btstack/platform/wiced/btstack_uart_block_wiced.c

386 lines
15 KiB
C

/*
* Copyright (C) 2015 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
/*
* hci_h4_transport_wiced.c
*
* HCI Transport API implementation for basic H4 protocol for use with btstack_run_loop_wiced.c
*/
#define __BTSTACK_FILE__ "hci_transport_h4_wiced.c"
#include "btstack_config.h"
#include "btstack_run_loop_wiced.h"
#include "btstack_debug.h"
#include "hci.h"
#include "hci_transport.h"
#include "platform_bluetooth.h"
#include "wiced.h"
#include <stdio.h>
#include <string.h>
// priority higher than WIFI to make sure RTS is set
#define WICED_BT_UART_THREAD_PRIORITY (WICED_NETWORK_WORKER_PRIORITY - 2)
#define WICED_BT_UART_THREAD_STACK_SIZE 300
// assert pre-buffer for packet type is available
#if !defined(HCI_OUTGOING_PRE_BUFFER_SIZE) || (HCI_OUTGOING_PRE_BUFFER_SIZE == 0)
#error HCI_OUTGOING_PRE_BUFFER_SIZE not defined. Please update hci.h
#endif
// Default of 512 bytes should be fine. Only needed with BTSTACK_FLOW_CONTROL_UART
#ifndef RX_RING_BUFFER_SIZE
#define RX_RING_BUFFER_SIZE 512
#endif
// Use BTSTACK_FLOW_CONTROL_MANUAL is used when Bluetooth RTS/CTS are not connected to UART RTS/CTS pins
// E.g. on RedBear Duo - WICED_BT_UART_MANUAL_CTS_RTS is defined
static enum {
BTSTACK_FLOW_CONTROL_OFF,
BTSTACK_FLOW_CONTROL_UART,
BTSTACK_FLOW_CONTROL_MANUAL,
} btstack_flow_control_mode;
static wiced_result_t btstack_uart_block_wiced_rx_worker_receive_block(void * arg);
static wiced_worker_thread_t tx_worker_thread;
static const uint8_t * tx_worker_data_buffer;
static uint16_t tx_worker_data_size;
static wiced_worker_thread_t rx_worker_thread;
static uint8_t * rx_worker_read_buffer;
static uint16_t rx_worker_read_size;
static wiced_ring_buffer_t rx_ring_buffer;
static uint8_t rx_data[RX_RING_BUFFER_SIZE];
// uart config
static const btstack_uart_config_t * uart_config;
// callbacks
static void (*block_sent)(void);
static void (*block_received)(void);
// executed on main run loop
static wiced_result_t btstack_uart_block_wiced_main_notify_block_send(void *arg){
if (block_sent){
block_sent();
}
return WICED_SUCCESS;
}
// executed on main run loop
static wiced_result_t btstack_uart_block_wiced_main_notify_block_read(void *arg){
if (block_received){
block_received();
}
return WICED_SUCCESS;
}
// executed on tx worker thread
static wiced_result_t btstack_uart_block_wiced_tx_worker_send_block(void * arg){
// wait for CTS to become low in manual flow control mode
if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_MANUAL && wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){
while (platform_gpio_input_get(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]) == WICED_TRUE){
wiced_rtos_delay_milliseconds(10);
}
}
// blocking send
platform_uart_transmit_bytes(wiced_bt_uart_driver, tx_worker_data_buffer, tx_worker_data_size);
// let transport know
btstack_run_loop_wiced_execute_code_on_main_thread(&btstack_uart_block_wiced_main_notify_block_send, NULL);
return WICED_SUCCESS;
}
// executed on rx worker thread
static wiced_result_t btstack_uart_block_wiced_rx_worker_receive_block(void * arg){
if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_MANUAL && wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){
platform_gpio_output_low(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
}
#ifdef WICED_UART_READ_DOES_NOT_RETURN_BYTES_READ
// older API passes in number of bytes to read (checked in 3.3.1 and 3.4.0)
platform_uart_receive_bytes(wiced_bt_uart_driver, rx_worker_read_buffer, rx_worker_read_size, WICED_NEVER_TIMEOUT);
#else
// newer API uses pointer to return number of read bytes
uint32_t bytes = rx_worker_read_size;
platform_uart_receive_bytes(wiced_bt_uart_driver, rx_worker_read_buffer, &bytes, WICED_NEVER_TIMEOUT);
// assumption: bytes = bytes_to_read as timeout is never
#endif
if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_MANUAL && wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){
platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
}
// let transport know
btstack_run_loop_wiced_execute_code_on_main_thread(&btstack_uart_block_wiced_main_notify_block_read, NULL);
return WICED_SUCCESS;
}
static int btstack_uart_block_wiced_init(const btstack_uart_config_t * config){
uart_config = config;
// determine flow control mode based on hardware config and uart config
if (uart_config->flowcontrol){
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
btstack_flow_control_mode = BTSTACK_FLOW_CONTROL_MANUAL;
#else
btstack_flow_control_mode = BTSTACK_FLOW_CONTROL_UART;
#endif
} else {
btstack_flow_control_mode = BTSTACK_FLOW_CONTROL_OFF;
}
return 0;
}
static int btstack_uart_block_wiced_open(void){
// UART config
wiced_uart_config_t wiced_uart_config =
{
.baud_rate = uart_config->baudrate,
.data_width = DATA_WIDTH_8BIT,
.parity = NO_PARITY,
.stop_bits = STOP_BITS_1,
};
if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_UART){
wiced_uart_config.flow_control = FLOW_CONTROL_CTS_RTS;
} else {
wiced_uart_config.flow_control = FLOW_CONTROL_DISABLED;
}
wiced_ring_buffer_t * ring_buffer = NULL;
// configure HOST and DEVICE WAKE PINs
platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_HOST_WAKE], INPUT_HIGH_IMPEDANCE);
platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE], OUTPUT_PUSH_PULL);
platform_gpio_output_low(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE]);
/* Configure Reg Enable pin to output. Set to HIGH */
if (wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){
platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_POWER ], OUTPUT_OPEN_DRAIN_PULL_UP );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] );
}
wiced_rtos_delay_milliseconds( 100 );
// Configure RTS
if (wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]){
switch (btstack_flow_control_mode){
case BTSTACK_FLOW_CONTROL_OFF:
// configure RTS pin as output and set to low - always on
platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS], OUTPUT_PUSH_PULL);
platform_gpio_output_low(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
break;
case BTSTACK_FLOW_CONTROL_UART:
// configuration done by platform_uart_init
break;
case BTSTACK_FLOW_CONTROL_MANUAL:
// configure RTS pin as output and set to high - controlled by btstack_uart_block_wiced_rx_worker_receive_block
platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS], OUTPUT_PUSH_PULL);
platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
break;
}
}
// Configure CTS
if (wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]){
switch (btstack_flow_control_mode){
case BTSTACK_FLOW_CONTROL_OFF:
// don't care
break;
case BTSTACK_FLOW_CONTROL_UART:
// configuration done by platform_uart_init
break;
case BTSTACK_FLOW_CONTROL_MANUAL:
// configure CTS to input, pull-up
platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS], INPUT_PULL_UP);
break;
}
}
// use ring buffer to allow to receive RX_RING_BUFFER_SIZE/2 addition bytes - not needed with hardware UART
if (btstack_flow_control_mode != BTSTACK_FLOW_CONTROL_UART){
ring_buffer_init((wiced_ring_buffer_t *) &rx_ring_buffer, (uint8_t*) rx_data, sizeof( rx_data ) );
ring_buffer = (wiced_ring_buffer_t *) &rx_ring_buffer;
}
platform_uart_init( wiced_bt_uart_driver, wiced_bt_uart_peripheral, &wiced_uart_config, ring_buffer );
// Reset Bluetooth via RESET line. Fallback to toggling POWER otherwise
if ( wiced_bt_control_pins[ WICED_BT_PIN_RESET ]){
platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_RESET ], OUTPUT_PUSH_PULL );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] );
platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] );
wiced_rtos_delay_milliseconds( 100 );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] );
}
else if ( wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){
platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] );
wiced_rtos_delay_milliseconds( 100 );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] );
}
// wait for Bluetooth to start up
wiced_rtos_delay_milliseconds( 500 );
// create worker threads for rx/tx. only single request is posted to their queues
wiced_rtos_create_worker_thread(&tx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1);
wiced_rtos_create_worker_thread(&rx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1);
// tx is ready
tx_worker_data_size = 0;
return 0;
}
static int btstack_uart_block_wiced_close(void){
// not implemented
return 0;
}
static void btstack_uart_block_wiced_set_block_received( void (*block_handler)(void)){
block_received = block_handler;
}
static void btstack_uart_block_wiced_set_block_sent( void (*block_handler)(void)){
block_sent = block_handler;
}
static int btstack_uart_block_wiced_set_baudrate(uint32_t baudrate){
#if defined(_STM32F205RGT6_) || defined(STM32F40_41xxx) || defined(STM32F411xE) || (STM32F412xG)
// directly use STM peripheral functions to change baud rate dynamically
// set TX to high
log_info("set baud %u", (int) baudrate);
const platform_gpio_t* gpio = wiced_bt_uart_pins[WICED_BT_PIN_UART_TX];
platform_gpio_output_high(gpio);
// reconfigure TX pin as GPIO
GPIO_InitTypeDef gpio_init_structure;
gpio_init_structure.GPIO_Speed = GPIO_Speed_50MHz;
gpio_init_structure.GPIO_Mode = GPIO_Mode_OUT;
gpio_init_structure.GPIO_OType = GPIO_OType_PP;
gpio_init_structure.GPIO_PuPd = GPIO_PuPd_NOPULL;
gpio_init_structure.GPIO_Pin = (uint32_t) ( 1 << gpio->pin_number );
GPIO_Init( gpio->port, &gpio_init_structure );
// disable USART
USART_Cmd( wiced_bt_uart_peripheral->port, DISABLE );
// setup init structure
USART_InitTypeDef uart_init_structure;
uart_init_structure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
uart_init_structure.USART_BaudRate = baudrate;
uart_init_structure.USART_WordLength = USART_WordLength_8b;
uart_init_structure.USART_StopBits = USART_StopBits_1;
uart_init_structure.USART_Parity = USART_Parity_No;
if (btstack_flow_control_mode == BTSTACK_FLOW_CONTROL_UART){
uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS;
} else {
uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
}
USART_Init(wiced_bt_uart_peripheral->port, &uart_init_structure);
// enable USART again
USART_Cmd( wiced_bt_uart_peripheral->port, ENABLE );
// set TX pin as USART again
gpio_init_structure.GPIO_Mode = GPIO_Mode_AF;
GPIO_Init( gpio->port, &gpio_init_structure );
#else
log_error("btstack_uart_block_wiced_set_baudrate not implemented for this WICED Platform");
#endif
return 0;
}
static int btstack_uart_block_wiced_set_parity(int parity){
log_error("btstack_uart_block_wiced_set_parity not implemented");
return 0;
}
static void btstack_uart_block_wiced_send_block(const uint8_t *buffer, uint16_t length){
// store in request
tx_worker_data_buffer = buffer;
tx_worker_data_size = length;
wiced_rtos_send_asynchronous_event(&tx_worker_thread, &btstack_uart_block_wiced_tx_worker_send_block, NULL);
}
static void btstack_uart_block_wiced_receive_block(uint8_t *buffer, uint16_t len){
rx_worker_read_buffer = buffer;
rx_worker_read_size = len;
wiced_rtos_send_asynchronous_event(&rx_worker_thread, &btstack_uart_block_wiced_rx_worker_receive_block, NULL);
}
// static void btstack_uart_block_wiced_set_sleep(uint8_t sleep){
// }
// static void btstack_uart_block_wiced_set_csr_irq_handler( void (*csr_irq_handler)(void)){
// }
static const btstack_uart_block_t btstack_uart_block_wiced = {
/* int (*init)(hci_transport_config_uart_t * config); */ &btstack_uart_block_wiced_init,
/* int (*open)(void); */ &btstack_uart_block_wiced_open,
/* int (*close)(void); */ &btstack_uart_block_wiced_close,
/* void (*set_block_received)(void (*handler)(void)); */ &btstack_uart_block_wiced_set_block_received,
/* void (*set_block_sent)(void (*handler)(void)); */ &btstack_uart_block_wiced_set_block_sent,
/* int (*set_baudrate)(uint32_t baudrate); */ &btstack_uart_block_wiced_set_baudrate,
/* int (*set_parity)(int parity); */ &btstack_uart_block_wiced_set_parity,
/* int (*set_flowcontrol)(int flowcontrol); */ NULL,
/* void (*receive_block)(uint8_t *buffer, uint16_t len); */ &btstack_uart_block_wiced_receive_block,
/* void (*send_block)(const uint8_t *buffer, uint16_t length); */ &btstack_uart_block_wiced_send_block,
/* int (*get_supported_sleep_modes); */ NULL,
/* void (*set_sleep)(btstack_uart_sleep_mode_t sleep_mode); */ NULL,
/* void (*set_wakeup_handler)(void (*handler)(void)); */ NULL,
};
const btstack_uart_block_t * btstack_uart_block_wiced_instance(void){
return &btstack_uart_block_wiced;
}