packet and send
hci_transport_slip_encode_chunk_and_send(pos);
}
// SLIP Incoming
static void hci_transport_slip_init(void){
btstack_slip_decoder_init(&hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], 6 + HCI_PACKET_BUFFER_SIZE);
}
// H5 Three-Wire Implementation
static void hci_transport_link_calc_header(uint8_t * header,
uint8_t sequence_nr,
uint8_t acknowledgement_nr,
uint8_t data_integrity_check_present,
uint8_t reliable_packet,
uint8_t packet_type,
uint16_t payload_length){
header[0] = sequence_nr | (acknowledgement_nr << 3) | (data_integrity_check_present << 6) | (reliable_packet << 7);
header[1] = packet_type | ((payload_length & 0x0f) << 4);
header[2] = payload_length >> 4;
header[3] = 0xff - (header[0] + header[1] + header[2]);
}
static void hci_transport_link_send_control(const uint8_t * message, int message_len){
uint8_t header[4];
hci_transport_link_calc_header(header, 0, 0, link_peer_supports_data_integrity_check, 0, LINK_CONTROL_PACKET_TYPE, message_len);
uint16_t data_integrity_check = 0;
if (link_peer_supports_data_integrity_check){
data_integrity_check = crc16_calc_for_slip_frame(header, message, message_len);
}
log_debug("hci_transport_link_send_control: size %u, append dic %u", message_len, link_peer_supports_data_integrity_check);
log_debug_hexdump(message, message_len);
hci_transport_slip_send_frame(header, message, message_len, data_integrity_check);
}
static void hci_transport_link_send_sync(void){
log_debug("link send sync");
hci_transport_link_send_control(link_control_sync, sizeof(link_control_sync));
}
static void hci_transport_link_send_sync_response(void){
log_debug("link send sync response");
hci_transport_link_send_control(link_control_sync_response, sizeof(link_control_sync_response));
}
static void hci_transport_link_send_config(void){
log_debug("link send config");
hci_transport_link_send_control(link_control_config, sizeof(link_control_config));
}
static void hci_transport_link_send_config_response(void){
log_debug("link send config response");
hci_transport_link_send_control(link_control_config_response, sizeof(link_control_config_response));
}
static void hci_transport_link_send_config_response_empty(void){
log_debug("link send config response empty");
hci_transport_link_send_control(link_control_config_response_empty, sizeof(link_control_config_response_empty));
}
static void hci_transport_link_send_woken(void){
log_debug("link send woken");
hci_transport_link_send_control(link_control_woken, sizeof(link_control_woken));
}
static void hci_transport_link_send_wakeup(void){
log_debug("link send wakeup");
hci_transport_link_send_control(link_control_wakeup, sizeof(link_control_wakeup));
}
static void hci_transport_link_send_sleep(void){
log_debug("link send sleep");
hci_transport_link_send_control(link_control_sleep, sizeof(link_control_sleep));
}
static void hci_transport_link_send_queued_packet(void){
uint8_t header[4];
hci_transport_link_calc_header(header, link_seq_nr, link_ack_nr, link_peer_supports_data_integrity_check, 1, hci_packet_type, hci_packet_size);
uint16_t data_integrity_check = 0;
if (link_peer_supports_data_integrity_check){
data_integrity_check = crc16_calc_for_slip_frame(header, hci_packet, hci_packet_size);
}
log_debug("hci_transport_link_send_queued_packet: seq %u, ack %u, size %u. Append dic %u, dic = 0x%04x", link_seq_nr, link_ack_nr, hci_packet_size, link_peer_supports_data_integrity_check, data_integrity_check);
log_debug_hexdump(hci_packet, hci_packet_size);
hci_transport_slip_send_frame(header, hci_packet, hci_packet_size, data_integrity_check);
// reset inactvitiy timer
hci_transport_inactivity_timer_set();
}
static void hci_transport_link_send_ack_packet(void){
// Pure ACK package is without DIC as there is no payload either
log_debug("send ack %u", link_ack_nr);
uint8_t header[4];
hci_transport_link_calc_header(header, 0, link_ack_nr, 0, 0, LINK_ACKNOWLEDGEMENT_TYPE, 0);
hci_transport_slip_send_frame(header, NULL, 0, 0);
}
static void hci_transport_link_run(void){
// exit if outgoing active
if (slip_write_active) return;
// process queued requests
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_SYNC){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_SYNC;
hci_transport_link_send_sync();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_SYNC_RESPONSE){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_SYNC_RESPONSE;
hci_transport_link_send_sync_response();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_CONFIG){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_CONFIG;
hci_transport_link_send_config();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE;
hci_transport_link_send_config_response();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE_EMPTY){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE_EMPTY;
hci_transport_link_send_config_response_empty();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_WOKEN){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_WOKEN;
hci_transport_link_send_woken();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_WAKEUP){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_WAKEUP;
hci_transport_link_send_wakeup();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_QUEUED_PACKET){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_QUEUED_PACKET;
// packet already contains ack, no need to send addtitional one
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_ACK_PACKET;
hci_transport_link_send_queued_packet();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_ACK_PACKET){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_ACK_PACKET;
hci_transport_link_send_ack_packet();
return;
}
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_SEND_SLEEP){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_SEND_SLEEP;
hci_transport_link_actions |= HCI_TRANSPORT_LINK_ENTER_SLEEP;
link_peer_asleep = 1;
hci_transport_link_send_sleep();
return;
}
}
static void hci_transport_link_set_timer(uint16_t timeout_ms){
btstack_run_loop_set_timer_handler(&link_timer, &hci_transport_link_timeout_handler);
btstack_run_loop_set_timer(&link_timer, timeout_ms);
btstack_run_loop_add_timer(&link_timer);
}
static void hci_transport_link_timeout_handler(btstack_timer_source_t * timer){
switch (link_state){
case LINK_UNINITIALIZED:
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_SYNC;
hci_transport_link_set_timer(LINK_PERIOD_MS);
break;
case LINK_INITIALIZED:
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_CONFIG;
hci_transport_link_set_timer(LINK_PERIOD_MS);
break;
case LINK_ACTIVE:
if (!hci_transport_link_have_outgoing_packet()){
log_info("h5 timeout while active, but no outgoing packet");
return;
}
if (link_peer_asleep){
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_WAKEUP;
hci_transport_link_set_timer(LINK_WAKEUP_MS);
return;
}
// resend packet
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_QUEUED_PACKET;
hci_transport_link_set_timer(link_resend_timeout_ms);
break;
default:
break;
}
hci_transport_link_run();
}
static void hci_transport_link_init(void){
link_state = LINK_UNINITIALIZED;
link_peer_asleep = 0;
link_peer_supports_data_integrity_check = 0;
// get started
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_SYNC;
hci_transport_link_set_timer(LINK_PERIOD_MS);
hci_transport_link_run();
}
static int hci_transport_link_inc_seq_nr(int seq_nr){
return (seq_nr + 1) & 0x07;
}
static int hci_transport_link_have_outgoing_packet(void){
return hci_packet != 0;
}
static void hci_transport_link_clear_queue(void){
btstack_run_loop_remove_timer(&link_timer);
hci_packet = NULL;
}
static void hci_transport_h5_queue_packet(uint8_t packet_type, uint8_t *packet, int size){
hci_packet = packet;
hci_packet_type = packet_type;
hci_packet_size = size;
}
static void hci_transport_h5_emit_sleep_state(int sleep_active){
static int last_state = 0;
if (sleep_active == last_state) return;
last_state = sleep_active;
log_info("emit_sleep_state: %u", sleep_active);
uint8_t event[3];
event[0] = HCI_EVENT_TRANSPORT_SLEEP_MODE;
event[1] = sizeof(event) - 2;
event[2] = sleep_active;
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
}
static void hci_transport_h5_process_frame(uint16_t frame_size){
if (frame_size < 4) return;
uint8_t * slip_header = &hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE];
uint8_t * slip_payload = &hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + 4];
int frame_size_without_header = frame_size - 4;
uint8_t seq_nr = slip_header[0] & 0x07;
uint8_t ack_nr = (slip_header[0] >> 3) & 0x07;
uint8_t data_integrity_check_present = (slip_header[0] & 0x40) != 0;
uint8_t reliable_packet = (slip_header[0] & 0x80) != 0;
uint8_t link_packet_type = slip_header[1] & 0x0f;
uint16_t link_payload_len = (slip_header[1] >> 4) | (slip_header[2] << 4);
log_debug("process_frame, reliable %u, packet type %u, seq_nr %u, ack_nr %u , dic %u, payload 0x%04x bytes", reliable_packet, link_packet_type, seq_nr, ack_nr, data_integrity_check_present, frame_size_without_header);
log_debug_hexdump(slip_header, 4);
log_debug_hexdump(slip_payload, frame_size_without_header);
// CSR 8811 does not seem to auto-detect H5 mode and sends data with even parity.
// if this byte sequence is detected, just enable even parity
const uint8_t sync_response_bcsp[] = {0x01, 0x7a, 0x06, 0x10};
if (memcmp(sync_response_bcsp, slip_header, 4) == 0){
log_info("detected BSCP SYNC sent with Even Parity -> discard frame and enable Even Parity");
btstack_uart->set_parity(1);
return;
}
// validate header checksum
uint8_t header_checksum = slip_header[0] + slip_header[1] + slip_header[2] + slip_header[3];
if (header_checksum != 0xff){
log_info("header checksum 0x%02x (instead of 0xff)", header_checksum);
return;
}
// validate payload length
int data_integrity_len = data_integrity_check_present ? 2 : 0;
uint16_t received_payload_len = frame_size_without_header - data_integrity_len;
if (link_payload_len != received_payload_len){
log_info("expected payload len %u but got %u", link_payload_len, received_payload_len);
return;
}
// validate data integrity check
if (data_integrity_check_present){
uint16_t dic_packet = big_endian_read_16(slip_payload, received_payload_len);
uint16_t dic_calculate = crc16_calc_for_slip_frame(slip_header, slip_payload, received_payload_len);
if (dic_packet != dic_calculate){
log_info("expected dic value 0x%04x but got 0x%04x", dic_calculate, dic_packet);
return;
}
}
switch (link_state){
case LINK_UNINITIALIZED:
if (link_packet_type != LINK_CONTROL_PACKET_TYPE) break;
if (memcmp(slip_payload, link_control_sync, sizeof(link_control_sync)) == 0){
log_debug("link received sync");
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_SYNC_RESPONSE;
break;
}
if (memcmp(slip_payload, link_control_sync_response, sizeof(link_control_sync_response)) == 0){
log_debug("link received sync response");
link_state = LINK_INITIALIZED;
btstack_run_loop_remove_timer(&link_timer);
log_info("link initialized");
//
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_CONFIG;
hci_transport_link_set_timer(LINK_PERIOD_MS);
break;
}
break;
case LINK_INITIALIZED:
if (link_packet_type != LINK_CONTROL_PACKET_TYPE) break;
if (memcmp(slip_payload, link_control_sync, sizeof(link_control_sync)) == 0){
log_debug("link received sync");
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_SYNC_RESPONSE;
break;
}
if (memcmp(slip_payload, link_control_config, link_control_config_prefix_len) == 0){
if (link_payload_len == link_control_config_prefix_len){
log_debug("link received config, no config field");
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE_EMPTY;
} else {
log_debug("link received config, 0x%02x", slip_payload[2]);
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE;
}
break;
}
if (memcmp(slip_payload, link_control_config_response, link_control_config_response_prefix_len) == 0){
uint8_t config = slip_payload[2];
link_peer_supports_data_integrity_check = (config & 0x10) != 0;
log_info("link received config response 0x%02x, data integrity check supported %u", config, link_peer_supports_data_integrity_check);
link_state = LINK_ACTIVE;
btstack_run_loop_remove_timer(&link_timer);
log_info("link activated");
//
link_seq_nr = 0;
link_ack_nr = 0;
// notify upper stack that it can start
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
break;
}
break;
case LINK_ACTIVE:
// validate packet sequence nr in reliable packets (check for out of sequence error)
if (reliable_packet){
if (seq_nr != link_ack_nr){
log_info("expected seq nr %u, but received %u", link_ack_nr, seq_nr);
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_ACK_PACKET;
break;
}
// ack packet right away
link_ack_nr = hci_transport_link_inc_seq_nr(link_ack_nr);
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_ACK_PACKET;
}
// Process ACKs in reliable packet and explicit ack packets
if (reliable_packet || link_packet_type == LINK_ACKNOWLEDGEMENT_TYPE){
// our packet is good if the remote expects our seq nr + 1
int next_seq_nr = hci_transport_link_inc_seq_nr(link_seq_nr);
if (hci_transport_link_have_outgoing_packet() && next_seq_nr == ack_nr){
log_debug("outoing packet with seq %u ack'ed", link_seq_nr);
link_seq_nr = next_seq_nr;
hci_transport_link_clear_queue();
// notify upper stack that it can send again
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
}
}
switch (link_packet_type){
case LINK_CONTROL_PACKET_TYPE:
if (memcmp(slip_payload, link_control_config, sizeof(link_control_config)) == 0){
if (link_payload_len == link_control_config_prefix_len){
log_debug("link received config, no config field");
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE_EMPTY;
} else {
log_debug("link received config, 0x%02x", slip_payload[2]);
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_CONFIG_RESPONSE;
}
break;
}
if (memcmp(slip_payload, link_control_sync, sizeof(link_control_sync)) == 0){
log_debug("link received sync in ACTIVE STATE!");
// TODO sync during active indicates peer reset -> full upper layer reset necessary
break;
}
if (memcmp(slip_payload, link_control_sleep, sizeof(link_control_sleep)) == 0){
if (btstack_uart_sleep_mode){
log_info("link: received sleep message. Enabling UART Sleep.");
btstack_uart->set_sleep(btstack_uart_sleep_mode);
hci_transport_h5_emit_sleep_state(1);
} else {
log_info("link: received sleep message. UART Sleep not supported");
}
link_peer_asleep = 1;
break;
}
if (memcmp(slip_payload, link_control_wakeup, sizeof(link_control_wakeup)) == 0){
log_info("link: received wakupe message -> send woken");
link_peer_asleep = 0;
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_WOKEN;
break;
}
if (memcmp(slip_payload, link_control_woken, sizeof(link_control_woken)) == 0){
log_info("link: received woken message");
link_peer_asleep = 0;
// queued packet will be sent in hci_transport_link_run if needed
break;
}
break;
case HCI_EVENT_PACKET:
case HCI_ACL_DATA_PACKET:
case HCI_SCO_DATA_PACKET:
// seems like peer is awake
link_peer_asleep = 0;
// forward packet to stack
packet_handler(link_packet_type, slip_payload, link_payload_len);
// reset inactvitiy timer
hci_transport_inactivity_timer_set();
break;
}
break;
default:
break;
}
hci_transport_link_run();
}
// recommendet time until resend: 3 * time of largest packet
static uint16_t hci_transport_link_calc_resend_timeout(uint32_t baudrate){
uint32_t max_packet_size_in_bit = (HCI_PACKET_BUFFER_SIZE + 6) << 3;
uint32_t t_max_x3_ms = max_packet_size_in_bit * 3000 / baudrate;
// allow for BTstack logging and other delays
t_max_x3_ms += 50;
log_info("resend timeout for %"PRIu32" baud: %u ms", baudrate, (int) t_max_x3_ms);
return t_max_x3_ms;
}
static void hci_transport_link_update_resend_timeout(uint32_t baudrate){
link_resend_timeout_ms = hci_transport_link_calc_resend_timeout(baudrate);
}
/// H5 Interface
static uint8_t hci_transport_link_read_byte;
static void hci_transport_h5_read_next_byte(void){
btstack_uart->receive_block(&hci_transport_link_read_byte, 1);
}
// track time receiving SLIP frame
static uint32_t hci_transport_h5_receive_start;
static void hci_transport_h5_block_received(){
// track start time when receiving first byte // a bit hackish
if (hci_transport_h5_receive_start == 0 && hci_transport_link_read_byte != BTSTACK_SLIP_SOF){
hci_transport_h5_receive_start = btstack_run_loop_get_time_ms();
}
btstack_slip_decoder_process(hci_transport_link_read_byte);
uint16_t frame_size = btstack_slip_decoder_frame_size();
if (frame_size) {
// track time
uint32_t packet_receive_time = btstack_run_loop_get_time_ms() - hci_transport_h5_receive_start;
uint32_t nominmal_time = (frame_size + 6) * 10 * 1000 / uart_config.baudrate;
log_info("slip frame time %u ms for %u decoded bytes. nomimal time %u ms", (int) packet_receive_time, frame_size, (int) nominmal_time);
// reset state
hci_transport_h5_receive_start = 0;
//
hci_transport_h5_process_frame(frame_size);
hci_transport_slip_init();
}
hci_transport_h5_read_next_byte();
}
static void hci_transport_h5_block_sent(void){
// check if more data to send
if (btstack_slip_encoder_has_data()){
hci_transport_slip_send_next_chunk();
return;
}
// done
slip_write_active = 0;
// enter sleep mode after sending sleep message
if (hci_transport_link_actions & HCI_TRANSPORT_LINK_ENTER_SLEEP){
hci_transport_link_actions &= ~HCI_TRANSPORT_LINK_ENTER_SLEEP;
if (btstack_uart_sleep_mode){
log_info("link: sent sleep message. Enabling UART Sleep.");
btstack_uart->set_sleep(btstack_uart_sleep_mode);
} else {
log_info("link: sent sleep message. UART Sleep not supported");
}
hci_transport_h5_emit_sleep_state(1);
}
hci_transport_link_run();
}
static void hci_transport_h5_init(const void * transport_config){
// check for hci_transport_config_uart_t
if (!transport_config) {
log_error("hci_transport_h5: no config!");
return;
}
if (((hci_transport_config_t*)transport_config)->type != HCI_TRANSPORT_CONFIG_UART) {
log_error("hci_transport_h5: config not of type != HCI_TRANSPORT_CONFIG_UART!");
return;
}
// extract UART config from transport config
hci_transport_config_uart_t * hci_transport_config_uart = (hci_transport_config_uart_t*) transport_config;
uart_config.baudrate = hci_transport_config_uart->baudrate_init;
uart_config.flowcontrol = hci_transport_config_uart->flowcontrol;
uart_config.device_name = hci_transport_config_uart->device_name;
// setup UART driver
btstack_uart->init(&uart_config);
btstack_uart->set_block_received(&hci_transport_h5_block_received);
btstack_uart->set_block_sent(&hci_transport_h5_block_sent);
}
static int hci_transport_h5_open(void){
int res = btstack_uart->open();
if (res){
return res;
}
//
if (hci_transport_bcsp_mode){
log_info("enable even parity for BCSP mode");
btstack_uart->set_parity(1);
}
// check if wake on RX can be used
btstack_uart_sleep_mode = BTSTACK_UART_SLEEP_OFF;
int supported_sleep_modes = 0;
if (btstack_uart->get_supported_sleep_modes){
supported_sleep_modes = btstack_uart->get_supported_sleep_modes();
}
if (supported_sleep_modes & BTSTACK_UART_SLEEP_MASK_RTS_LOW_WAKE_ON_RX_EDGE){
log_info("using wake on RX");
btstack_uart_sleep_mode = BTSTACK_UART_SLEEP_RTS_LOW_WAKE_ON_RX_EDGE;
} else {
log_info("UART driver does not provide compatible sleep mode");
}
// setup resend timeout
hci_transport_link_update_resend_timeout(uart_config.baudrate);
// init slip parser state machine
hci_transport_slip_init();
// init link management - already starts syncing
hci_transport_link_init();
// start receiving
hci_transport_h5_read_next_byte();
return 0;
}
static int hci_transport_h5_close(void){
return btstack_uart->close();
}
static void hci_transport_h5_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
packet_handler = handler;
}
static int hci_transport_h5_can_send_packet_now(uint8_t packet_type){
int res = !hci_transport_link_have_outgoing_packet() && link_state == LINK_ACTIVE;
// log_info("can_send_packet_now: %u", res);
return res;
}
static int hci_transport_h5_send_packet(uint8_t packet_type, uint8_t *packet, int size){
if (!hci_transport_h5_can_send_packet_now(packet_type)){
log_error("hci_transport_h5_send_packet called but in state %d", link_state);
return -1;
}
// store request
hci_transport_h5_queue_packet(packet_type, packet, size);
// send wakeup first
if (link_peer_asleep){
hci_transport_h5_emit_sleep_state(0);
if (btstack_uart_sleep_mode){
log_info("disable UART sleep");
btstack_uart->set_sleep(BTSTACK_UART_SLEEP_OFF);
}
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_WAKEUP;
hci_transport_link_set_timer(LINK_WAKEUP_MS);
} else {
hci_transport_link_actions |= HCI_TRANSPORT_LINK_SEND_QUEUED_PACKET;
hci_transport_link_set_timer(link_resend_timeout_ms);
}
hci_transport_link_run();
return 0;
}
static int hci_transport_h5_set_baudrate(uint32_t baudrate){
log_info("set_baudrate %"PRIu32, baudrate);
int res = btstack_uart->set_baudrate(baudrate);
if (res) return res;
hci_transport_link_update_resend_timeout(baudrate);
return 0;
}
static void hci_transport_h5_reset_link(void){
log_info("reset_link");
// clear outgoing queue
hci_transport_link_clear_queue();
// init slip parser state machine
hci_transport_slip_init();
// init link management - already starts syncing
hci_transport_link_init();
}
static const hci_transport_t hci_transport_h5 = {
/* const char * name; */ "H5",
/* void (*init) (const void *transport_config); */ &hci_transport_h5_init,
/* int (*open)(void); */ &hci_transport_h5_open,
/* int (*close)(void); */ &hci_transport_h5_close,
/* void (*register_packet_handler)(void (*handler)(...); */ &hci_transport_h5_register_packet_handler,
/* int (*can_send_packet_now)(uint8_t packet_type); */ &hci_transport_h5_can_send_packet_now,
/* int (*send_packet)(...); */ &hci_transport_h5_send_packet,
/* int (*set_baudrate)(uint32_t baudrate); */ &hci_transport_h5_set_baudrate,
/* void (*reset_link)(void); */ &hci_transport_h5_reset_link,
/* void (*set_sco_config)(uint16_t voice_setting, int num_connections); */ NULL,
};
// configure and return h5 singleton
const hci_transport_t * hci_transport_h5_instance(const btstack_uart_block_t * uart_driver) {
btstack_uart = uart_driver;
return &hci_transport_h5;
}
void hci_transport_h5_set_auto_sleep(uint16_t inactivity_timeout_ms){
link_inactivity_timeout_ms = inactivity_timeout_ms;
}
void hci_transport_h5_enable_bcsp_mode(void){
hci_transport_bcsp_mode = 1;
}