btstack/src/classic/btstack_cvsd_plc.c
2024-09-25 16:16:17 +02:00

513 lines
17 KiB
C

/*
* Copyright (C) 2016 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN
* GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "btstack_cvsd_plc.c"
/*
* btstack_CVSD_plc.c
*
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef OCTAVE_OUTPUT
#include <stdio.h>
#endif
#include "btstack_cvsd_plc.h"
#include "btstack_debug.h"
// static float rcos[CVSD_OLAL] = {
// 0.99148655f,0.96623611f,0.92510857f,0.86950446f,
// 0.80131732f,0.72286918f,0.63683150f,0.54613418f,
// 0.45386582f,0.36316850f,0.27713082f,0.19868268f,
// 0.13049554f,0.07489143f,0.03376389f,0.00851345f};
static float rcos[CVSD_OLAL] = {
0.99148655f,0.92510857f,
0.80131732f,0.63683150f,
0.45386582f,0.27713082f,
0.13049554f,0.03376389f};
float btstack_cvsd_plc_rcos(int index){
if (index >= CVSD_OLAL) return 0;
return rcos[index];
}
// taken from http://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi
// Algorithm: Babylonian Method + some manipulations on IEEE 32 bit floating point representation
static float sqrt3(const float x){
union {
int i;
float x;
} u;
u.x = x;
u.i = (1<<29) + (u.i >> 1) - (1<<22);
// Two Babylonian Steps (simplified from:)
// u.x = 0.5f * (u.x + x/u.x);
// u.x = 0.5f * (u.x + x/u.x);
u.x = u.x + (x/u.x);
u.x = (0.25f*u.x) + (x/u.x);
return u.x;
}
static float btstack_cvsd_plc_absolute(float x){
if (x < 0) x = -x;
return x;
}
static float btstack_cvsd_plc_cross_correlation(BTSTACK_CVSD_PLC_SAMPLE_FORMAT *x, BTSTACK_CVSD_PLC_SAMPLE_FORMAT *y){
float num = 0.f;
float den = 0.f;
float x2 = 0.f;
float y2 = 0.f;
int m;
for (m=0;m<CVSD_M;m++){
num+=((float)x[m])*y[m];
x2+=((float)x[m])*x[m];
y2+=((float)y[m])*y[m];
}
den = (float)sqrt3(x2*y2);
return num/den;
}
int btstack_cvsd_plc_pattern_match(BTSTACK_CVSD_PLC_SAMPLE_FORMAT *y){
float maxCn = -999999.f; // large negative number
int bestmatch = 0;
float Cn;
int n;
for (n=0;n<CVSD_N;n++){
Cn = btstack_cvsd_plc_cross_correlation(&y[CVSD_LHIST-CVSD_M], &y[n]);
if (Cn>maxCn){
bestmatch=n;
maxCn = Cn;
}
}
return bestmatch;
}
float btstack_cvsd_plc_amplitude_match(btstack_cvsd_plc_state_t *plc_state, uint16_t num_samples, BTSTACK_CVSD_PLC_SAMPLE_FORMAT *y, BTSTACK_CVSD_PLC_SAMPLE_FORMAT bestmatch){
UNUSED(plc_state);
int i;
float sumx = 0.f;
float sumy = 0.000001f;
float sf;
for (i=0;i<num_samples;i++){
sumx += btstack_cvsd_plc_absolute(y[CVSD_LHIST-num_samples+i]);
sumy += btstack_cvsd_plc_absolute(y[bestmatch+i]);
}
sf = sumx/sumy;
// This is not in the paper, but limit the scaling factor to something reasonable to avoid creating artifacts
if (sf<0.75f) sf=0.75f;
if (sf>1.f) sf=1.f;
return sf;
}
BTSTACK_CVSD_PLC_SAMPLE_FORMAT btstack_cvsd_plc_crop_sample(float val){
float croped_val = val;
if (croped_val > 32767.f) croped_val= 32767.f;
if (croped_val < -32768.f) croped_val=-32768.f;
return (BTSTACK_CVSD_PLC_SAMPLE_FORMAT) croped_val;
}
void btstack_cvsd_plc_init(btstack_cvsd_plc_state_t *plc_state){
memset(plc_state, 0, sizeof(btstack_cvsd_plc_state_t));
}
#ifdef OCTAVE_OUTPUT
typedef enum {
OCTAVE_FRAME_TYPE_UNKNOWN = 0,
OCTAVE_FRAME_TYPE_GOOD,
OCTAVE_FRAME_TYPE_BAD
} octave_frame_type_t;
static const char * octave_frame_type_name[] = {
"unknown",
"good",
"bad"
};
static octave_frame_type_t octave_frame_type;
static char octave_base_name[1000];
const char * octave_frame_type2str(int index){
if (index <= 0 || index >= sizeof(octave_frame_type_t)) return octave_frame_type_name[0];
return octave_frame_type_name[index];
}
void btstack_cvsd_plc_octave_set_base_name(const char * base_name){
strcpy(octave_base_name, base_name);
printf("OCTAVE: base name set to %s\n", octave_base_name);
}
static void octave_fprintf_array_int16(FILE * oct_file, char * name, int data_len, int16_t * data){
fprintf(oct_file, "%s = [", name);
int i;
for (i = 0; i < data_len - 1; i++){
fprintf(oct_file, "%d, ", data[i]);
}
fprintf(oct_file, "%d", data[i]);
fprintf(oct_file, "%s", "];\n");
}
static FILE * open_octave_file(btstack_cvsd_plc_state_t *plc_state, octave_frame_type_t frame_type){
char oct_file_name[1200];
octave_frame_type = frame_type;
snprintf(oct_file_name, sizeof(oct_file_name), "%s_octave_plc_%d_%s.m",
octave_base_name, plc_state->frame_count,
octave_frame_type2str(octave_frame_type));
oct_file_name[sizeof(oct_file_name) - 1] = 0;
FILE * oct_file = fopen(oct_file_name, "wb");
if (oct_file == NULL){
printf("OCTAVE: could not open file %s\n", oct_file_name);
return NULL;
}
printf("OCTAVE: opened file %s\n", oct_file_name);
return oct_file;
}
static void octave_fprintf_plot_history_frame(btstack_cvsd_plc_state_t *plc_state, FILE * oct_file, int frame_nr){
char title[100];
char hist_name[10];
snprintf(hist_name, sizeof(hist_name), "hist%d", plc_state->nbf);
hist_name[sizeof(hist_name) - 1] = 0;
octave_fprintf_array_int16(oct_file, hist_name, CVSD_LHIST, plc_state->hist);
fprintf(oct_file, "y = [min(%s):1000:max(%s)];\n", hist_name, hist_name);
fprintf(oct_file, "x = zeros(1, size(y,2));\n");
fprintf(oct_file, "b = [0: %d];\n", CVSD_LHIST+CVSD_FS+CVSD_RT+CVSD_OLAL);
int pos = CVSD_FS;
fprintf(oct_file, "shift_x = x + %d;\n", pos);
pos = CVSD_LHIST - 1;
fprintf(oct_file, "lhist_x = x + %d;\n", pos);
pos += CVSD_OLAL;
fprintf(oct_file, "lhist_olal1_x = x + %d;\n", pos);
pos += CVSD_FS - CVSD_OLAL;
fprintf(oct_file, "lhist_fs_x = x + %d;\n", pos);
pos += CVSD_OLAL;
fprintf(oct_file, "lhist_olal2_x = x + %d;\n", pos);
pos += CVSD_RT;
fprintf(oct_file, "lhist_rt_x = x + %d;\n", pos);
fprintf(oct_file, "pattern_window_x = x + %d;\n", CVSD_LHIST - CVSD_M);
fprintf(oct_file, "hf = figure();\n");
snprintf(title, sizeof(title), "PLC %s frame %d",
octave_frame_type2str(octave_frame_type), frame_nr);
title[sizeof(title) - 1] = 0;
fprintf(oct_file, "hold on;\n");
fprintf(oct_file, "h1 = plot(%s); \n", hist_name);
fprintf(oct_file, "title(\"%s\");\n", title);
fprintf(oct_file, "plot(lhist_x, y, 'k'); \n");
fprintf(oct_file, "text(max(lhist_x) - 10, max(y)+1000, 'lhist'); \n");
fprintf(oct_file, "plot(lhist_olal1_x, y, 'k'); \n");
fprintf(oct_file, "text(max(lhist_olal1_x) - 10, max(y)+1000, 'OLAL'); \n");
fprintf(oct_file, "plot(lhist_fs_x, y, 'k'); \n");
fprintf(oct_file, "text(max(lhist_fs_x) - 10, max(y)+1000, 'FS'); \n");
fprintf(oct_file, "plot(lhist_olal2_x, y, 'k'); \n");
fprintf(oct_file, "text(max(lhist_olal2_x) - 10, max(y)+1000, 'OLAL'); \n");
fprintf(oct_file, "plot(lhist_rt_x, y, 'k');\n");
fprintf(oct_file, "text(max(lhist_rt_x) - 10, max(y)+1000, 'RT'); \n");
if (octave_frame_type == OCTAVE_FRAME_TYPE_GOOD) return;
int x0 = plc_state->bestlag;
int x1 = plc_state->bestlag + CVSD_M - 1;
fprintf(oct_file, "plot(b(%d:%d), %s(%d:%d), 'rd'); \n", x0, x1, hist_name, x0, x1);
fprintf(oct_file, "text(%d - 10, -10, 'bestlag'); \n", x0);
x0 = plc_state->bestlag + CVSD_M ;
x1 = plc_state->bestlag + CVSD_M + CVSD_FS - 1;
fprintf(oct_file, "plot(b(%d:%d), %s(%d:%d), 'kd'); \n", x0, x1, hist_name, x0, x1);
x0 = CVSD_LHIST - CVSD_M;
x1 = CVSD_LHIST - 1;
fprintf(oct_file, "plot(b(%d:%d), %s(%d:%d), 'rd'); \n", x0, x1, hist_name, x0, x1);
fprintf(oct_file, "plot(pattern_window_x, y, 'g'); \n");
fprintf(oct_file, "text(max(pattern_window_x) - 10, max(y)+1000, 'M'); \n");
}
static void octave_fprintf_plot_output(btstack_cvsd_plc_state_t *plc_state, FILE * oct_file){
if (!oct_file) return;
char out_name[10];
snprintf(out_name, sizeof(out_name), "out%d", plc_state->nbf);
out_name[sizeof(out_name) - 1] = 0;
int x0 = CVSD_LHIST;
int x1 = x0 + CVSD_FS - 1;
octave_fprintf_array_int16(oct_file, out_name, CVSD_FS, plc_state->hist+x0);
fprintf(oct_file, "h2 = plot(b(%d:%d), %s, 'cd'); \n", x0, x1, out_name);
char rest_hist_name[10];
snprintf(rest_hist_name, sizeof(rest_hist_name), "rest%d", plc_state->nbf);
rest_hist_name[sizeof(rest_hist_name) - 1] = 0;
x0 = CVSD_LHIST + CVSD_FS;
x1 = x0 + CVSD_OLAL + CVSD_RT - 1;
octave_fprintf_array_int16(oct_file, rest_hist_name, CVSD_OLAL + CVSD_RT, plc_state->hist+x0);
fprintf(oct_file, "h3 = plot(b(%d:%d), %s, 'kd'); \n", x0, x1, rest_hist_name);
char new_hist_name[10];
snprintf(new_hist_name, sizeof(new_hist_name), "hist%d", plc_state->nbf);
new_hist_name[sizeof(new_hist_name) - 1] = 0;
octave_fprintf_array_int16(oct_file, new_hist_name, CVSD_LHIST, plc_state->hist);
fprintf(oct_file, "h4 = plot(%s, 'r--'); \n", new_hist_name);
fprintf(oct_file, "legend ([h1, h2, h3, h4], {\"hist\", \"out\", \"rest\", \"new hist\"}, \"location\", \"northeast\");\n ");
char fig_name[1200];
snprintf(fig_name, sizeof(fig_name), "../%s_octave_plc_%d_%s",
octave_base_name, plc_state->frame_count,
octave_frame_type2str(octave_frame_type));
fig_name[sizeof(fig_name) - 1] = 0;
fprintf(oct_file, "print(hf, \"%s.jpg\", \"-djpg\");", fig_name);
}
#endif
void btstack_cvsd_plc_bad_frame(btstack_cvsd_plc_state_t *plc_state, uint16_t num_samples, BTSTACK_CVSD_PLC_SAMPLE_FORMAT *out){
float val;
int i;
float sf = 1;
plc_state->nbf++;
if (plc_state->max_consecutive_bad_frames_nr < plc_state->nbf){
plc_state->max_consecutive_bad_frames_nr = plc_state->nbf;
}
if (plc_state->nbf==1){
// printf("first bad frame\n");
// Perform pattern matching to find where to replicate
plc_state->bestlag = btstack_cvsd_plc_pattern_match(plc_state->hist);
}
#ifdef OCTAVE_OUTPUT
FILE * oct_file = open_octave_file(plc_state, OCTAVE_FRAME_TYPE_BAD);
if (oct_file){
octave_fprintf_plot_history_frame(plc_state, oct_file, plc_state->frame_count);
}
#endif
if (plc_state->nbf==1){
// the replication begins after the template match
plc_state->bestlag += CVSD_M;
// Compute Scale Factor to Match Amplitude of Substitution Packet to that of Preceding Packet
sf = btstack_cvsd_plc_amplitude_match(plc_state, num_samples, plc_state->hist, plc_state->bestlag);
for (i=0; i<CVSD_OLAL; i++){
val = sf*plc_state->hist[plc_state->bestlag+i];
plc_state->hist[CVSD_LHIST+i] = btstack_cvsd_plc_crop_sample(val);
}
for (i=CVSD_OLAL; i<num_samples; i++){
val = sf*plc_state->hist[plc_state->bestlag+i];
plc_state->hist[CVSD_LHIST+i] = btstack_cvsd_plc_crop_sample(val);
}
for (i=num_samples; i<(num_samples+CVSD_OLAL); i++){
float left = sf*plc_state->hist[plc_state->bestlag+i];
float right = plc_state->hist[plc_state->bestlag+i];
val = (left*rcos[i-num_samples]) + (right*rcos[CVSD_OLAL-1-i+num_samples]);
plc_state->hist[CVSD_LHIST+i] = btstack_cvsd_plc_crop_sample(val);
}
for (i=(num_samples+CVSD_OLAL); i<(num_samples+CVSD_RT+CVSD_OLAL); i++){
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
}
} else {
for (i=0; i<(num_samples+CVSD_RT+CVSD_OLAL); i++){
plc_state->hist[CVSD_LHIST+i] = plc_state->hist[plc_state->bestlag+i];
}
}
for (i=0; i<num_samples; i++){
out[i] = plc_state->hist[CVSD_LHIST+i];
}
// shift the history buffer
for (i=0; i<(CVSD_LHIST+CVSD_RT+CVSD_OLAL); i++){
plc_state->hist[i] = plc_state->hist[i+num_samples];
}
#ifdef OCTAVE_OUTPUT
if (oct_file){
octave_fprintf_plot_output(plc_state, oct_file);
fclose(oct_file);
}
#endif
}
void btstack_cvsd_plc_good_frame(btstack_cvsd_plc_state_t *plc_state, uint16_t num_samples, BTSTACK_CVSD_PLC_SAMPLE_FORMAT *in, BTSTACK_CVSD_PLC_SAMPLE_FORMAT *out){
float val;
int i = 0;
#ifdef OCTAVE_OUTPUT
FILE * oct_file = NULL;
if (plc_state->nbf>0){
oct_file = open_octave_file(plc_state, OCTAVE_FRAME_TYPE_GOOD);
if (oct_file){
octave_fprintf_plot_history_frame(plc_state, oct_file, plc_state->frame_count);
}
}
#endif
if (plc_state->nbf>0){
for (i=0;i<CVSD_RT;i++){
out[i] = plc_state->hist[CVSD_LHIST+i];
}
for (i=CVSD_RT;i<(CVSD_RT+CVSD_OLAL);i++){
float left = plc_state->hist[CVSD_LHIST+i];
float right = in[i];
val = (left * rcos[i-CVSD_RT]) + (right *rcos[CVSD_OLAL+CVSD_RT-1-i]);
out[i] = btstack_cvsd_plc_crop_sample((BTSTACK_CVSD_PLC_SAMPLE_FORMAT)val);
}
}
for (;i<num_samples;i++){
out[i] = in[i];
}
// Copy the output to the history buffer
for (i=0;i<num_samples;i++){
plc_state->hist[CVSD_LHIST+i] = out[i];
}
// shift the history buffer
for (i=0;i<CVSD_LHIST;i++){
plc_state->hist[i] = plc_state->hist[i+num_samples];
}
#ifdef OCTAVE_OUTPUT
if (oct_file){
octave_fprintf_plot_output(plc_state, oct_file);
fclose(oct_file);
}
#endif
plc_state->nbf=0;
}
static int count_equal_samples(BTSTACK_CVSD_PLC_SAMPLE_FORMAT * packet, uint16_t size){
int count = 0;
int temp_count = 1;
int i;
for (i = 0; i < (size-1); i++){
if (packet[i] == packet[i+1]){
temp_count++;
continue;
}
if (count < temp_count){
count = temp_count;
}
temp_count = 1;
}
if (temp_count > (count + 1)){
count = temp_count;
}
return count;
}
static int count_zeros(BTSTACK_CVSD_PLC_SAMPLE_FORMAT * frame, uint16_t size){
int nr_zeros = 0;
int i;
for (i = 0; i < (size-1); i++){
if (frame[i] == 0){
nr_zeros++;
}
}
return nr_zeros;
}
static int zero_frame(BTSTACK_CVSD_PLC_SAMPLE_FORMAT * frame, uint16_t size){
return count_zeros(frame, size) == size;
}
// more than half the samples are the same -> bad frame
static int bad_frame(btstack_cvsd_plc_state_t *plc_state, BTSTACK_CVSD_PLC_SAMPLE_FORMAT * frame, uint16_t size){
UNUSED(plc_state);
return count_equal_samples(frame, size) >= (size / 2);
}
void btstack_cvsd_plc_process_data(btstack_cvsd_plc_state_t * plc_state, bool is_bad_frame, BTSTACK_CVSD_PLC_SAMPLE_FORMAT * in, uint16_t num_samples, BTSTACK_CVSD_PLC_SAMPLE_FORMAT * out){
if (num_samples == 0) return;
plc_state->frame_count++;
if (!is_bad_frame) {
bool is_zero_frame = zero_frame(in, num_samples);
if (is_zero_frame){
plc_state->zero_frames_nr++;
} else {
is_bad_frame = bad_frame(plc_state, in, num_samples);
}
}
if (is_bad_frame){
(void)memcpy(out, in, num_samples * 2);
if (plc_state->good_samples > CVSD_LHIST){
btstack_cvsd_plc_bad_frame(plc_state, num_samples, out);
plc_state->bad_frames_nr++;
} else {
memset(out, 0, num_samples * 2);
}
} else {
btstack_cvsd_plc_good_frame(plc_state, num_samples, in, out);
plc_state->good_frames_nr++;
if (plc_state->good_frames_nr == 1){
log_info("First good frame at index %d\n", plc_state->frame_count-1);
}
plc_state->good_samples += num_samples;
}
}
void btstack_cvsd_dump_statistics(btstack_cvsd_plc_state_t * state){
UNUSED(state);
log_info("Good frames: %d\n", state->good_frames_nr);
log_info("Bad frames: %d\n", state->bad_frames_nr);
log_info("Zero frames: %d\n", state->zero_frames_nr);
log_info("Max Consecutive bad frames: %d\n", state->max_consecutive_bad_frames_nr);
}