btstack/src/btstack_util.c
2017-02-10 11:07:03 +01:00

341 lines
10 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
/*
* btstack_util.c
*
* General utility functions
*
* Created by Matthias Ringwald on 7/23/09.
*/
#include "btstack_config.h"
#include "btstack_debug.h"
#include "btstack_util.h"
#include <stdio.h>
#include <string.h>
/**
* @brief Compare two Bluetooth addresses
* @param a
* @param b
* @return 0 if equal
*/
int bd_addr_cmp(bd_addr_t a, bd_addr_t b){
return memcmp(a,b, BD_ADDR_LEN);
}
/**
* @brief Copy Bluetooth address
* @param dest
* @param src
*/
void bd_addr_copy(bd_addr_t dest, bd_addr_t src){
memcpy(dest,src,BD_ADDR_LEN);
}
uint16_t little_endian_read_16(const uint8_t * buffer, int pos){
return ((uint16_t) buffer[pos]) | (((uint16_t)buffer[(pos)+1]) << 8);
}
uint32_t little_endian_read_24(const uint8_t * buffer, int pos){
return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16);
}
uint32_t little_endian_read_32(const uint8_t * buffer, int pos){
return ((uint32_t) buffer[pos]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t)buffer[(pos)+2]) << 16) | (((uint32_t) buffer[(pos)+3]) << 24);
}
void little_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){
buffer[pos++] = value;
buffer[pos++] = value >> 8;
}
void little_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
buffer[pos++] = value;
buffer[pos++] = value >> 8;
buffer[pos++] = value >> 16;
buffer[pos++] = value >> 24;
}
uint32_t big_endian_read_16( const uint8_t * buffer, int pos) {
return ((uint16_t) buffer[(pos)+1]) | (((uint16_t)buffer[ pos ]) << 8);
}
uint32_t big_endian_read_24( const uint8_t * buffer, int pos) {
return ( ((uint32_t)buffer[(pos)+2]) | (((uint32_t)buffer[(pos)+1]) << 8) | (((uint32_t) buffer[pos]) << 16));
}
uint32_t big_endian_read_32( const uint8_t * buffer, int pos) {
return ((uint32_t) buffer[(pos)+3]) | (((uint32_t)buffer[(pos)+2]) << 8) | (((uint32_t)buffer[(pos)+1]) << 16) | (((uint32_t) buffer[pos]) << 24);
}
void big_endian_store_16(uint8_t *buffer, uint16_t pos, uint16_t value){
buffer[pos++] = value >> 8;
buffer[pos++] = value;
}
void big_endian_store_24(uint8_t *buffer, uint16_t pos, uint32_t value){
buffer[pos++] = value >> 16;
buffer[pos++] = value >> 8;
buffer[pos++] = value;
}
void big_endian_store_32(uint8_t *buffer, uint16_t pos, uint32_t value){
buffer[pos++] = value >> 24;
buffer[pos++] = value >> 16;
buffer[pos++] = value >> 8;
buffer[pos++] = value;
}
// general swap/endianess utils
void reverse_bytes(const uint8_t *src, uint8_t *dst, int len){
int i;
for (i = 0; i < len; i++)
dst[len - 1 - i] = src[i];
}
void reverse_24(const uint8_t * src, uint8_t * dst){
reverse_bytes(src, dst, 3);
}
void reverse_48(const uint8_t * src, uint8_t * dst){
reverse_bytes(src, dst, 6);
}
void reverse_56(const uint8_t * src, uint8_t * dst){
reverse_bytes(src, dst, 7);
}
void reverse_64(const uint8_t * src, uint8_t * dst){
reverse_bytes(src, dst, 8);
}
void reverse_128(const uint8_t * src, uint8_t * dst){
reverse_bytes(src, dst, 16);
}
void reverse_256(const uint8_t * src, uint8_t * dst){
reverse_bytes(src, dst, 32);
}
void reverse_bd_addr(const bd_addr_t src, bd_addr_t dest){
reverse_bytes(src, dest, 6);
}
uint32_t btstack_min(uint32_t a, uint32_t b){
return a < b ? a : b;
}
uint32_t btstack_max(uint32_t a, uint32_t b){
return a > b ? a : b;
}
char char_for_nibble(int nibble){
if (nibble < 10) return '0' + nibble;
nibble -= 10;
if (nibble < 6) return 'A' + nibble;
return '?';
}
static inline char char_for_high_nibble(int value){
return char_for_nibble((value >> 4) & 0x0f);
}
static inline char char_for_low_nibble(int value){
return char_for_nibble(value & 0x0f);
}
int nibble_for_char(char c){
if (c >= '0' && c <= '9') return c - '0';
if (c >= 'a' && c <= 'f') return c - 'a' + 10;
if (c >= 'A' && c <= 'F') return c - 'A' + 10;
return -1;
}
void printf_hexdump(const void *data, int size){
if (size <= 0) return;
int i;
for (i=0; i<size;i++){
printf("%02X ", ((uint8_t *)data)[i]);
}
printf("\n");
}
void log_info_hexdump(const void *data, int size){
#ifdef ENABLE_LOG_INFO
#define ITEMS_PER_LINE 16
// template '0x12, '
#define BYTES_PER_BYTE 6
char buffer[BYTES_PER_BYTE*ITEMS_PER_LINE+1];
int i, j;
j = 0;
for (i=0; i<size;i++){
// help static analyzer proof that j stays within bounds
if (j > BYTES_PER_BYTE * (ITEMS_PER_LINE-1)){
j = 0;
}
uint8_t byte = ((uint8_t *)data)[i];
buffer[j++] = '0';
buffer[j++] = 'x';
buffer[j++] = char_for_high_nibble(byte);
buffer[j++] = char_for_low_nibble(byte);
buffer[j++] = ',';
buffer[j++] = ' ';
if (j >= BYTES_PER_BYTE * ITEMS_PER_LINE ){
buffer[j] = 0;
log_info("%s", buffer);
j = 0;
}
}
if (j != 0){
buffer[j] = 0;
log_info("%s", buffer);
}
#else
UNUSED(data);
UNUSED(size);
#endif
}
void log_info_key(const char * name, sm_key_t key){
#ifdef ENABLE_LOG_INFO
char buffer[16*2+1];
int i;
int j = 0;
for (i=0; i<16;i++){
uint8_t byte = key[i];
buffer[j++] = char_for_high_nibble(byte);
buffer[j++] = char_for_low_nibble(byte);
}
buffer[j] = 0;
log_info("%-6s %s", name, buffer);
#else
UNUSED(name);
UNUSED(key);
#endif
}
// UUIDs are stored in big endian, similar to bd_addr_t
// Bluetooth Base UUID: 00000000-0000-1000-8000- 00805F9B34FB
const uint8_t bluetooth_base_uuid[] = { 0x00, 0x00, 0x00, 0x00, /* - */ 0x00, 0x00, /* - */ 0x10, 0x00, /* - */
0x80, 0x00, /* - */ 0x00, 0x80, 0x5F, 0x9B, 0x34, 0xFB };
void uuid_add_bluetooth_prefix(uint8_t *uuid, uint32_t shortUUID){
memcpy(uuid, bluetooth_base_uuid, 16);
big_endian_store_32(uuid, 0, shortUUID);
}
int uuid_has_bluetooth_prefix(uint8_t * uuid128){
return memcmp(&uuid128[4], &bluetooth_base_uuid[4], 12) == 0;
}
static char uuid128_to_str_buffer[32+4+1];
char * uuid128_to_str(uint8_t * uuid){
int i;
int j = 0;
// after 4, 6, 8, and 10 bytes = XYXYXYXY-XYXY-XYXY-XYXY-XYXYXYXYXYXY, there's a dash
const int dash_locations = (1<<3) | (1<<5) | (1<<7) | (1<<9);
for (i=0;i<16;i++){
uint8_t byte = uuid[i];
uuid128_to_str_buffer[j++] = char_for_high_nibble(byte);
uuid128_to_str_buffer[j++] = char_for_low_nibble(byte);
if (dash_locations & (1<<i)){
uuid128_to_str_buffer[j++] = '-';
}
}
return uuid128_to_str_buffer;
}
static char bd_addr_to_str_buffer[6*3]; // 12:45:78:01:34:67\0
char * bd_addr_to_str(bd_addr_t addr){
// orig code
// sprintf(bd_addr_to_str_buffer, "%02x:%02x:%02x:%02x:%02x:%02x", addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
// sprintf-free code
char * p = bd_addr_to_str_buffer;
int i;
for (i = 0; i < 6 ; i++) {
uint8_t byte = addr[i];
*p++ = char_for_high_nibble(byte);
*p++ = char_for_low_nibble(byte);
*p++ = ':';
}
*--p = 0;
return (char *) bd_addr_to_str_buffer;
}
static int scan_hex_byte(const char * byte_string){
int upper_nibble = nibble_for_char(*byte_string++);
if (upper_nibble < 0) return -1;
int lower_nibble = nibble_for_char(*byte_string);
if (lower_nibble < 0) return -1;
return (upper_nibble << 4) | lower_nibble;
}
int sscanf_bd_addr(const char * addr_string, bd_addr_t addr){
uint8_t buffer[BD_ADDR_LEN];
int result = 0;
int i;
for (i = 0; i < BD_ADDR_LEN; i++) {
int single_byte = scan_hex_byte(addr_string);
if (single_byte < 0) break;
addr_string += 2;
buffer[i] = single_byte;
// don't check seperator after last byte
if (i == BD_ADDR_LEN - 1) {
result = 1;
break;
}
char separator = *addr_string++;
if (separator != ':' && separator != '-' && separator != ' ') break;
}
if (result){
bd_addr_copy(addr, buffer);
}
return result;
}
uint32_t btstack_atoi(const char *str){
uint32_t val = 0;
while (1){
char chr = *str;
if (!chr || chr < '0' || chr > '9')
return val;
val = (val * 10) + (chr - '0');
str++;
}
}