btstack/example/spp_streamer_client.c

416 lines
14 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "spp_streamer_client.c"
/*
* spp_streamer_client.c
*/
// *****************************************************************************
/* EXAMPLE_START(spp_streamer_client): Performance - Stream Data over SPP (Client)
*
* @text Note: The SPP Streamer Client scans for and connects to SPP Streamer,
* and measures the throughput.
*/
// *****************************************************************************
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "btstack.h"
// prototypes
static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size);
static uint8_t rfcomm_server_channel;
#define NUM_ROWS 25
#define NUM_COLS 40
#define TEST_COD 0x1234
#define TEST_MODE_SEND 1
#define TEST_MODE_RECEIVE 2
#define TEST_MODE_DUPLEX 3
// configure test mode: send only, receive only, full duplex
#define TEST_MODE TEST_MODE_SEND
typedef enum {
// SPP
W4_PEER_COD,
W4_SCAN_COMPLETE,
W4_SDP_RESULT,
W2_SEND_SDP_QUERY,
W4_RFCOMM_CHANNEL,
SENDING,
DONE
} state_t;
static uint8_t test_data[NUM_ROWS * NUM_COLS];
static uint16_t spp_test_data_len;
static btstack_packet_callback_registration_t hci_event_callback_registration;
static btstack_context_callback_registration_t handle_sdp_client_query_request;
static bd_addr_t peer_addr;
static state_t state;
// SPP
static uint16_t rfcomm_mtu;
static uint16_t rfcomm_cid = 0;
// static uint32_t data_to_send = DATA_VOLUME;
/**
* RFCOMM can make use for ERTM. Due to the need to re-transmit packets,
* a large buffer is needed to still get high throughput
*/
#ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM
static uint8_t ertm_buffer[20000];
static l2cap_ertm_config_t ertm_config = {
0, // ertm mandatory
8, // max transmit
2000,
12000,
1000, // l2cap ertm mtu
8,
8,
0, // No FCS
};
static int ertm_buffer_in_use;
static void rfcomm_ertm_request_handler(rfcomm_ertm_request_t * ertm_request){
printf("ERTM Buffer requested, buffer in use %u\n", ertm_buffer_in_use);
if (ertm_buffer_in_use) return;
ertm_buffer_in_use = 1;
ertm_request->ertm_config = &ertm_config;
ertm_request->ertm_buffer = ertm_buffer;
ertm_request->ertm_buffer_size = sizeof(ertm_buffer);
}
static void rfcomm_ertm_released_handler(uint16_t ertm_id){
printf("ERTM Buffer released, buffer in use %u, ertm_id %x\n", ertm_buffer_in_use, ertm_id);
ertm_buffer_in_use = 0;
}
#endif
/**
* Find remote peer by COD
*/
#define INQUIRY_INTERVAL 5
static void start_scan(void){
printf("Starting inquiry scan..\n");
state = W4_PEER_COD;
gap_inquiry_start(INQUIRY_INTERVAL);
}
static void stop_scan(void){
printf("Stopping inquiry scan..\n");
state = W4_SCAN_COMPLETE;
gap_inquiry_stop();
}
/*
* @section Track throughput
* @text We calculate the throughput by setting a start time and measuring the amount of
* data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
* and reset the counter and start time.
*/
/* LISTING_START(tracking): Tracking throughput */
#define REPORT_INTERVAL_MS 3000
static uint32_t test_data_transferred;
static uint32_t test_data_start;
static void test_reset(void){
test_data_start = btstack_run_loop_get_time_ms();
test_data_transferred = 0;
}
static void test_track_transferred(int bytes_sent){
test_data_transferred += bytes_sent;
// evaluate
uint32_t now = btstack_run_loop_get_time_ms();
uint32_t time_passed = now - test_data_start;
if (time_passed < REPORT_INTERVAL_MS) return;
// print speed
int bytes_per_second = test_data_transferred * 1000 / time_passed;
printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
// restart
test_data_start = now;
test_data_transferred = 0;
}
/* LISTING_END(tracking): Tracking throughput */
#if (TEST_MODE & TEST_MODE_SEND)
static void spp_create_test_data(void){
int x,y;
for (y=0;y<NUM_ROWS;y++){
for (x=0;x<NUM_COLS-2;x++){
test_data[y*NUM_COLS+x] = '0' + (x % 10);
}
test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
}
}
static void spp_send_packet(void){
rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
test_track_transferred(spp_test_data_len);
rfcomm_request_can_send_now_event(rfcomm_cid);
}
#endif
/*
* @section SDP Query Packet Handler
*
* @text Store RFCOMM Channel for SPP service and initiates RFCOMM connection
*/
static void handle_query_rfcomm_event(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
UNUSED(packet_type);
UNUSED(channel);
UNUSED(size);
switch (hci_event_packet_get_type(packet)){
case SDP_EVENT_QUERY_RFCOMM_SERVICE:
rfcomm_server_channel = sdp_event_query_rfcomm_service_get_rfcomm_channel(packet);
break;
case SDP_EVENT_QUERY_COMPLETE:
if (sdp_event_query_complete_get_status(packet)){
printf("SDP query failed 0x%02x\n", sdp_event_query_complete_get_status(packet));
break;
}
if (rfcomm_server_channel == 0){
printf("No SPP service found\n");
break;
}
printf("SDP query done, channel %u.\n", rfcomm_server_channel);
rfcomm_create_channel(packet_handler, peer_addr, rfcomm_server_channel, NULL);
break;
default:
break;
}
}
static void handle_start_sdp_client_query(void * context){
UNUSED(context);
if (state != W2_SEND_SDP_QUERY) return;
state = W4_RFCOMM_CHANNEL;
sdp_client_query_rfcomm_channel_and_name_for_uuid(&handle_query_rfcomm_event, peer_addr, BLUETOOTH_ATTRIBUTE_PUBLIC_BROWSE_ROOT);
}
/*
* @section Gerenal Packet Handler
*
* @text Handles startup (BTSTACK_EVENT_STATE), inquiry, pairing, starts SDP query for SPP service, and RFCOMM connection
*/
static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
UNUSED(channel);
bd_addr_t event_addr;
uint8_t rfcomm_channel_nr;
uint32_t class_of_device;
switch (packet_type) {
case HCI_EVENT_PACKET:
switch (hci_event_packet_get_type(packet)) {
case BTSTACK_EVENT_STATE:
if (btstack_event_state_get_state(packet) != HCI_STATE_WORKING) return;
start_scan();
break;
case GAP_EVENT_INQUIRY_RESULT:
if (state != W4_PEER_COD) break;
class_of_device = gap_event_inquiry_result_get_class_of_device(packet);
gap_event_inquiry_result_get_bd_addr(packet, event_addr);
if (class_of_device == TEST_COD){
memcpy(peer_addr, event_addr, 6);
printf("Peer found: %s\n", bd_addr_to_str(peer_addr));
stop_scan();
} else {
printf("Device found: %s with COD: 0x%06x\n", bd_addr_to_str(event_addr), (int) class_of_device);
}
break;
case GAP_EVENT_INQUIRY_COMPLETE:
switch (state){
case W4_PEER_COD:
printf("Inquiry complete\n");
printf("Peer not found, starting scan again\n");
start_scan();
break;
case W4_SCAN_COMPLETE:
printf("Start to connect and query for SPP service\n");
state = W2_SEND_SDP_QUERY;
handle_sdp_client_query_request.callback = &handle_start_sdp_client_query;
(void) sdp_client_register_query_callback(&handle_sdp_client_query_request);
break;
default:
break;
}
if (state == W4_PEER_COD){
}
break;
case HCI_EVENT_PIN_CODE_REQUEST:
// inform about pin code request
printf("Pin code request - using '0000'\n");
hci_event_pin_code_request_get_bd_addr(packet, event_addr);
gap_pin_code_response(event_addr, "0000");
break;
case HCI_EVENT_USER_CONFIRMATION_REQUEST:
// inform about user confirmation request
printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
printf("SSP User Confirmation Auto accept\n");
break;
case RFCOMM_EVENT_INCOMING_CONNECTION:
rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
rfcomm_accept_connection(rfcomm_cid);
break;
case RFCOMM_EVENT_CHANNEL_OPENED:
if (rfcomm_event_channel_opened_get_status(packet)) {
printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet));
} else {
rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
test_reset();
// disable page/inquiry scan to get max performance
gap_discoverable_control(0);
gap_connectable_control(0);
#if (TEST_MODE & TEST_MODE_SEND)
// configure test data
spp_test_data_len = rfcomm_mtu;
if (spp_test_data_len > sizeof(test_data)){
spp_test_data_len = sizeof(test_data);
}
spp_create_test_data();
state = SENDING;
// start sending
rfcomm_request_can_send_now_event(rfcomm_cid);
#endif
}
break;
#if (TEST_MODE & TEST_MODE_SEND)
case RFCOMM_EVENT_CAN_SEND_NOW:
spp_send_packet();
break;
#endif
case RFCOMM_EVENT_CHANNEL_CLOSED:
printf("RFCOMM channel closed\n");
rfcomm_cid = 0;
// re-enable page/inquiry scan again
gap_discoverable_control(1);
gap_connectable_control(1);
break;
default:
break;
}
break;
case RFCOMM_DATA_PACKET:
test_track_transferred(size);
#if 0
// optional: print received data as ASCII text
printf("RCV: '");
for (i=0;i<size;i++){
putchar(packet[i]);
}
printf("'\n");
#endif
break;
default:
break;
}
}
/*
* @section Main Application Setup
*
* @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
*/
/* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */
int btstack_main(int argc, const char * argv[]);
int btstack_main(int argc, const char * argv[]){
UNUSED(argc);
(void)argv;
l2cap_init();
rfcomm_init();
#ifdef ENABLE_L2CAP_ENHANCED_RETRANSMISSION_MODE_FOR_RFCOMM
// setup ERTM management
rfcomm_enable_l2cap_ertm(&rfcomm_ertm_request_handler, &rfcomm_ertm_released_handler);
#endif
// register for HCI events
hci_event_callback_registration.callback = &packet_handler;
hci_add_event_handler(&hci_event_callback_registration);
// init SDP
gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
// turn on!
hci_power_control(HCI_POWER_ON);
return 0;
}
/* LISTING_END */
/* EXAMPLE_END */