2016-11-19 22:04:58 +01:00
..
2016-04-29 14:49:16 +02:00
2016-02-24 17:14:56 +01:00
2016-02-24 17:14:56 +01:00
2016-02-24 17:14:56 +01:00

In this chapter, we first explain how Bluetooth chipsets are connected physically and then provide information about popular Bluetooth chipset and their use with BTstack.

The communication between a Host (a computer or an MCU) and a Host Controller (the actual Bluetoot chipset) follows the Host Controller Interface (HCI), see {@fig:HostChipsetConnection}. HCI defines how commands, events, asynchronous and synchronous data packets are exchanged. Asynchronous packets (ACL) are used for data transfer, while synchronous packets (SCO) are used for Voice with the Headset and the Hands-Free Profiles.

Host Controller to Host connection{#fig:HostChipsetConnection}

On desktop-class computers incl. laptops, USB is mainly used as HCI transport layer. For USB Bluetooth chipsets, there is little variation: most USB dongles on the market currently contain a Broadcom BCM20702 or a CSR 851x chipset. On embedded systems, UART connections are used instead, although USB could be used as well.

Most USB Bluetooth dongles on the market conatin either an Broadcom BCM20702

For UART connections, different transport layer variants exist. The most common one is the official "UART Transport", also called H4. It requires hardware flow control via the CTS/RTS lines and assumes no errors on the UART lines. The "Three-Wire UART Transport", also called H5, makes use of the SLIP protocol to transmit a packet and can deal with packet loss and bit-errors by retransmission. Finally, Texas Instruments created the "eHCILL transport" layer based on H4 that allows both sides to enter sleep mode without loosing synchronisation.

Unfortunately, the HCI standard misses a few relevant details:

  • For UART based connections, the initial baud rate isn't defined but most Bluetooth chipsets use 115200 baud. For better throughput, a higher baud rate is necessary, but there's no standard HCI command to change it. Instead, each vendor had to come up with their own set of vendor-specific commands. Sometimes, additional steps, e.g. doing a warm reset, are neceesary to activate the baud rate change as well.

  • Some Bluetooth chipsets don't have a unique MAC address. On start, the MAC address needs to be set, but there's no standard HCI command to set it.

  • SCO data for Voice can either be transmitted via the HCI interface or via an explicit PCM/I2S interface on the chipset. Most chipsets default to the PCM/I2S interface. To use it via USB or for Wide-Band Speech in the Hands-Free Profile, the data needs to be delivered to the host MCU. Newer Bluetooth standards define a HCI command to configure the SCO routing, but it is not implemented in the chipsets we've tested so far. Instead, this is configured in a vendor-specific way as well.

  • In addition, most vendors allow to patch or configure their chipsets at run time by sending custom comands to the chipset. Obviously, this is also vendor dependent.

The level of developer documentation and support varies widely between the various Bluetooth chipset providers.

From our experience, only Texas Instruments and EM Microelectronics provide all relevant information directly on their website. Nordic Semiconductor does not officially have Bluetooth chipsets with HCI interface, but their the documentation on their nRF5 series is complete and very informative. TI and Nordic also provide excellent support via their respective web forum.

Broadcom, whose Bluetooth + Wifi division has been acquired by the Cypress Semiconductor Corporation, provides developer documentation only to large customers as far as we know. It's possible to join their Community forum and download the WICED SDK. The WICED SDK is targeted at Wifi + Bluetooth Combo chipsets and contains the necessary chipset patch files.

CSR, which has been acquired by Qualcomm, provides all relevant information on their Support website after signing an NDA.

Chipset Type HCI Transport BD_ADDR (1) SCO over HCI (2) LE DLE Multiple LE Roles (3) BTstack folder Comment
Broadcom UART Dual mode H4, H5 rarely No (didn't work) No Maybe bcm Max UART baudrate 3 mbps
Broadcom USB Dongles Dual mode USB Yes No (didn't work) No No bcm
CSR UART Dual mode H4, H5 rarely No (didn't work) No No csr
CSR USB Dongles Dual mode USB Mostly Yes No No csr
Dialog DA14581 LE H4, SPI ? n.a. No No Waiting for dev kit
EM 9301 LE SPI No n.a. No No em9301 Custom HCI SPI implementation
EM 9304 LE SPI, H4 ? n.a. Yes No Waiting for dev kit
Nordic nRF LE H4 fixed random n.a. Yes Yes Requires custom HCI firmware
STM STLC2500D Classic H4 No No (didn't try) n.a n.a. stlc2500d Custom deep sleep management not supported
Toshiba TC35661 Dual mode H4 No No (didn't try) No No tc3566 HCI version not tested. See below
TI CC256x, WL183x Dual mode H4, H5, eHCILL Yes Yes No No cc256x Also WL185x, WL187x, and WL189x

Notes:

  1. BD_ADDR: Not all Bluetooth chipset come with a fixed valid MAC Address. Better Broadcom and CSR dongles come with a MAC address from the dongle manufacturer, but cheaper ones might come with identical addresses.
  2. SCO over HCI: All Bluetooth Classic chipsets support SCO over HCI, for those that are marked with No, we either didn't try or didn't found enough information to configure it correctly.
  3. Multiple LE Roles: Apple uses Broadcom Bluetooth+Wifi in their iOS devices and newer iOS versions support multipe concurrent LE roles, so at least some Broadcom models support multiple concurrent LE roles.

Broadcom

Before the Broadcom Wifi+Bluetooth division was taken over by Cypress Semiconductor, it was not possible to buy Broadcom chipset in low quantities. Nevertheless, module manufacturers like Ampak created modules that contained Broadcom BCM chipsets (Bluetooth as well as Bluetooth+Wifi combos) that might already have been pre-tested for FCC and similar certifications. A popular example is the Ampak AP6212A module that contains an BCM 43438A1 and is used on the Raspberry Pi 3, the RedBear Duo, and the RedBear IoT pHAT for older Rasperry Pi models.

The best source for documentation on vendor specific commands so far has been the source code for blueZ and the Bluedroid Bluetooth stack from Android.

Broadcom USB dongles do not require special configuration, however SCO data is not routed over USB by default.

Init scripts: For UART connected chipsets, an init script has to be uploaded after power on. For Bluetooth chipsets that are used in Broadcom Wifi+Bluetooth combos, this file often can be found as a binary file in Linux distributions with the ending '.hcd' or as part of the WICED SDK as C source file that contains the init script as a data array for use without a file system.

To find the correct file, Broadcom chipsets return their model number when asked for their local name.

BTstack supports uploading of the init script in two variants: using .hcd files looked up by name in the posix-h4 port and by linking against the init script in the WICED port.

BD Addr can be set with a custom command. A fixed addres is provided on some modules, e.g. the AP6212A, but not on others.

SCO data can be configured with a custom command found in the bluez sources. We haven't been able to route SCO data over HCI yet.

Baud rate can be set with custom command. The baud rate resets during the warm start after uploading the init script. So, the overall scheme is this: start at default baud rate, get local version info, send custom Broadcom baud rate change command, wait for response, set local UART to high baud rate, and then send init script. After sending the last command from the init script, reset the local UART. Finally, send custom baud rate change command, wait for response, and set local UART to high baud rate.

BTstack integration: The common code for all Broadcom chipsets is provided by btstack_chipset_bcm.c. During the setup, btstack_chipset_bcm_instance function is used to get a btstack_chipset_t instance and passed to hci_init function.

SCO Data can not be routed over HCI via USB or UART, so HFP Wide-Band Speech is not supported currently. HSP and HFP Narrow Band Speech is supported via I2C/PCM pins.

CSR

Similar to Broadcom, the best source for documentation is the source code for blueZ.

CSR USB dongles do not require special configuration and SCO data is routed over USB by default.

CSR chipset do not require an actual init script in general, but they allow to configure the chipset via so-called PSKEYs. After setting one or more PSKEYs, a warm reset activates the new setting.

BD Addr can be set via PSKEY. A fixed address can be provided if the chipset has some kind of persistent memory to store it. Most USB Bluetooth dongles have a fixed BD ADDR.

SCO data can be configured via a set of PSKEYs. We haven't been able to route SCO data over HCI for UART connections yet.

Baud rate can be set as part of the initial configuration and gets actived by the warm reset.

BTstack integration: The common code for all Broadcom chipsets is provided by btstack_chipset_csr.c. During the setup, btstack_chipset_csr_instance function is used to get a btstack_chipset_t instance and passed to hci_init function. The baud rate is set during the general configuration.

SCO Data is routed over HCI for USB dongles, but not for UART connections. HSP and HFP Narrow Band Speech is supported via I2C/PCM pins.

Dialog Semiconductor

Dialog Semiconductor offers the DA14581, an LE-only SoC that can be programmed with an HCI firmware. The HCI firmware can be uploaded on boot into SRAM or stored in the OTP (One-time programmable) memory, or in an external SPI.

We just ordered a Dev Kit and will try to implement the firmware upload to SRAM option. This chipset supports the Bluetooth 4.2. specification but does not seem to implement the Data Length Extension nor supports multiple concurrent roles.

EM Microelectronic Marin

For a long time, the EM9301 has been the only Bluetooth Single-Mode LE chipset with an HCI interface. The EM9301 can be connected via SPI or UART. The UART interface does not support hardware flow control and is not recommended for use with BTstack. The SPI mode uses a proprietary but documented exension to implement flow control and signal if the EM9301 has data to send.

Update: EM has just announced a new EM9304 that also features an HCI mode and supports the Bluetooth 4.2. specification. It seems to support the Data Length Extension but not and multiple concurrent roles.

BD Addr must be set during startup since it does not have a stored fix address.

SCO data is not supported since it is LE only.

Baud rate could be set for UART mode. For SPI, the master controls the speed via the SPI Clock line.

Init scripts are not required although it is possible to upload small firmware patches.

BTstack integration: The common code for the EM9301 is provided by btstack_chipset_em9301.c. During the setup, btstack_chipset_em9301_instance function is used to get a btstack_chipset_t instance and passed to hci_init function. It enables to set the BD Addr during start.

Nordic nRF5 series

The Single-Mode LE chipsets from the Nordic nRF5 series chipsets do not have an HCI interface. Instead, they provide an LE Bluetooth Stack as a binary library, the so-called SoftDevices. Developer can write their Bluetooth application on top of this library usually. Since the chipset can be programmed, it can also be loaded with a firmware that provides a regular HCI H4 interface for a Host.

An interesting feature of the nRF5 chipsets is that they can support multiple LE roles at the same time, e.g. being Central in one connection and a Peripheral in another connection. Also, the nRF52 SoftDevice implementation supports the Bluetooth 4.2 Data Length Extension.

Both nRF5 series, the nRF51 and the nRF52, can be used with an HCI firmware. The HCI firmware does not support the Data Length Extension yet, but this will be supported soon. Also, the nRF51 does not support encryted connections at the moment (November 18th, 2016) although this might become supported as well.

BD ADDR is not set automatically. However, during production, a 64-bit random number is stored in the each chip. Nordic uses this random number as a random static address in their SoftDevice implementation.

SCO data is not supported since it is LE only.

Baud rate is fixed to 115200 by the patch althouth the firmware could be extended to support a baud rate change.

Init script is not required.

BTstack integration: No special chipset driver is provided. In order to use the random static address, the provided patch stores this address as the (invalid) public address that is returned by the HCI Read BD Addr command. When BTstack detects that it is a Nordic chipset, it automatically uses this address as random static address - unless the app chooses to use private addresses.

To use these chipsets with BTstack, you need to install an arm-none-eabi gcc toolchain and the nRF5x Command Line Tools incl. the J-Link drivers, checkout the Zephyr project, apply a minimal patch to help with using a random static address, and flash it onto the chipset:

  $ patch -p1 < hci_firmware.patch
  • In samples/bluetooth/hci_uart compile the firmware for nRF52 Dev Kit
  $ make BOARD=nrf52_pca10040
  • Upload the firmware

    $ ./flash_nrf52_pca10040.sh

  • For the nRF51 Dev Kit, use make BOARD=nrf51_pca10028 and ./flash_nrf51_10028.sh with the nRF51 kit.

  • The nRF5 dev kit acts as an LE HCI Controller with H4 interface.

STMicroelectronics

STMicroelectronics offers the Bluetooth V2.1 + EDR chipset STLC2500D that supports SPI and UART H4 connection.

BD Addr can be set with custom command alhough all chipsets have an official address stored.

SCO data might work. We didn't try.

Baud rate can be set with custom command. The baud rate change of the chipset happens within 0.5 seconds. At least on BTstack, knowning exactly when the command was fully sent over the UART is non-trivial, so BTstack switches to the new baud rate after 100 ms to expect the command response on the new speed.

Init scripts are not required although it is possible to upload firmware patches.

BTstack integration: Support for the STLC2500C is provided by btstack_chipset_stlc.c. During the setup, btstack_chipset_stlc2500d_instance function is used to get a btstack_chipset_t instance and passed to hci_init function. It enables higher UART baud rate and to set the BD Addr during startup.

Texas Instruments CC256x series

The Texas Instruments CC256x series is currently in its third iteration and provides a Classic-only (CC2560), a Dual-mode (CC2564), and a Classic + ANT model (CC2567). A variant of the Dual-mode chipset is also integrated into TI's WiLink 8 Wifi+Bluetooth combo modules of the WL183x, WL185x, WL187x, and WL189x series.

The CC256x chipset is connected via an UART connection and supports the H4, H5 (since third iteration), and eHCILL.

SCO data is routed to the I2S/PCM interface but can be configured with the HCI_VS_Write_SCO_Configuration command.

Baud rate can be set with HCI_VS_Update_UART_HCI_Baudrate. The chipset confirms the change with a command complete event after which the local UART is set to the new speed. Oddly enough, the CC256x chipsets ignore the incoming CTS line during this particular command complete response. If the MCU gets UART overrun errors in this situation, a work around could be to set a timer for 100 ms and ignore all incoming data (i.e. the command complete event) during that period. Then, after the timeout, the UART can be set to the new speed safely.

BD Addr can be set with [HCI_VS_Write_BD_Addr](2.2.1 HCI_VS_Write_BD_Addr (0xFC06)) although all chipsets have an official address stored.

Init Scripts. In order to use the CC256x chipset an initialization script must be obtained and converted into a C file for use with BTstack.

The Makefile at chipset/cc256x/Makefile is able to automatically download and convert the requested file. It does this by:

  • Downloading one or more BTS files for your chipset.
  • Running the Python script:
./convert_bts_init_scripts.py

Update: For the latest revision of the CC256x chipsets, the CC2560B and CC2564B, TI decided to split the init script into a main part and the BLE part. The conversion script has been updated to detect bluetooth_init_cc256x_1.2.bts and adds BLE_init_cc256x_1.2.bts if present and merges them into a single .c file.

Update 2: In May 2015, TI renamed the init scripts to match the naming scheme previously used on Linux systems. The conversion script has been updated to also detect initscripts_TIInit_6.7.16_bt_spec_4.1.bts and integrates initscripts_TIInit_6.7.16_ble_add-on.bts if present.

BTstack integration: The common code for all CC256x chipsets is provided by btstack_chipset_cc256x.c. During the setup, btstack_chipset_cc256x_instance function is used to get a btstack_chiopset_t instance and passed to hci_init function.

SCO Data can be routed over HCI, so HFP Wide-Band Speech is supported.

Toshiba

The Toshiba TC35661 Dual-Mode chipset is available in three variants: standalone incl. binary Bluetooth stack, as a module with embedded stack or with a regular HCI interface. The HCI variant has the model number TC35661007.

We've tried their USB Evaluation Stick that contains an USB-to-UART adapter and the PAN1026 module that contains the TC35661 -501. We have been told by our distributor that the -501 variant also supports the HCI interface. However, while our tests have shown that Classic Bluetooth with SPP works fine with this variant, none of the LE commands work.

SCO data might work. We didn't try.

Baud rate can be set with custom command.

**BD Addr ** must be set with custom command. It does not have a stored valid public BD Addr.

Init Script is not required. A patch file might be uploaded.

BTstack integration: Support for the TC35661 series is provided by btstack_chipset_tc3566x.c. During the setup, btstack_chipset_tc3566x_instance function is used to get a btstack_chipset_t instance and passed to hci_init function. It enables higher UART baud rate and sets the BD Addr during startup.