btstack/port/wiced/hci_transport_h4_wiced.c
2016-08-19 18:07:37 +02:00

383 lines
15 KiB
C

const /*
* Copyright (C) 2015 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
/*
* hci_h4_transport_wiced.c
*
* HCI Transport API implementation for basic H4 protocol for use with btstack_run_loop_wiced.c
*/
#include "btstack_config.h"
#include "btstack_run_loop_wiced.h"
#include "btstack_debug.h"
#include "hci.h"
#include "hci_transport.h"
#include "platform_bluetooth.h"
#include "wiced.h"
#include <stdio.h>
#include <string.h>
// priority higher than WIFI to make sure RTS is set
#define WICED_BT_UART_THREAD_PRIORITY (WICED_NETWORK_WORKER_PRIORITY - 2)
#define WICED_BT_UART_THREAD_STACK_SIZE 300
// assert pre-buffer for packet type is available
#if !defined(HCI_OUTGOING_PRE_BUFFER_SIZE) || (HCI_OUTGOING_PRE_BUFFER_SIZE == 0)
#error HCI_OUTGOING_PRE_BUFFER_SIZE not defined. Please update hci.h
#endif
/* Default of 512 bytes should be fine. Only needed if WICED_BT_UART_MANUAL_CTS_RTS */
#ifndef RX_RING_BUFFER_SIZE
#define RX_RING_BUFFER_SIZE 512
#endif
static wiced_result_t h4_rx_worker_receive_packet(void * arg);
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size);
typedef struct hci_transport_h4 {
hci_transport_t transport;
btstack_data_source_t *ds;
int uart_fd; // different from ds->fd for HCI reader thread
/* power management support, e.g. used by iOS */
btstack_timer_source_t sleep_timer;
} hci_transport_h4_t;
// single instance
static hci_transport_h4_t * hci_transport_h4 = NULL;
static hci_transport_config_uart_t * hci_transport_config_uart = NULL;
static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size) = dummy_handler;
static wiced_worker_thread_t tx_worker_thread;
static const uint8_t * tx_worker_data_buffer;
static uint16_t tx_worker_data_size;
static wiced_worker_thread_t rx_worker_thread;
static int rx_worker_read_pos;
static uint8_t hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + 1 + HCI_PACKET_BUFFER_SIZE]; // packet type + max(acl header + acl payload, event header + event data)
static uint8_t * hci_packet = &hci_packet_with_pre_buffer[HCI_INCOMING_PRE_BUFFER_SIZE];
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
static volatile wiced_ring_buffer_t rx_ring_buffer;
static volatile uint8_t rx_data[RX_RING_BUFFER_SIZE];
#endif
// executed on main run loop
static wiced_result_t h4_main_deliver_packet(void *arg){
// deliver packet
packet_handler(hci_packet[0], &hci_packet[1], rx_worker_read_pos-1);
// trigger receive of next packet
wiced_rtos_send_asynchronous_event(&rx_worker_thread, &h4_rx_worker_receive_packet, NULL);
return WICED_SUCCESS;
}
// executed on main run loop
static wiced_result_t h4_main_notify_packet_send(void *arg){
// prepare for next packet
tx_worker_data_size = 0;
// notify upper stack that it might be possible to send again
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
packet_handler(HCI_EVENT_PACKET, &event[0], sizeof(event));
return WICED_SUCCESS;
}
// executed on rx worker thread
static void h4_rx_worker_receive_bytes(int bytes_to_read){
#ifdef WICED_UART_READ_DOES_NOT_RETURN_BYTES_READ
// older API passes in number of bytes to read (checked in 3.3.1 and 3.4.0)
platform_uart_receive_bytes(wiced_bt_uart_driver, &hci_packet[rx_worker_read_pos], bytes_to_read, WICED_NEVER_TIMEOUT);
#else
// newer API uses pointer to return number of read bytes
uint32_t bytes = bytes_to_read;
platform_uart_receive_bytes(wiced_bt_uart_driver, &hci_packet[rx_worker_read_pos], &bytes, WICED_NEVER_TIMEOUT);
// assumption: bytes = bytes_to_rad as timeout is never
#endif
rx_worker_read_pos += bytes_to_read;
}
static wiced_result_t h4_rx_worker_receive_packet(void * arg){
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
platform_gpio_output_low(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
#endif
while (1){
rx_worker_read_pos = 0;
h4_rx_worker_receive_bytes(1);
switch (hci_packet[0]){
case HCI_EVENT_PACKET:
h4_rx_worker_receive_bytes(HCI_EVENT_HEADER_SIZE);
h4_rx_worker_receive_bytes(hci_packet[2]);
break;
case HCI_ACL_DATA_PACKET:
h4_rx_worker_receive_bytes(HCI_ACL_HEADER_SIZE);
h4_rx_worker_receive_bytes(little_endian_read_16( hci_packet, 3));
break;
case HCI_SCO_DATA_PACKET:
h4_rx_worker_receive_bytes(HCI_SCO_HEADER_SIZE);
h4_rx_worker_receive_bytes(hci_packet[3]);
break;
default:
// try again
log_error("h4_rx_worker_receive_packet: invalid packet type 0x%02x", hci_packet[0]);
continue;
}
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
#endif
// deliver packet on main thread
btstack_run_loop_wiced_execute_code_on_main_thread(&h4_main_deliver_packet, NULL);
return WICED_SUCCESS;
}
}
// executed on tx worker thread
static wiced_result_t h4_tx_worker_send_packet(void * arg){
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
int cts_was_raised = 0;
while (platform_gpio_input_get(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS]) == WICED_TRUE){
printf(".");
wiced_rtos_delay_milliseconds(100);
cts_was_raised = 1;
}
if (cts_was_raised){
printf("\n");
}
#endif
// blocking send
platform_uart_transmit_bytes(wiced_bt_uart_driver, tx_worker_data_buffer, tx_worker_data_size);
// let stack know
btstack_run_loop_wiced_execute_code_on_main_thread(&h4_main_notify_packet_send, NULL);
return WICED_SUCCESS;
}
static int h4_set_baudrate(uint32_t baudrate){
#if defined(_STM32F205RGT6_) || defined(STM32F40_41xxx)
// directly use STM peripheral functions to change baud rate dynamically
// set TX to high
log_info("h4_set_baudrate %u", (int) baudrate);
const platform_gpio_t* gpio = wiced_bt_uart_pins[WICED_BT_PIN_UART_TX];
platform_gpio_output_high(gpio);
// reconfigure TX pin as GPIO
GPIO_InitTypeDef gpio_init_structure;
gpio_init_structure.GPIO_Speed = GPIO_Speed_50MHz;
gpio_init_structure.GPIO_Mode = GPIO_Mode_OUT;
gpio_init_structure.GPIO_OType = GPIO_OType_PP;
gpio_init_structure.GPIO_PuPd = GPIO_PuPd_NOPULL;
gpio_init_structure.GPIO_Pin = (uint32_t) ( 1 << gpio->pin_number );
GPIO_Init( gpio->port, &gpio_init_structure );
// disable USART
USART_Cmd( wiced_bt_uart_peripheral->port, DISABLE );
// setup init structure
USART_InitTypeDef uart_init_structure;
uart_init_structure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
uart_init_structure.USART_BaudRate = baudrate;
uart_init_structure.USART_WordLength = USART_WordLength_8b;
uart_init_structure.USART_StopBits = USART_StopBits_1;
uart_init_structure.USART_Parity = USART_Parity_No;
uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_RTS_CTS;
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
uart_init_structure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
#endif
USART_Init(wiced_bt_uart_peripheral->port, &uart_init_structure);
// enable USART again
USART_Cmd( wiced_bt_uart_peripheral->port, ENABLE );
// set TX pin as USART again
gpio_init_structure.GPIO_Mode = GPIO_Mode_AF;
GPIO_Init( gpio->port, &gpio_init_structure );
#else
log_error("h4_set_baudrate not implemented for this WICED Platform");
#endif
return 0;
}
static void h4_init(const void * transport_config){
// check for hci_transport_config_uart_t
if (!transport_config) {
log_error("hci_transport_h4_wiced: no config!");
return;
}
if (((hci_transport_config_t*)transport_config)->type != HCI_TRANSPORT_CONFIG_UART) {
log_error("hci_transport_h4_wiced: config not of type != HCI_TRANSPORT_CONFIG_UART!");
return;
}
hci_transport_config_uart = (hci_transport_config_uart_t*) transport_config;
}
static int h4_open(void){
// UART config
wiced_uart_config_t uart_config =
{
.baud_rate = 115200,
.data_width = DATA_WIDTH_8BIT,
.parity = NO_PARITY,
.stop_bits = STOP_BITS_1,
.flow_control = FLOW_CONTROL_CTS_RTS,
};
wiced_ring_buffer_t * ring_buffer = NULL;
// configure HOST and DEVICE WAKE PINs
platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_HOST_WAKE], INPUT_HIGH_IMPEDANCE);
platform_gpio_init(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE], OUTPUT_PUSH_PULL);
platform_gpio_output_low(wiced_bt_control_pins[WICED_BT_PIN_DEVICE_WAKE]);
/* Configure Reg Enable pin to output. Set to HIGH */
if (wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){
platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_POWER ], OUTPUT_OPEN_DRAIN_PULL_UP );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] );
}
wiced_rtos_delay_milliseconds( 100 );
// -- init UART
#ifdef WICED_BT_UART_MANUAL_CTS_RTS
// configure RTS pin as output and set to high
platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS], OUTPUT_PUSH_PULL);
platform_gpio_output_high(wiced_bt_uart_pins[WICED_BT_PIN_UART_RTS]);
// configure CTS to input, pull-up
platform_gpio_init(wiced_bt_uart_pins[WICED_BT_PIN_UART_CTS], INPUT_PULL_UP);
// use ring buffer to allow to receive RX_RING_BUFFER_SIZE/2 addition bytes before raising RTS
// casts avoid warnings because of volatile qualifier
ring_buffer_init((wiced_ring_buffer_t *) &rx_ring_buffer, (uint8_t*) rx_data, sizeof( rx_data ) );
ring_buffer = (wiced_ring_buffer_t *) &rx_ring_buffer;
// don't try
uart_config.flow_control = FLOW_CONTROL_DISABLED;
#endif
platform_uart_init( wiced_bt_uart_driver, wiced_bt_uart_peripheral, &uart_config, ring_buffer );
// Reset Bluetooth via RESET line. Fallback to toggling POWER otherwise
if ( wiced_bt_control_pins[ WICED_BT_PIN_RESET ]){
platform_gpio_init( wiced_bt_control_pins[ WICED_BT_PIN_RESET ], OUTPUT_PUSH_PULL );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] );
platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] );
wiced_rtos_delay_milliseconds( 100 );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_RESET ] );
}
else if ( wiced_bt_control_pins[ WICED_BT_PIN_POWER ]){
platform_gpio_output_low( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] );
wiced_rtos_delay_milliseconds( 100 );
platform_gpio_output_high( wiced_bt_control_pins[ WICED_BT_PIN_POWER ] );
}
// wait for Bluetooth to start up
wiced_rtos_delay_milliseconds( 500 );
// create worker threads for rx/tx. only single request is posted to their queues
wiced_rtos_create_worker_thread(&tx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1);
wiced_rtos_create_worker_thread(&rx_worker_thread, WICED_BT_UART_THREAD_PRIORITY, WICED_BT_UART_THREAD_STACK_SIZE, 1);
// start receiving packet
wiced_rtos_send_asynchronous_event(&rx_worker_thread, &h4_rx_worker_receive_packet, NULL);
// tx is ready
tx_worker_data_size = 0;
return 0;
}
static int h4_close(void){
// not implementd
return 0;
}
static int h4_send_packet(uint8_t packet_type, uint8_t * data, int size){
// store packet type before actual data and increase size
size++;
data--;
*data = packet_type;
// store in request
tx_worker_data_buffer = data;
tx_worker_data_size = size;
// send packet as single block
wiced_rtos_send_asynchronous_event(&tx_worker_thread, &h4_tx_worker_send_packet, NULL);
return 0;
}
static void h4_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
packet_handler = handler;
}
static int h4_can_send_packet_now(uint8_t packet_type){
return tx_worker_data_size == 0;
}
static void dummy_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
}
// get h4 singleton
const hci_transport_t * hci_transport_h4_instance(const btstack_uart_block_t * uart_driver) {
if (hci_transport_h4 == NULL) {
hci_transport_h4 = (hci_transport_h4_t*)malloc( sizeof(hci_transport_h4_t));
memset(hci_transport_h4, 0, sizeof(hci_transport_h4_t));
hci_transport_h4->ds = NULL;
hci_transport_h4->transport.name = "H4_WICED";
hci_transport_h4->transport.init = h4_init;
hci_transport_h4->transport.open = h4_open;
hci_transport_h4->transport.close = h4_close;
hci_transport_h4->transport.register_packet_handler = h4_register_packet_handler;
hci_transport_h4->transport.can_send_packet_now = h4_can_send_packet_now;
hci_transport_h4->transport.send_packet = h4_send_packet;
hci_transport_h4->transport.set_baudrate = h4_set_baudrate;
}
return (const hci_transport_t *) hci_transport_h4;
}