btstack/port/max32630-fthr/spp_and_le_streamer.c

401 lines
14 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
// *****************************************************************************
/* EXAMPLE_START(spp_and_le_streamer): Dual mode example
*
* @text The SPP and LE Streamer example combines the Bluetooth Classic SPP Streamer
* and the Bluetooth LE Streamer into a single application.
*
* In this Section, we only point out the differences to the individual examples
* and how how the stack is configured.
*/
// *****************************************************************************
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "btstack.h"
#include "spp_and_le_streamer.h"
int btstack_main(int argc, const char * argv[]);
#define RFCOMM_SERVER_CHANNEL 1
#define HEARTBEAT_PERIOD_MS 1000
#define TEST_COD 0x1234
#define NUM_ROWS 25
#define NUM_COLS 40
#define DATA_VOLUME (10 * 1000 * 1000)
/*
* @section Advertisements
*
* @text The Flags attribute in the Advertisement Data indicates if a device is in dual-mode or not.
* Flag 0x06 indicates LE General Discoverable, BR/EDR not supported although we're actually using BR/EDR.
* In the past, there have been problems with Anrdoid devices when the flag was not set.
* Setting it should prevent the remote implementation to try to use GATT over LE/EDR, which is not
* implemented by BTstack. So, setting the flag seems like the safer choice (while it's technically incorrect).
*/
/* LISTING_START(advertisements): Advertisement data: Flag 0x06 indicates LE-only device */
const uint8_t adv_data[] = {
// Flags general discoverable, BR/EDR not supported
0x02, 0x01, 0x06,
// Name
0x0c, 0x09, 'L', 'E', ' ', 'S', 't', 'r', 'e', 'a', 'm', 'e', 'r',
};
static btstack_packet_callback_registration_t hci_event_callback_registration;
uint8_t adv_data_len = sizeof(adv_data);
static uint8_t test_data[NUM_ROWS * NUM_COLS];
// SPP
static uint8_t spp_service_buffer[150];
static uint16_t spp_test_data_len;
static uint16_t rfcomm_mtu;
static uint16_t rfcomm_cid = 0;
// static uint32_t data_to_send = DATA_VOLUME;
// LE
static uint16_t att_mtu;
static int counter = 'A';
static int le_notification_enabled;
static uint16_t le_test_data_len;
static hci_con_handle_t le_connection_handle;
/*
* @section Track throughput
* @text We calculate the throughput by setting a start time and measuring the amount of
* data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
* and reset the counter and start time.
*/
/* LISTING_START(tracking): Tracking throughput */
#define REPORT_INTERVAL_MS 3000
static uint32_t test_data_transferred;
static uint32_t test_data_start;
static void test_reset(void){
test_data_start = btstack_run_loop_get_time_ms();
test_data_transferred = 0;
}
static void test_track_transferred(int bytes_sent){
test_data_transferred += bytes_sent;
// evaluate
uint32_t now = btstack_run_loop_get_time_ms();
uint32_t time_passed = now - test_data_start;
if (time_passed < REPORT_INTERVAL_MS) return;
// print speed
int bytes_per_second = test_data_transferred * 1000 / time_passed;
printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
// restart
test_data_start = now;
test_data_transferred = 0;
}
/* LISTING_END(tracking): Tracking throughput */
static void spp_create_test_data(void){
int x,y;
for (y=0;y<NUM_ROWS;y++){
for (x=0;x<NUM_COLS-2;x++){
test_data[y*NUM_COLS+x] = '0' + (x % 10);
}
test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
}
}
static void spp_send_packet(void){
rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
test_track_transferred(spp_test_data_len);
#if 0
if (data_to_send <= spp_test_data_len){
printf("SPP Streamer: enough data send, closing channel\n");
rfcomm_disconnect(rfcomm_cid);
rfcomm_cid = 0;
return;
}
data_to_send -= spp_test_data_len;
#endif
rfcomm_request_can_send_now_event(rfcomm_cid);
}
static void le_streamer(void){
// check if we can send
if (!le_notification_enabled) return;
// create test data
counter++;
if (counter > 'Z') counter = 'A';
memset(test_data, counter, sizeof(test_data));
// send
att_server_notify(le_connection_handle, ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_VALUE_HANDLE, (uint8_t*) test_data, le_test_data_len);
// track
test_track_transferred(le_test_data_len);
// request next send event
att_server_request_can_send_now_event(le_connection_handle);
}
/*
* @section Packet Handler
*
* @text The packet handler of the combined example is just the combination of the individual packet handlers.
*/
static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
UNUSED(channel);
bd_addr_t event_addr;
uint8_t rfcomm_channel_nr;
switch (packet_type) {
case HCI_EVENT_PACKET:
switch (hci_event_packet_get_type(packet)) {
case HCI_EVENT_PIN_CODE_REQUEST:
// inform about pin code request
printf("Pin code request - using '0000'\n");
hci_event_pin_code_request_get_bd_addr(packet, event_addr);
gap_pin_code_response(event_addr, "0000");
break;
case HCI_EVENT_USER_CONFIRMATION_REQUEST:
// inform about user confirmation request
printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
printf("SSP User Confirmation Auto accept\n");
break;
case HCI_EVENT_DISCONNECTION_COMPLETE:
le_notification_enabled = 0;
break;
case HCI_EVENT_LE_META:
switch (hci_event_le_meta_get_subevent_code(packet)) {
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
le_test_data_len = ATT_DEFAULT_MTU - 3;
le_connection_handle = hci_subevent_le_connection_complete_get_connection_handle(packet);
break;
}
break;
case ATT_EVENT_MTU_EXCHANGE_COMPLETE:
att_mtu = att_event_mtu_exchange_complete_get_MTU(packet);
printf("ATT MTU = %u\n", att_mtu);
le_test_data_len = att_mtu - 3;
if (le_test_data_len > sizeof(test_data)){
le_test_data_len = sizeof(test_data);
}
break;
case ATT_EVENT_CAN_SEND_NOW:
le_streamer();
break;
case RFCOMM_EVENT_INCOMING_CONNECTION:
// data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
rfcomm_accept_connection(rfcomm_cid);
break;
case RFCOMM_EVENT_CHANNEL_OPENED:
// data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
if (rfcomm_event_channel_opened_get_status(packet)) {
printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet));
} else {
rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
spp_test_data_len = rfcomm_mtu;
if (spp_test_data_len > sizeof(test_data)){
spp_test_data_len = sizeof(test_data);
}
test_reset();
rfcomm_request_can_send_now_event(rfcomm_cid);
}
break;
case RFCOMM_EVENT_CAN_SEND_NOW:
spp_send_packet();
break;
case RFCOMM_EVENT_CHANNEL_CLOSED:
printf("RFCOMM channel closed\n");
rfcomm_cid = 0;
break;
default:
break;
}
break;
case RFCOMM_DATA_PACKET:
test_track_transferred(size);
#if 0
printf("RCV: '");
for (i=0;i<size;i++){
putchar(packet[i]);
}
printf("'\n");
#endif
break;
default:
break;
}
}
// ATT Client Read Callback for Dynamic Data
// - if buffer == NULL, don't copy data, just return size of value
// - if buffer != NULL, copy data and return number bytes copied
// @param offset defines start of attribute value
static uint16_t att_read_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){
UNUSED(con_handle);
UNUSED(att_handle);
UNUSED(offset);
UNUSED(buffer);
UNUSED(buffer_size);
return 0;
}
// write requests
static int att_write_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){
UNUSED(con_handle);
UNUSED(offset);
UNUSED(buffer_size);
// printf("att_write_callback att_handle %04x, transaction mode %u\n", att_handle, transaction_mode);
if (transaction_mode != ATT_TRANSACTION_MODE_NONE) return 0;
switch(att_handle){
case ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_CLIENT_CONFIGURATION_HANDLE:
le_notification_enabled = little_endian_read_16(buffer, 0) == GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_NOTIFICATION;
printf("Notifications enabled %u\n", le_notification_enabled);
if (le_notification_enabled){
att_server_request_can_send_now_event(le_connection_handle);
}
test_reset();
break;
default:
break;
}
return 0;
}
/*
* @section Main Application Setup
*
* @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
*/
/* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */
int btstack_main(int argc, const char * argv[])
{
UNUSED(argc);
(void)argv;
// register for HCI events
hci_event_callback_registration.callback = &packet_handler;
hci_add_event_handler(&hci_event_callback_registration);
l2cap_init();
rfcomm_init();
rfcomm_register_service(packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
// init SDP, create record for SPP and register with SDP
sdp_init();
memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
spp_create_sdp_record(spp_service_buffer, 0x10001, RFCOMM_SERVER_CHANNEL, "SPP Streamer");
sdp_register_service(spp_service_buffer);
// printf("SDP service record size: %u\n", de_get_len(spp_service_buffer));
gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
// short-cut to find other SPP Streamer
gap_set_class_of_device(TEST_COD);
gap_discoverable_control(1);
// setup le device db
le_device_db_init();
// setup SM: Display only
sm_init();
// setup ATT server
att_server_init(profile_data, att_read_callback, att_write_callback);
att_server_register_packet_handler(packet_handler);
// setup advertisements
uint16_t adv_int_min = 0x0030;
uint16_t adv_int_max = 0x0030;
uint8_t adv_type = 0;
bd_addr_t null_addr;
memset(null_addr, 0, 6);
gap_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 0, null_addr, 0x07, 0x00);
gap_advertisements_set_data(adv_data_len, (uint8_t*) adv_data);
gap_advertisements_enable(1);
spp_create_test_data();
// turn on!
hci_power_control(HCI_POWER_ON);
return 0;
}
/* LISTING_END */
/* EXAMPLE_END */