btstack/test/crypto/aes_cmac_test.c
2020-12-10 11:52:05 +01:00

358 lines
12 KiB
C

#include <stdio.h>
#include <string.h>
#include "aes_cmac.h"
// #include "btstack_util.h"
typedef uint8_t sm_key24_t[3];
typedef uint8_t sm_key56_t[7];
typedef uint8_t sm_key256_t[32];
static const char * key_string = "2b7e1516 28aed2a6 abf71588 09cf4f3c";
static const char * k0_string = "7df76b0c 1ab899b3 3e42f047 b91b546f";
static const char * k1_string = "fbeed618 35713366 7c85e08f 7236a8de";
static const char * k2_string = "f7ddac30 6ae266cc f90bc11e e46d513b";
static const char * m0_string = "";
static const char * cmac_m0_string = "bb1d6929 e9593728 7fa37d12 9b756746";
static const char * m16_string = "6bc1bee2 2e409f96 e93d7e11 7393172a";
static const char * cmac_m16_string = "070a16b4 6b4d4144 f79bdd9d d04a287c";
static const char * m40_string = "6bc1bee2 2e409f96 e93d7e11 7393172a ae2d8a57 1e03ac9c 9eb76fac 45af8e51 30c81c46 a35ce411";
static const char * cmac_m40_string = "dfa66747 de9ae630 30ca3261 1497c827";
static const char * m64_string = "6bc1bee2 2e409f96 e93d7e11 7393172a ae2d8a57 1e03ac9c 9eb76fac 45af8e51 30c81c46 a35ce411 e5fbc119 1a0a52ef f69f2445 df4f9b17 ad2b417b e66c3710";
static const char * cmac_m64_string = "51f0bebf 7e3b9d92 fc497417 79363cfe";
// f4
static const char * f4_u_string = "20b003d2 f297be2c 5e2c83a7 e9f9a5b9 eff49111 acf4fddb cc030148 0e359de6";
static const char * f4_v_string = "55188b3d 32f6bb9a 900afcfb eed4e72a 59cb9ac2 f19d7cfb 6b4fdd49 f47fc5fd";
static const char * f4_x_string = "d5cb8454 d177733e ffffb2ec 712baeab";
static const char * f4_z_string = "00";
static const char * f4_cmac_string = "f2c916f1 07a9bd1c f1eda1be a974872d";
// f5
const char * f5_w_string = "ec0234a3 57c8ad05 341010a6 0a397d9b 99796b13 b4f866f1 868d34f3 73bfa698";
const char * f5_t_string = "3c128f20 de883288 97624bdb 8dac6989";
const char * f5_n1_string = "d5cb8454 d177733e ffffb2ec 712baeab";
const char * f5_n2_string = "a6e8e7cc 25a75f6e 216583f7 ff3dc4cf";
const char * f5_a1_string = "00561237 37bfce";
const char * f5_a2_string = "00a71370 2dcfc1";
const char * f5_cmac_string = "2965f176 a1084a02 fd3f6a20 ce636e20";
// f6
const char * f6_n1_string = "d5cb8454 d177733e ffffb2ec 712baeab";
const char * f6_n2_string = "a6e8e7cc 25a75f6e 216583f7 ff3dc4cf";
const char * f6_mac_key_string = "2965f176 a1084a02 fd3f6a20 ce636e20";
const char * f6_r_string = "12a3343b b453bb54 08da42d2 0c2d0fc8";
const char * f6_io_cap_string = "010102";
const char * f6_a1_string = "00561237 37bfce";
const char * f6_a2_string = "00a71370 2dcfc1";
const char * f6_cmac_string = "e3c47398 9cd0e8c5 d26c0b09 da958f61";
// g2
const char * g2_u_string = "20b003d2 f297be2c 5e2c83a7 e9f9a5b9 eff49111 acf4fddb cc030148 0e359de6";
const char * g2_v_string = "55188b3d 32f6bb9a 900afcfb eed4e72a 59cb9ac2 f19d7cfb 6b4fdd49 f47fc5fd";
const char * g2_x_string = "d5cb8454 d177733e ffffb2ec 712baeab";
const char * g2_y_string = "a6e8e7cc 25a75f6e 216583f7 ff3dc4cf";
// const char * g2_cmac_string = "1536d18d e3d20df9 9b7044c1 2f9ed5ba";
const char * g2_res_string = "2f9ed5ba";
// h6
const char * h6_key_string = "ec0234a3 57c8ad05 341010a6 0a397d9b";
const char * h6_key_id_string = "6c656272";
const char * h6_cmac_string = "2d9ae102 e76dc91c e8d3a9e2 80b16399";
// h7
const char * h7_key_string = "ec0234a3 57c8ad05 341010a6 0a397d9b";
const char * h7_cmac_string = "fb173597 c6a3c0ec d2998c2a 75a57011";
static uint32_t big_endian_read_32( const uint8_t * buffer, int pos) {
return ((uint32_t) buffer[(pos)+3]) | (((uint32_t)buffer[(pos)+2]) << 8) | (((uint32_t)buffer[(pos)+1]) << 16) | (((uint32_t) buffer[pos]) << 24);
}
static void big_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
buffer[pos++] = value >> 24;
buffer[pos++] = value >> 16;
buffer[pos++] = value >> 8;
buffer[pos++] = value;
}
static void hexdump2(void *data, int size){
if (size <= 0) return;
int i;
for (i=0; i<size;i++){
printf("%02X ", ((uint8_t *)data)[i]);
}
printf("\n");
}
static int nibble_for_char(char c){
if (c >= '0' && c <= '9') return c - '0';
if (c >= 'a' && c <= 'f') return c - 'a' + 10;
if (c >= 'A' && c <= 'F') return c - 'A' + 10;
return -1;
}
static int parse_hex(uint8_t * buffer, const char * hex_string){
int len = 0;
while (*hex_string){
if (*hex_string == ' '){
hex_string++;
continue;
}
int high_nibble = nibble_for_char(*hex_string++);
int low_nibble = nibble_for_char(*hex_string++);
*buffer++ = (high_nibble << 4) | low_nibble;
len++;
}
return len;
}
#define LOG_KEY(NAME) { printf("%16s: ", #NAME); hexdump2(NAME, 16); }
#define PARSE_KEY(NAME) { parse_hex(NAME, NAME##_string); LOG_KEY(NAME); }
#define VALIDATE_KEY(NAME) { LOG_KEY(NAME); sm_key_t test; parse_hex(test, NAME##_string); if (memcmp(NAME, test, 16)){ printf("Error calculating key\n"); } }
#define VALIDATE_MESSAGE(NAME) validate_message(#NAME, NAME##_string, cmac_##NAME##_string)
static void validate_message(const char * name, const char * message_string, const char * cmac_string){
uint8_t m[128];
int len = parse_hex(m, message_string);
sm_key_t cmac;
parse_hex(cmac, cmac_string);
printf("-- verify message %s, len %u:\nm: %s\ncmac: %s\n", name, len, message_string, cmac_string);
sm_key_t key;
parse_hex(key, key_string);
sm_key_t cmac_test;
aes_cmac(cmac_test, key, m, len);
LOG_KEY(cmac_test);
if (memcmp(cmac_test, cmac, 16)){
printf("CMAC incorrect!\n");
} else {
printf("CMAC correct!\n");
}
}
static void f4(sm_key_t res, const sm_key256_t u, const sm_key256_t v, const sm_key_t x, uint8_t z){
uint8_t buffer[65];
memcpy(buffer, u, 32);
memcpy(buffer+32, v, 32);
buffer[64] = z;
// hexdump2(buffer, sizeof(buffer));
aes_cmac(res, x, buffer, sizeof(buffer));
}
const sm_key_t f5_salt = { 0x6C ,0x88, 0x83, 0x91, 0xAA, 0xF5, 0xA5, 0x38, 0x60, 0x37, 0x0B, 0xDB, 0x5A, 0x60, 0x83, 0xBE};
const uint8_t f5_key_id[] = { 0x62, 0x74, 0x6c, 0x65 };
const uint8_t f5_length[] = { 0x01, 0x00};
static void f5(sm_key256_t res, const sm_key256_t w, const sm_key_t n1, const sm_key_t n2, const sm_key56_t a1, const sm_key56_t a2){
// T = AES-CMACSAL_T(W)
sm_key_t t;
aes_cmac(t, f5_salt, w, 32);
// f5(W, N1, N2, A1, A2) = AES-CMACT (Counter = 0 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the MacKey
uint8_t buffer[53];
buffer[0] = 0;
memcpy(buffer+01, f5_key_id, 4);
memcpy(buffer+05, n1, 16);
memcpy(buffer+21, n2, 16);
memcpy(buffer+37, a1, 7);
memcpy(buffer+44, a2, 7);
memcpy(buffer+51, f5_length, 2);
// hexdump2(buffer, sizeof(buffer));
aes_cmac(res, t, buffer, sizeof(buffer));
// hexdump2(res, 16);
// || AES-CMACT (Counter = 1 || keyID || N1 || N2|| A1|| A2 || Length = 256) -- this is the LTK
buffer[0] = 1;
// hexdump2(buffer, sizeof(buffer));
aes_cmac(res+16, t, buffer, sizeof(buffer));
// hexdump2(res+16, 16);
}
// f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMACW (N1 || N2 || R || IOcap || A1 || A2
// - W is 128 bits
// - N1 is 128 bits
// - N2 is 128 bits
// - R is 128 bits
// - IOcap is 24 bits
// - A1 is 56 bits
// - A2 is 56 bits
static void f6(sm_key_t res, const sm_key_t w, const sm_key_t n1, const sm_key_t n2, const sm_key_t r, const sm_key24_t io_cap, const sm_key56_t a1, const sm_key56_t a2){
uint8_t buffer[65];
memcpy(buffer, n1, 16);
memcpy(buffer+16, n2, 16);
memcpy(buffer+32, r, 16);
memcpy(buffer+48, io_cap, 3);
memcpy(buffer+51, a1, 7);
memcpy(buffer+58, a2, 7);
aes_cmac(res, w, buffer,sizeof(buffer));
}
// g2(U, V, X, Y) = AES-CMACX(U || V || Y) mod 2^32
// - U is 256 bits
// - V is 256 bits
// - X is 128 bits
// - Y is 128 bits
static uint32_t g2(const sm_key256_t u, const sm_key256_t v, const sm_key_t x, const sm_key_t y){
uint8_t buffer[80];
memcpy(buffer, u, 32);
memcpy(buffer+32, v, 32);
memcpy(buffer+64, y, 16);
sm_key_t cmac;
aes_cmac(cmac, x, buffer, sizeof(buffer));
return big_endian_read_32(cmac, 12);
}
// h6(W, keyID) = AES-CMAC_W(keyID)
// - W is 128 bits
// - keyID is 32 bits
static void h6(sm_key_t res, const sm_key_t w, const uint32_t key_id){
uint8_t key_id_buffer[4];
big_endian_store_32(key_id_buffer, 0, key_id);
aes_cmac(res, w, key_id_buffer, 4);
}
// h7(SALT, W) = AES-CMAC_SALT(W)
// - SALT is 128 bit
// - W is 128 bits
static void h7(sm_key_t res, const sm_key_t salt, const sm_key_t w){
uint8_t key_id_buffer[4];
aes_cmac(res, salt, w, 16);
}
int main(void){
sm_key_t key, k0, k1, k2, zero;
memset(zero, 0, 16);
PARSE_KEY(key);
// validate subkey k0,k1,k2 generation
aes128_calc_cyphertext(key, zero, k0);
VALIDATE_KEY(k0);
aes_cmac_calc_subkeys(k0, k1, k2);
VALIDATE_KEY(k1);
VALIDATE_KEY(k2);
// validate AES_CMAC for some messages
VALIDATE_MESSAGE(m0);
VALIDATE_MESSAGE(m16);
VALIDATE_MESSAGE(m40);
VALIDATE_MESSAGE(m64);
// validate f4
printf("-- verify f4\n");
sm_key_t f4_x, f4_cmac, f4_cmac_test;
sm_key256_t f4_u, f4_v;
uint8_t f4_z;
parse_hex(f4_cmac, f4_cmac_string);
parse_hex(f4_u, f4_u_string);
parse_hex(f4_v, f4_v_string);
parse_hex(f4_x, f4_x_string);
parse_hex(&f4_z, f4_z_string);
f4(f4_cmac_test, f4_u, f4_v, f4_x, f4_z);
if (memcmp(f4_cmac_test, f4_cmac, 16)){
printf("CMAC incorrect!\n");
} else {
printf("CMAC correct!\n");
}
// valdiate f5
printf("-- verify f5\n");
sm_key_t f5_cmac, f5_mackey, f5_n1, f5_n2;
sm_key56_t f5_a1, f5_a2;
sm_key256_t f5_w, f5_res;
uint8_t f5_z;
parse_hex(f5_w, f5_w_string);
parse_hex(f5_n1, f5_n1_string);
parse_hex(f5_n2, f5_n2_string);
parse_hex(f5_a1, f5_a1_string);
parse_hex(f5_a2, f5_a2_string);
f5(f5_res, f5_w, f5_n1, f5_n2, f5_a1, f5_a2);
printf("MacKey:");
hexdump2(f5_res, 16);
printf("LTK: ");
hexdump2(f5_res+16, 16);
parse_hex(f5_cmac, f5_cmac_string);
if (memcmp(f5_res, f5_cmac, 16)){
printf("CMAC incorrect!\n");
} else {
printf("CMAC correct!\n");
}
// validate f6
printf("-- verify f6\n");
sm_key_t f6_cmac, f6_mac_key, f6_n1, f6_n2, f6_r, f6_res;
sm_key24_t f6_io_cap;
sm_key56_t f6_a1, f6_a2;
uint8_t f6_z;
parse_hex(f6_n1, f6_n1_string);
parse_hex(f6_n2, f6_n2_string);
parse_hex(f6_a1, f6_a1_string);
parse_hex(f6_a2, f6_a2_string);
parse_hex(f6_mac_key, f6_mac_key_string);
parse_hex(f6_r, f6_r_string);
parse_hex(f6_io_cap, f6_io_cap_string);
f6(f6_res, f6_mac_key, f6_n1, f6_n2, f6_r, f6_io_cap, f6_a1, f6_a2);
hexdump2(f6_res, 16);
parse_hex(f6_cmac, f6_cmac_string);
if (memcmp(f6_res, f6_cmac, 16)){
printf("CMAC incorrect!\n");
} else {
printf("CMAC correct!\n");
}
// validate g2
printf("-- verify g2\n");
sm_key_t g2_cmac, g2_x, g2_y;
sm_key256_t g2_u, g2_v;
parse_hex(g2_x, g2_x_string);
parse_hex(g2_y, g2_y_string);
parse_hex(g2_u, g2_u_string);
parse_hex(g2_v, g2_v_string);
uint32_t g2_test = g2(g2_u, g2_v, g2_x, g2_y);
printf("%08x\n", g2_test);
uint8_t g2_res_buffer[4];
parse_hex(g2_res_buffer, g2_res_string);
uint32_t g2_res = big_endian_read_32(g2_res_buffer, 0);
if (g2_test != g2_res){
printf("G2 incorrect!\n");
} else {
printf("G2 correct!\n");
}
// validate h6
printf("-- verify h6\n");
sm_key_t h6_key, h6_res, h6_cmac;
uint8_t h6_key_id_buffer[4];
parse_hex(h6_key, h6_key_string);
parse_hex(h6_key_id_buffer, h6_key_id_string);
parse_hex(h6_cmac, h6_cmac_string);
uint32_t h6_key_id = big_endian_read_32(h6_key_id_buffer, 0);
h6(h6_res, h6_key, h6_key_id);
hexdump2(h6_res, 16);
if (memcmp(h6_res, h6_cmac, 16)){
printf("CMAC incorrect!\n");
} else {
printf("CMAC correct!\n");
}
// validate h7
printf("-- verify h7\n");
sm_key_t h7_key, h7_res, h7_cmac;
const uint8_t salt[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x74, 0x6D, 0x70, 0x31 }; // "tmp1"
parse_hex(h7_key, h7_key_string);
parse_hex(h7_cmac, h7_cmac_string);
h7(h7_res, salt, h7_key);
hexdump2(h7_res, 16);
if (memcmp(h7_res, h7_cmac, 16)){
printf("CMAC incorrect!\n");
} else {
printf("CMAC correct!\n");
}
}