btstack/src/rfcomm.c
2011-07-22 18:34:18 +00:00

1916 lines
72 KiB
C

/*
* Copyright (C) 2010 by Matthias Ringwald
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* rfcomm.c
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // memcpy
#include <btstack/btstack.h>
#include <btstack/hci_cmds.h>
#include <btstack/utils.h>
#include <btstack/utils.h>
#include "hci.h"
#include "hci_dump.h"
#include "debug.h"
#include "rfcomm.h"
// Control field values bit no. 1 2 3 4 PF 6 7 8
#define BT_RFCOMM_SABM 0x3F // 1 1 1 1 1 1 0 0
#define BT_RFCOMM_UA 0x73 // 1 1 0 0 1 1 1 0
#define BT_RFCOMM_DM 0x0F // 1 1 1 1 0 0 0 0
#define BT_RFCOMM_DM_PF 0x1F // 1 1 1 1 1 0 0 0
#define BT_RFCOMM_DISC 0x53 // 1 1 0 0 1 0 1 0
#define BT_RFCOMM_UIH 0xEF // 1 1 1 1 0 1 1 1
#define BT_RFCOMM_UIH_PF 0xFF // 1 1 1 1 0 1 1 1
// Multiplexer message types
#define BT_RFCOMM_CLD_CMD 0xC3
#define BT_RFCOMM_FCON_CMD 0xA3
#define BT_RFCOMM_FCON_RSP 0xA1
#define BT_RFCOMM_FCOFF_CMD 0x63
#define BT_RFCOMM_FCOFF_RSP 0x61
#define BT_RFCOMM_MSC_CMD 0xE3
#define BT_RFCOMM_MSC_RSP 0xE1
#define BT_RFCOMM_NSC_RSP 0x11
#define BT_RFCOMM_PN_CMD 0x83
#define BT_RFCOMM_PN_RSP 0x81
#define BT_RFCOMM_RLS_CMD 0x53
#define BT_RFCOMM_RLS_RSP 0x51
#define BT_RFCOMM_RPN_CMD 0x93
#define BT_RFCOMM_RPN_RSP 0x91
#define BT_RFCOMM_TEST_CMD 0x23
#define BT_RFCOMM_TEST_RSP 0x21
#define RFCOMM_MAX_PAYLOAD (HCI_ACL_3DH5_SIZE-HCI_ACL_DATA_PKT_HDR)
#define RFCOMM_MULIPLEXER_TIMEOUT_MS 60000
// FCS calc
#define BT_RFCOMM_CODE_WORD 0xE0 // pol = x8+x2+x1+1
#define BT_RFCOMM_CRC_CHECK_LEN 3
#define BT_RFCOMM_UIHCRC_CHECK_LEN 2
#include "l2cap.h"
// private structs
typedef enum {
RFCOMM_MULTIPLEXER_CLOSED = 1,
RFCOMM_MULTIPLEXER_W4_CONNECT, // outgoing
RFCOMM_MULTIPLEXER_SEND_SABM_0, // "
RFCOMM_MULTIPLEXER_W4_UA_0, // "
RFCOMM_MULTIPLEXER_W4_SABM_0, // incoming
RFCOMM_MULTIPLEXER_SEND_UA_0,
RFCOMM_MULTIPLEXER_OPEN,
RFCOMM_MULTIPLEXER_SEND_UA_0_AND_DISC
} RFCOMM_MULTIPLEXER_STATE;
typedef enum {
MULT_EV_READY_TO_SEND = 1,
} RFCOMM_MULTIPLEXER_EVENT;
typedef enum {
RFCOMM_CHANNEL_CLOSED = 1,
RFCOMM_CHANNEL_W4_MULTIPLEXER,
RFCOMM_CHANNEL_SEND_UIH_PN,
RFCOMM_CHANNEL_W4_PN_RSP,
RFCOMM_CHANNEL_SEND_SABM_W4_UA,
RFCOMM_CHANNEL_W4_UA,
RFCOMM_CHANNEL_INCOMING_SETUP,
RFCOMM_CHANNEL_DLC_SETUP,
RFCOMM_CHANNEL_OPEN,
RFCOMM_CHANNEL_SEND_UA_AFTER_DISC,
RFCOMM_CHANNEL_SEND_DISC,
RFCOMM_CHANNEL_SEND_DM,
} RFCOMM_CHANNEL_STATE;
typedef enum {
STATE_VAR_NONE = 0,
STATE_VAR_CLIENT_ACCEPTED = 1 << 0,
STATE_VAR_RCVD_PN = 1 << 1,
STATE_VAR_RCVD_RPN = 1 << 2,
STATE_VAR_RCVD_SABM = 1 << 3,
STATE_VAR_RCVD_MSC_CMD = 1 << 4,
STATE_VAR_RCVD_MSC_RSP = 1 << 5,
STATE_VAR_SEND_PN_RSP = 1 << 6,
STATE_VAR_SEND_RPN_INFO = 1 << 7,
STATE_VAR_SEND_RPN_RSP = 1 << 8,
STATE_VAR_SEND_UA = 1 << 9,
STATE_VAR_SEND_MSC_CMD = 1 << 10,
STATE_VAR_SEND_MSC_RSP = 1 << 11,
STATE_VAR_SEND_CREDITS = 1 << 12,
STATE_VAR_SENT_MSC_CMD = 1 << 13,
STATE_VAR_SENT_MSC_RSP = 1 << 14,
STATE_VAR_SENT_CREDITS = 1 << 15,
} RFCOMM_CHANNEL_STATE_VAR;
typedef enum {
CH_EVT_RCVD_SABM = 1,
CH_EVT_RCVD_UA,
CH_EVT_RCVD_PN,
CH_EVT_RCVD_PN_RSP,
CH_EVT_RCVD_DISC,
CH_EVT_RCVD_DM,
CH_EVT_RCVD_MSC_CMD,
CH_EVT_RCVD_MSC_RSP,
CH_EVT_RCVD_RPN_CMD,
CH_EVT_RCVD_RPN_REQ,
CH_EVT_MULTIPLEXER_READY,
CH_EVT_READY_TO_SEND,
} RFCOMM_CHANNEL_EVENT;
typedef struct rfcomm_channel_event {
RFCOMM_CHANNEL_EVENT type;
} rfcomm_channel_event_t;
typedef struct rfcomm_channel_event_pn {
rfcomm_channel_event_t super;
uint16_t max_frame_size;
uint8_t priority;
uint8_t credits_outgoing;
} rfcomm_channel_event_pn_t;
typedef struct rfcomm_rpn_data {
uint8_t baud_rate;
uint8_t flags;
uint8_t flow_control;
uint8_t xon;
uint8_t xoff;
uint8_t parameter_mask_0; // first byte
uint8_t parameter_mask_1; // second byte
} rfcomm_rpn_data_t;
typedef struct rfcomm_channel_event_rpn {
rfcomm_channel_event_t super;
rfcomm_rpn_data_t data;
} rfcomm_channel_event_rpn_t;
// info regarding potential connections
typedef struct {
// linked list - assert: first field
linked_item_t item;
// server channel
uint8_t server_channel;
// incoming max frame size
uint16_t max_frame_size;
// client connection
void *connection;
// internal connection
btstack_packet_handler_t packet_handler;
} rfcomm_service_t;
// info regarding multiplexer
// note: spec mandates single multplexer per device combination
typedef struct {
// linked list - assert: first field
linked_item_t item;
timer_source_t timer;
int timer_active;
RFCOMM_MULTIPLEXER_STATE state;
uint16_t l2cap_cid;
uint8_t l2cap_credits;
bd_addr_t remote_addr;
hci_con_handle_t con_handle;
uint8_t outgoing;
// hack to deal with authentication failure only observed by remote side
uint8_t at_least_one_connection;
uint16_t max_frame_size;
// send DM for DLCI != 0
uint8_t send_dm_for_dlci;
} rfcomm_multiplexer_t;
// info regarding an actual coneection
typedef struct {
// linked list - assert: first field
linked_item_t item;
rfcomm_multiplexer_t *multiplexer;
uint16_t rfcomm_cid;
uint8_t outgoing;
uint8_t dlci;
// credits for outgoing traffic
uint8_t credits_outgoing;
// number of packets granted to client
uint8_t packets_granted;
// credits for incoming traffic
uint8_t credits_incoming;
// channel state
RFCOMM_CHANNEL_STATE state;
// state variables used in RFCOMM_CHANNEL_INCOMING
RFCOMM_CHANNEL_STATE_VAR state_var;
// priority set by incoming side in PN
uint8_t pn_priority;
// negotiated frame size
uint16_t max_frame_size;
// rpn data
rfcomm_rpn_data_t rpn_data;
// server channel (see rfcomm_service_t) - NULL => outgoing channel
rfcomm_service_t * service;
// internal connection
btstack_packet_handler_t packet_handler;
// client connection
void * connection;
} rfcomm_channel_t;
// global rfcomm data
static uint16_t rfcomm_client_cid_generator; // used for client channel IDs
// linked lists for all
static linked_list_t rfcomm_multiplexers = NULL;
static linked_list_t rfcomm_channels = NULL;
static linked_list_t rfcomm_services = NULL;
// used to assemble rfcomm packets
uint8_t rfcomm_out_buffer[RFCOMM_MAX_PAYLOAD];
static void (*app_packet_handler)(void * connection, uint8_t packet_type,
uint16_t channel, uint8_t *packet, uint16_t size);
static void rfcomm_run(void);
static void rfcomm_hand_out_credits(void);
static void rfcomm_channel_state_machine(rfcomm_channel_t *channel, rfcomm_channel_event_t *event);
static void rfcomm_channel_state_machine_2(rfcomm_multiplexer_t * multiplexer, uint8_t dlci, rfcomm_channel_event_t *event);
static int rfcomm_channel_ready_for_open(rfcomm_channel_t *channel);
static void rfcomm_multiplexer_state_machine(rfcomm_multiplexer_t * multiplexer, RFCOMM_MULTIPLEXER_EVENT event);
// MARK: RFCOMM CLIENT EVENTS
// data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
static void rfcomm_emit_connection_request(rfcomm_channel_t *channel) {
uint8_t event[11];
event[0] = RFCOMM_EVENT_INCOMING_CONNECTION;
event[1] = sizeof(event) - 2;
bt_flip_addr(&event[2], channel->multiplexer->remote_addr);
event[8] = channel->dlci >> 1;
bt_store_16(event, 9, channel->rfcomm_cid);
hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event));
(*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event));
}
// API Change: BTstack-0.3.50x uses
// data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
// next Cydia release will use SVN version of this
// data: event(8), len(8), status (8), address (48), handle (16), server channel(8), rfcomm_cid(16), max frame size(16)
static void rfcomm_emit_channel_opened(rfcomm_channel_t *channel, uint8_t status) {
uint8_t event[16];
uint8_t pos = 0;
event[pos++] = RFCOMM_EVENT_OPEN_CHANNEL_COMPLETE;
event[pos++] = sizeof(event) - 2;
event[pos++] = status;
bt_flip_addr(&event[pos], channel->multiplexer->remote_addr); pos += 6;
bt_store_16(event, pos, channel->multiplexer->con_handle); pos += 2;
event[pos++] = channel->dlci >> 1;
bt_store_16(event, pos, channel->rfcomm_cid); pos += 2; // channel ID
bt_store_16(event, pos, channel->max_frame_size); pos += 2; // max frame size
hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event));
(*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, pos);
}
// data: event(8), len(8), rfcomm_cid(16)
static void rfcomm_emit_channel_closed(rfcomm_channel_t * channel) {
uint8_t event[4];
event[0] = RFCOMM_EVENT_CHANNEL_CLOSED;
event[1] = sizeof(event) - 2;
bt_store_16(event, 2, channel->rfcomm_cid);
hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event));
(*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event));
}
static void rfcomm_emit_credits(rfcomm_channel_t * channel, uint8_t credits) {
uint8_t event[5];
event[0] = RFCOMM_EVENT_CREDITS;
event[1] = sizeof(event) - 2;
bt_store_16(event, 2, channel->rfcomm_cid);
event[4] = credits;
hci_dump_packet(HCI_EVENT_PACKET, 0, event, sizeof(event));
(*app_packet_handler)(channel->connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event));
}
static void rfcomm_emit_service_registered(void *connection, uint8_t status, uint8_t channel){
uint8_t event[4];
event[0] = RFCOMM_EVENT_SERVICE_REGISTERED;
event[1] = sizeof(event) - 2;
event[2] = status;
event[3] = channel;
hci_dump_packet( HCI_EVENT_PACKET, 0, event, sizeof(event));
(*app_packet_handler)(connection, HCI_EVENT_PACKET, 0, (uint8_t *) event, sizeof(event));
}
// MARK: RFCOMM MULTIPLEXER HELPER
static void rfcomm_multiplexer_initialize(rfcomm_multiplexer_t *multiplexer){
bzero(multiplexer, sizeof(rfcomm_multiplexer_t));
multiplexer->state = RFCOMM_MULTIPLEXER_CLOSED;
multiplexer->l2cap_credits = 0;
multiplexer->send_dm_for_dlci = 0;
// - Max RFCOMM header has 6 bytes (P/F bit is set, payload length >= 128)
// - therefore, we set RFCOMM max frame size <= Local L2CAP MTU - 6
multiplexer->max_frame_size = RFCOMM_MAX_PAYLOAD - 6; // max
}
static rfcomm_multiplexer_t * rfcomm_multiplexer_create_for_addr(bd_addr_t *addr){
// alloc structure
rfcomm_multiplexer_t * multiplexer = malloc(sizeof(rfcomm_multiplexer_t));
if (!multiplexer) return NULL;
// fill in
rfcomm_multiplexer_initialize(multiplexer);
BD_ADDR_COPY(&multiplexer->remote_addr, addr);
// add to services list
linked_list_add(&rfcomm_multiplexers, (linked_item_t *) multiplexer);
return multiplexer;
}
static rfcomm_multiplexer_t * rfcomm_multiplexer_for_addr(bd_addr_t *addr){
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_multiplexers; it ; it = it->next){
rfcomm_multiplexer_t * multiplexer = ((rfcomm_multiplexer_t *) it);
if (BD_ADDR_CMP(addr, multiplexer->remote_addr) == 0) {
return multiplexer;
};
}
return NULL;
}
static rfcomm_multiplexer_t * rfcomm_multiplexer_for_l2cap_cid(uint16_t l2cap_cid) {
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_multiplexers; it ; it = it->next){
rfcomm_multiplexer_t * multiplexer = ((rfcomm_multiplexer_t *) it);
if (multiplexer->l2cap_cid == l2cap_cid) {
return multiplexer;
};
}
return NULL;
}
static int rfcomm_multiplexer_has_channels(rfcomm_multiplexer_t * multiplexer){
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
rfcomm_channel_t * channel = ((rfcomm_channel_t *) it);
if (channel->multiplexer == multiplexer) {
return 1;
}
}
return 0;
}
// MARK: RFCOMM CHANNEL HELPER
static void rfcomm_dump_channels(void){
#ifndef EMBEDDED
linked_item_t * it;
int channels = 0;
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
rfcomm_channel_t * channel = (rfcomm_channel_t *) it;
log_info("Channel #%u: addr %p, state %u\n", channels, channel, channel->state);
channels++;
}
#endif
}
static void rfcomm_channel_initialize(rfcomm_channel_t *channel, rfcomm_multiplexer_t *multiplexer,
rfcomm_service_t *service, uint8_t server_channel){
// don't use 0 as channel id
if (rfcomm_client_cid_generator == 0) ++rfcomm_client_cid_generator;
// setup channel
bzero(channel, sizeof(rfcomm_channel_t));
channel->state = RFCOMM_CHANNEL_CLOSED;
channel->state_var = STATE_VAR_NONE;
channel->multiplexer = multiplexer;
channel->service = service;
channel->rfcomm_cid = rfcomm_client_cid_generator++;
channel->max_frame_size = multiplexer->max_frame_size;
channel->credits_incoming = 0;
channel->credits_outgoing = 0;
channel->packets_granted = 0;
if (service) {
// incoming connection
channel->outgoing = 0;
channel->dlci = (server_channel << 1) | multiplexer->outgoing;
} else {
// outgoing connection
channel->outgoing = 1;
channel->dlci = (server_channel << 1) | (multiplexer->outgoing ^ 1);
}
}
// service == NULL -> outgoing channel
static rfcomm_channel_t * rfcomm_channel_create(rfcomm_multiplexer_t * multiplexer,
rfcomm_service_t * service, uint8_t server_channel){
log_info("rfcomm_channel_create for service %p, channel %u --- begin\n", service, server_channel);
rfcomm_dump_channels();
// alloc structure
rfcomm_channel_t * channel = malloc(sizeof(rfcomm_channel_t));
if (!channel) return NULL;
// fill in
rfcomm_channel_initialize(channel, multiplexer, service, server_channel);
// add to services list
linked_list_add(&rfcomm_channels, (linked_item_t *) channel);
return channel;
}
static rfcomm_channel_t * rfcomm_channel_for_rfcomm_cid(uint16_t rfcomm_cid){
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
rfcomm_channel_t * channel = ((rfcomm_channel_t *) it);
if (channel->rfcomm_cid == rfcomm_cid) {
return channel;
};
}
return NULL;
}
static rfcomm_channel_t * rfcomm_channel_for_multiplexer_and_dlci(rfcomm_multiplexer_t * multiplexer, uint8_t dlci){
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
rfcomm_channel_t * channel = ((rfcomm_channel_t *) it);
if (channel->dlci == dlci && channel->multiplexer == multiplexer) {
return channel;
};
}
return NULL;
}
static rfcomm_service_t * rfcomm_service_for_channel(uint8_t server_channel){
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_services; it ; it = it->next){
rfcomm_service_t * service = ((rfcomm_service_t *) it);
if ( service->server_channel == server_channel){
return service;
};
}
return NULL;
}
// MARK: RFCOMM SEND
/**
* @param credits - only used for RFCOMM flow control in UIH wiht P/F = 1
*/
static int rfcomm_send_packet_for_multiplexer(rfcomm_multiplexer_t *multiplexer, uint8_t address, uint8_t control, uint8_t credits, uint8_t *data, uint16_t len){
uint16_t pos = 0;
uint8_t crc_fields = 3;
rfcomm_out_buffer[pos++] = address;
rfcomm_out_buffer[pos++] = control;
// length field can be 1 or 2 octets
if (len < 128){
rfcomm_out_buffer[pos++] = (len << 1)| 1; // bits 0-6
} else {
rfcomm_out_buffer[pos++] = (len & 0x7f) << 1; // bits 0-6
rfcomm_out_buffer[pos++] = len >> 7; // bits 7-14
crc_fields++;
}
// add credits for UIH frames when PF bit is set
if (control == BT_RFCOMM_UIH_PF){
rfcomm_out_buffer[pos++] = credits;
}
// copy actual data
if (len) {
memcpy(&rfcomm_out_buffer[pos], data, len);
pos += len;
}
// UIH frames only calc FCS over address + control (5.1.1)
if ((control & 0xef) == BT_RFCOMM_UIH){
crc_fields = 2;
}
rfcomm_out_buffer[pos++] = crc8_calc(rfcomm_out_buffer, crc_fields); // calc fcs
int credits_taken = 0;
if (multiplexer->l2cap_credits){
credits_taken++;
multiplexer->l2cap_credits--;
} else {
log_info( "rfcomm_send_packet addr %02x, ctrl %02x size %u without l2cap credits\n", address, control, pos);
}
int err = l2cap_send_internal(multiplexer->l2cap_cid, rfcomm_out_buffer, pos);
if (err) {
// undo credit counting
multiplexer->l2cap_credits += credits_taken;
}
return err;
}
// C/R Flag in Address
// - terms: initiator = station that creates multiplexer with SABM
// - terms: responder = station that responds to multiplexer setup with UA
// "For SABM, UA, DM and DISC frames C/R bit is set according to Table 1 in GSM 07.10, section 5.2.1.2"
// - command initiator = 1 /response responder = 1
// - command responder = 0 /response initiator = 0
// "For UIH frames, the C/R bit is always set according to section 5.4.3.1 in GSM 07.10.
// This applies independently of what is contained wthin the UIH frames, either data or control messages."
// - c/r = 1 for frames by initiating station, 0 = for frames by responding station
// C/R Flag in Message
// "In the message level, the C/R bit in the command type field is set as stated in section 5.4.6.2 in GSM 07.10."
// - If the C/R bit is set to 1 the message is a command
// - if it is set to 0 the message is a response.
// temp/old messge construction
// new object oriented version
static int rfcomm_send_sabm(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2); // command
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_SABM, 0, NULL, 0);
}
static int rfcomm_send_disc(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2); // command
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_DISC, 0, NULL, 0);
}
static int rfcomm_send_ua(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){
uint8_t address = (1 << 0) | ((multiplexer->outgoing ^ 1) << 1) | (dlci << 2); // response
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UA, 0, NULL, 0);
}
static int rfcomm_send_dm_pf(rfcomm_multiplexer_t *multiplexer, uint8_t dlci){
uint8_t address = (1 << 0) | ((multiplexer->outgoing ^ 1) << 1) | (dlci << 2); // response
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_DM_PF, 0, NULL, 0);
}
static int rfcomm_send_uih_msc_cmd(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t signals) {
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1);
uint8_t payload[4];
uint8_t pos = 0;
payload[pos++] = BT_RFCOMM_MSC_CMD;
payload[pos++] = 2 << 1 | 1; // len
payload[pos++] = (1 << 0) | (1 << 1) | (dlci << 2); // CMD => C/R = 1
payload[pos++] = signals;
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos);
}
static int rfcomm_send_uih_msc_rsp(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t signals) {
uint8_t address = (1 << 0) | (multiplexer->outgoing<< 1);
uint8_t payload[4];
uint8_t pos = 0;
payload[pos++] = BT_RFCOMM_MSC_RSP;
payload[pos++] = 2 << 1 | 1; // len
payload[pos++] = (1 << 0) | (1 << 1) | (dlci << 2); // CMD => C/R = 1
payload[pos++] = signals;
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos);
}
static int rfcomm_send_uih_pn_command(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint16_t max_frame_size){
uint8_t payload[10];
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1);
uint8_t pos = 0;
payload[pos++] = BT_RFCOMM_PN_CMD;
payload[pos++] = 8 << 1 | 1; // len
payload[pos++] = dlci;
payload[pos++] = 0xf0; // pre-defined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
payload[pos++] = 0; // priority
payload[pos++] = 0; // max 60 seconds ack
payload[pos++] = max_frame_size & 0xff; // max framesize low
payload[pos++] = max_frame_size >> 8; // max framesize high
payload[pos++] = 0x00; // number of retransmissions
payload[pos++] = 0x00; // (unused error recovery window) initial number of credits
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos);
}
// "The response may not change the DLCI, the priority, the convergence layer, or the timer value." RFCOMM-tutorial.pdf
static int rfcomm_send_uih_pn_response(rfcomm_multiplexer_t *multiplexer, uint8_t dlci,
uint8_t priority, uint16_t max_frame_size){
uint8_t payload[10];
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1);
uint8_t pos = 0;
payload[pos++] = BT_RFCOMM_PN_RSP;
payload[pos++] = 8 << 1 | 1; // len
payload[pos++] = dlci;
payload[pos++] = 0xe0; // pre defined for Bluetooth, see 5.5.3 of TS 07.10 Adaption for RFCOMM
payload[pos++] = priority; // priority
payload[pos++] = 0; // max 60 seconds ack
payload[pos++] = max_frame_size & 0xff; // max framesize low
payload[pos++] = max_frame_size >> 8; // max framesize high
payload[pos++] = 0x00; // number of retransmissions
payload[pos++] = 0x00; // (unused error recovery window) initial number of credits
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos);
}
static int rfcomm_send_uih_rpn_rsp(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, rfcomm_rpn_data_t *rpn_data) {
uint8_t payload[10];
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1);
uint8_t pos = 0;
payload[pos++] = BT_RFCOMM_RPN_RSP;
payload[pos++] = 8 << 1 | 1; // len
payload[pos++] = (1 << 0) | (1 << 1) | (dlci << 2); // CMD => C/R = 1
payload[pos++] = rpn_data->baud_rate;
payload[pos++] = rpn_data->flags;
payload[pos++] = rpn_data->flow_control;
payload[pos++] = rpn_data->xon;
payload[pos++] = rpn_data->xoff;
payload[pos++] = rpn_data->parameter_mask_0;
payload[pos++] = rpn_data->parameter_mask_1;
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, (uint8_t *) payload, pos);
}
static int rfcomm_send_uih_data(rfcomm_multiplexer_t *multiplexer, uint8_t dlci, uint8_t *data, uint16_t len){
uint8_t address = (1 << 0) | (multiplexer->outgoing << 1) | (dlci << 2);
return rfcomm_send_packet_for_multiplexer(multiplexer, address, BT_RFCOMM_UIH, 0, data, len);
}
// MARK: RFCOMM MULTIPLEXER
static void rfcomm_multiplexer_finalize(rfcomm_multiplexer_t * multiplexer){
// remove (potential) timer
if (multiplexer->timer_active) {
run_loop_remove_timer(&multiplexer->timer);
multiplexer->timer_active = 0;
}
// close and remove all channels
linked_item_t *it = (linked_item_t *) &rfcomm_channels;
while (it->next){
rfcomm_channel_t * channel = (rfcomm_channel_t *) it->next;
if (channel->multiplexer == multiplexer) {
// emit appropriate events
if (channel->state == RFCOMM_CHANNEL_OPEN) {
rfcomm_emit_channel_closed(channel);
} else {
rfcomm_emit_channel_opened(channel, RFCOMM_MULTIPLEXER_STOPPED);
}
// remove from list
it->next = it->next->next;
// free channel struct
free(channel);
} else {
it = it->next;
}
}
// keep reference to l2cap channel
uint16_t l2cap_cid = multiplexer->l2cap_cid;
// remove mutliplexer
linked_list_remove( &rfcomm_multiplexers, (linked_item_t *) multiplexer);
free(multiplexer);
// close l2cap multiplexer channel, too
l2cap_disconnect_internal(l2cap_cid, 0x13);
}
static void rfcomm_multiplexer_timer_handler(timer_source_t *timer){
rfcomm_multiplexer_t * multiplexer = (rfcomm_multiplexer_t *) linked_item_get_user( (linked_item_t *) timer);
if (!rfcomm_multiplexer_has_channels(multiplexer)){
log_info( "rfcomm_multiplexer_timer_handler timeout: shutting down multiplexer!\n");
rfcomm_multiplexer_finalize(multiplexer);
}
}
static void rfcomm_multiplexer_prepare_idle_timer(rfcomm_multiplexer_t * multiplexer){
if (multiplexer->timer_active) {
run_loop_remove_timer(&multiplexer->timer);
multiplexer->timer_active = 0;
}
if (!rfcomm_multiplexer_has_channels(multiplexer)){
// start timer for multiplexer timeout check
run_loop_set_timer(&multiplexer->timer, RFCOMM_MULIPLEXER_TIMEOUT_MS);
multiplexer->timer.process = rfcomm_multiplexer_timer_handler;
linked_item_set_user((linked_item_t*) &multiplexer->timer, multiplexer);
run_loop_add_timer(&multiplexer->timer);
multiplexer->timer_active = 1;
}
}
static void rfcomm_multiplexer_opened(rfcomm_multiplexer_t *multiplexer){
log_info("Multiplexer up and running\n");
multiplexer->state = RFCOMM_MULTIPLEXER_OPEN;
rfcomm_channel_event_t event;
event.type = CH_EVT_MULTIPLEXER_READY;
// transition of channels that wait for multiplexer
linked_item_t *it;
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
rfcomm_channel_t * channel = ((rfcomm_channel_t *) it);
if (channel->multiplexer != multiplexer) continue;
rfcomm_channel_state_machine(channel, &event);
}
rfcomm_run();
rfcomm_multiplexer_prepare_idle_timer(multiplexer);
}
/**
* @return handled packet
*/
static int rfcomm_multiplexer_hci_event_handler(uint8_t *packet, uint16_t size){
bd_addr_t event_addr;
uint16_t psm;
uint16_t l2cap_cid;
hci_con_handle_t con_handle;
rfcomm_multiplexer_t *multiplexer = NULL;
switch (packet[0]) {
// accept incoming PSM_RFCOMM connection if no multiplexer exists yet
case L2CAP_EVENT_INCOMING_CONNECTION:
// data: event(8), len(8), address(48), handle (16), psm (16), source cid(16) dest cid(16)
bt_flip_addr(event_addr, &packet[2]);
psm = READ_BT_16(packet, 10);
if (psm != PSM_RFCOMM) break;
l2cap_cid = READ_BT_16(packet, 12);
multiplexer = rfcomm_multiplexer_for_addr(&event_addr);
log_info("L2CAP_EVENT_INCOMING_CONNECTION (l2cap_cid 0x%02x) for PSM_RFCOMM from ", l2cap_cid);
if (multiplexer) {
log_info(" => decline\n");
// bt_send_cmd(&l2cap_decline_connection, l2cap_cid);
l2cap_decline_connection_internal(l2cap_cid, 0x13);
} else {
log_info(" => accept\n");
// bt_send_cmd(&l2cap_accept_connection, l2cap_cid);
l2cap_accept_connection_internal(l2cap_cid);
}
break;
// l2cap connection opened -> store l2cap_cid, remote_addr
case L2CAP_EVENT_CHANNEL_OPENED:
if (READ_BT_16(packet, 11) != PSM_RFCOMM) break;
log_info("L2CAP_EVENT_CHANNEL_OPENED for PSM_RFCOMM\n");
// get multiplexer for remote addr
con_handle = READ_BT_16(packet, 9);
l2cap_cid = READ_BT_16(packet, 13);
bt_flip_addr(event_addr, &packet[3]);
multiplexer = rfcomm_multiplexer_for_addr(&event_addr);
if (multiplexer) {
if (multiplexer->state == RFCOMM_MULTIPLEXER_W4_CONNECT) {
log_info("L2CAP_EVENT_CHANNEL_OPENED: outgoing connection A\n");
// wrong remote addr
if (BD_ADDR_CMP(event_addr, multiplexer->remote_addr)) break;
multiplexer->l2cap_cid = l2cap_cid;
multiplexer->con_handle = con_handle;
// send SABM #0
multiplexer->state = RFCOMM_MULTIPLEXER_SEND_SABM_0;
return 1;
}
log_info("L2CAP_EVENT_CHANNEL_OPENED: multiplexer already exists\n");
// single multiplexer per baseband connection
break;
}
log_info("L2CAP_EVENT_CHANNEL_OPENED: create incoming multiplexer for channel %02x\n", l2cap_cid);
// create and inititialize new multiplexer instance (incoming)
// - Max RFCOMM header has 6 bytes (P/F bit is set, payload length >= 128)
// - therefore, we set RFCOMM max frame size <= Local L2CAP MTU - 6
multiplexer = rfcomm_multiplexer_create_for_addr(&event_addr);
multiplexer->con_handle = con_handle;
multiplexer->l2cap_cid = l2cap_cid;
multiplexer->state = RFCOMM_MULTIPLEXER_W4_SABM_0;
multiplexer->max_frame_size = READ_BT_16(packet, 17) - 6;
return 1;
// l2cap disconnect -> state = RFCOMM_MULTIPLEXER_CLOSED;
case L2CAP_EVENT_CREDITS:
// data: event(8), len(8), local_cid(16), credits(8)
l2cap_cid = READ_BT_16(packet, 2);
multiplexer = rfcomm_multiplexer_for_l2cap_cid(l2cap_cid);
if (!multiplexer) break;
multiplexer->l2cap_credits += packet[4];
// log_info("L2CAP_EVENT_CREDITS: %u (now %u)\n", packet[4], multiplexer->l2cap_credits);
// new credits, continue with signaling
rfcomm_run();
if (multiplexer->state != RFCOMM_MULTIPLEXER_OPEN) break;
rfcomm_hand_out_credits();
break;
case DAEMON_EVENT_HCI_PACKET_SENT:
// testing DMA done code
rfcomm_run();
break;
case L2CAP_EVENT_CHANNEL_CLOSED:
// data: event (8), len(8), channel (16)
l2cap_cid = READ_BT_16(packet, 2);
multiplexer = rfcomm_multiplexer_for_l2cap_cid(l2cap_cid);
if (!multiplexer) break;
switch (multiplexer->state) {
case RFCOMM_MULTIPLEXER_W4_SABM_0:
case RFCOMM_MULTIPLEXER_W4_UA_0:
case RFCOMM_MULTIPLEXER_OPEN:
rfcomm_multiplexer_finalize(multiplexer);
return 1;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int rfcomm_multiplexer_l2cap_packet_handler(uint16_t channel, uint8_t *packet, uint16_t size){
// get or create a multiplexer for a certain device
rfcomm_multiplexer_t *multiplexer = rfcomm_multiplexer_for_l2cap_cid(channel);
if (!multiplexer) return 0;
// but only care for multiplexer control channel
uint8_t frame_dlci = packet[0] >> 2;
if (frame_dlci) return 0;
const uint8_t length_offset = (packet[2] & 1) ^ 1; // to be used for pos >= 3
const uint8_t credit_offset = ((packet[1] & BT_RFCOMM_UIH_PF) == BT_RFCOMM_UIH_PF) ? 1 : 0; // credits for uih_pf frames
const uint8_t payload_offset = 3 + length_offset + credit_offset;
switch (packet[1]){
case BT_RFCOMM_SABM:
if (multiplexer->state == RFCOMM_MULTIPLEXER_W4_SABM_0){
log_info("Received SABM #0\n");
multiplexer->outgoing = 0;
multiplexer->state = RFCOMM_MULTIPLEXER_SEND_UA_0;
return 1;
}
break;
case BT_RFCOMM_UA:
if (multiplexer->state == RFCOMM_MULTIPLEXER_W4_UA_0) {
// UA #0 -> send UA #0, state = RFCOMM_MULTIPLEXER_OPEN
log_info("Received UA #0 \n");
rfcomm_multiplexer_opened(multiplexer);
return 1;
}
break;
case BT_RFCOMM_DISC:
// DISC #0 -> send UA #0, close multiplexer
log_info("Received DISC #0, (ougoing = %u)\n", multiplexer->outgoing);
multiplexer->state = RFCOMM_MULTIPLEXER_SEND_UA_0_AND_DISC;
return 1;
case BT_RFCOMM_DM:
// DM #0 - we shouldn't get this, just give up
log_info("Received DM #0\n");
log_info("-> Closing down multiplexer\n");
rfcomm_multiplexer_finalize(multiplexer);
return 1;
case BT_RFCOMM_UIH:
if (packet[payload_offset] == BT_RFCOMM_CLD_CMD){
// Multiplexer close down (CLD) -> close mutliplexer
log_info("Received Multiplexer close down command\n");
log_info("-> Closing down multiplexer\n");
rfcomm_multiplexer_finalize(multiplexer);
return 1;
}
break;
default:
break;
}
return 0;
}
static void rfcomm_multiplexer_state_machine(rfcomm_multiplexer_t * multiplexer, RFCOMM_MULTIPLEXER_EVENT event){
// process stored DM responses
if (multiplexer->send_dm_for_dlci){
rfcomm_send_dm_pf(multiplexer, multiplexer->send_dm_for_dlci);
multiplexer->send_dm_for_dlci = 0;
}
switch (multiplexer->state) {
case RFCOMM_MULTIPLEXER_SEND_SABM_0:
switch (event) {
case MULT_EV_READY_TO_SEND:
log_info("Sending SABM #0 - (multi 0x%08x)\n", (int) multiplexer);
multiplexer->state = RFCOMM_MULTIPLEXER_W4_UA_0;
rfcomm_send_sabm(multiplexer, 0);
break;
default:
break;
}
break;
case RFCOMM_MULTIPLEXER_SEND_UA_0:
switch (event) {
case MULT_EV_READY_TO_SEND:
log_info("Sending UA #0\n");
multiplexer->state = RFCOMM_MULTIPLEXER_OPEN;
rfcomm_send_ua(multiplexer, 0);
rfcomm_multiplexer_opened(multiplexer);
break;
default:
break;
}
break;
case RFCOMM_MULTIPLEXER_SEND_UA_0_AND_DISC:
switch (event) {
case MULT_EV_READY_TO_SEND:
log_info("Sending UA #0\n");
log_info("Closing down multiplexer\n");
multiplexer->state = RFCOMM_MULTIPLEXER_CLOSED;
rfcomm_send_ua(multiplexer, 0);
rfcomm_multiplexer_finalize(multiplexer);
// try to detect authentication errors: drop link key if multiplexer closed before first channel got opened
if (!multiplexer->at_least_one_connection){
log_info("TODO: no connections established - delete link key prophylactically\n");
// hci_send_cmd(&hci_delete_stored_link_key, multiplexer->remote_addr);
}
default:
break;
}
break;
default:
break;
}
}
// MARK: RFCOMM CHANNEL
static void rfcomm_hand_out_credits(void){
linked_item_t * it;
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
rfcomm_channel_t * channel = (rfcomm_channel_t *) it;
if (channel->state != RFCOMM_CHANNEL_OPEN) {
// log_info("RFCOMM_EVENT_CREDITS: multiplexer not open\n");
continue;
}
if (channel->packets_granted) {
// log_info("RFCOMM_EVENT_CREDITS: already packets granted\n");
continue;
}
if (!channel->credits_outgoing) {
// log_info("RFCOMM_EVENT_CREDITS: no outgoing credits\n");
continue;
}
if (!channel->multiplexer->l2cap_credits){
// log_info("RFCOMM_EVENT_CREDITS: no l2cap credits\n");
continue;
}
// channel open, multiplexer has l2cap credits and we didn't hand out credit before -> go!
// log_info("RFCOMM_EVENT_CREDITS: 1\n");
channel->packets_granted += 1;
rfcomm_emit_credits(channel, 1);
}
}
static void rfcomm_channel_provide_credits(rfcomm_channel_t *channel){
if (!l2cap_can_send_packet_now(channel->multiplexer->l2cap_cid)) return;
int credits = 0x30;
switch (channel->state) {
case RFCOMM_CHANNEL_DLC_SETUP:
case RFCOMM_CHANNEL_OPEN:
if (channel->credits_incoming < 5){
uint8_t address = (1 << 0) | (channel->multiplexer->outgoing << 1) | (channel->dlci << 2);
rfcomm_send_packet_for_multiplexer(channel->multiplexer, address, BT_RFCOMM_UIH_PF, credits, NULL, 0);
channel->credits_incoming += credits;
}
break;
default:
break;
}
}
static void rfcomm_channel_opened(rfcomm_channel_t *rfChannel){
log_info("rfcomm_channel_opened!\n");
rfChannel->state = RFCOMM_CHANNEL_OPEN;
rfcomm_emit_channel_opened(rfChannel, 0);
rfcomm_hand_out_credits();
// remove (potential) timer
rfcomm_multiplexer_t *multiplexer = rfChannel->multiplexer;
if (multiplexer->timer_active) {
run_loop_remove_timer(&multiplexer->timer);
multiplexer->timer_active = 0;
}
// hack for problem detecting authentication failure
multiplexer->at_least_one_connection = 1;
// start next connection request if pending
rfcomm_run();
}
static void rfcomm_channel_packet_handler_uih(rfcomm_multiplexer_t *multiplexer, uint8_t * packet, uint16_t size){
const uint8_t frame_dlci = packet[0] >> 2;
const uint8_t length_offset = (packet[2] & 1) ^ 1; // to be used for pos >= 3
const uint8_t credit_offset = ((packet[1] & BT_RFCOMM_UIH_PF) == BT_RFCOMM_UIH_PF) ? 1 : 0; // credits for uih_pf frames
const uint8_t payload_offset = 3 + length_offset + credit_offset;
rfcomm_channel_t * rfChannel = rfcomm_channel_for_multiplexer_and_dlci(multiplexer, frame_dlci);
if (!rfChannel) return;
if (packet[1] == BT_RFCOMM_UIH_PF) {
// handle new credits
uint16_t new_credits = packet[3+length_offset];
rfChannel->credits_outgoing += new_credits;
log_info( "RFCOMM data UIH_PF, new credits: %u, now %u\n", new_credits, rfChannel->credits_outgoing);
// notify daemon -> might trigger re-try of parked connections
uint8_t event[1];
event[0] = DAEMON_EVENT_NEW_RFCOMM_CREDITS;
(*app_packet_handler)(rfChannel->connection, DAEMON_EVENT_PACKET, rfChannel->rfcomm_cid, event, sizeof(event));
if (rfChannel->state == RFCOMM_CHANNEL_DLC_SETUP && rfcomm_channel_ready_for_open(rfChannel)) {
rfChannel->state = RFCOMM_CHANNEL_OPEN;
rfcomm_channel_opened(rfChannel);
}
}
if (rfChannel->credits_incoming > 0){
rfChannel->credits_incoming--;
}
rfcomm_channel_provide_credits(rfChannel);
if (size - 1 > payload_offset){ // don't send empty frames, -1 for header checksum at end
// log_info( "RFCOMM data UIH_PF, size %u, channel %x\n", size-payload_offset-1, (int) rfChannel->connection);
(*app_packet_handler)(rfChannel->connection, RFCOMM_DATA_PACKET, rfChannel->rfcomm_cid,
&packet[payload_offset], size-payload_offset-1);
}
// we received new RFCOMM credits, hand them out if possible
rfcomm_hand_out_credits();
}
static void rfcomm_channel_accept_pn(rfcomm_channel_t *channel, rfcomm_channel_event_pn_t *event){
// priority of client request
channel->pn_priority = event->priority;
// new credits
channel->credits_outgoing = event->credits_outgoing;
// negotiate max frame size
if (channel->max_frame_size > channel->multiplexer->max_frame_size) {
channel->max_frame_size = channel->multiplexer->max_frame_size;
}
if (channel->max_frame_size > event->max_frame_size) {
channel->max_frame_size = event->max_frame_size;
}
}
static void rfcomm_channel_finalize(rfcomm_channel_t *channel){
rfcomm_multiplexer_t *multiplexer = channel->multiplexer;
// remove from list
linked_list_remove( &rfcomm_channels, (linked_item_t *) channel);
// free channel
free(channel);
// update multiplexer timeout after channel was removed from list
rfcomm_multiplexer_prepare_idle_timer(multiplexer);
}
static void rfcomm_channel_state_machine_2(rfcomm_multiplexer_t * multiplexer, uint8_t dlci, rfcomm_channel_event_t *event){
// TODO: if client max frame size is smaller than RFCOMM_DEFAULT_SIZE, send PN
// lookup existing channel
rfcomm_channel_t * channel = rfcomm_channel_for_multiplexer_and_dlci(multiplexer, dlci);
// log_info("rfcomm_channel_state_machine_2 lookup dlci #%u = 0x%08x - event %u\n", dlci, (int) channel, event->type);
if (channel) {
rfcomm_channel_state_machine(channel, event);
return;
}
// service registered?
rfcomm_service_t * service = rfcomm_service_for_channel(dlci >> 1);
// log_info("rfcomm_channel_state_machine_2 service dlci #%u = 0x%08x\n", dlci, (int) service);
if (!service) {
// discard request by sending disconnected mode
multiplexer->send_dm_for_dlci = dlci;
return;
}
// create channel for some events
switch (event->type) {
case CH_EVT_RCVD_SABM:
case CH_EVT_RCVD_PN:
case CH_EVT_RCVD_RPN_REQ:
case CH_EVT_RCVD_RPN_CMD:
// setup incoming channel
channel = rfcomm_channel_create(multiplexer, service, dlci >> 1);
break;
default:
break;
}
if (!channel) {
// discard request by sending disconnected mode
multiplexer->send_dm_for_dlci = dlci;
return;
}
channel->connection = service->connection;
rfcomm_channel_state_machine(channel, event);
}
void rfcomm_channel_packet_handler(rfcomm_multiplexer_t * multiplexer, uint8_t *packet, uint16_t size){
// rfcomm: (0) addr [76543 server channel] [2 direction: initiator uses 1] [1 C/R: CMD by initiator = 1] [0 EA=1]
const uint8_t frame_dlci = packet[0] >> 2;
uint8_t message_dlci; // used by commands in UIH(_PF) packets
uint8_t message_len; // "
// rfcomm: (1) command/control
// -- credits_offset = 1 if command == BT_RFCOMM_UIH_PF
const uint8_t credit_offset = ((packet[1] & BT_RFCOMM_UIH_PF) == BT_RFCOMM_UIH_PF) ? 1 : 0; // credits for uih_pf frames
// rfcomm: (2) length. if bit 0 is cleared, 2 byte length is used. (little endian)
const uint8_t length_offset = (packet[2] & 1) ^ 1; // to be used for pos >= 3
// rfcomm: (3+length_offset) credits if credits_offset == 1
// rfcomm: (3+length_offest+credits_offset)
const uint8_t payload_offset = 3 + length_offset + credit_offset;
rfcomm_channel_event_t event;
rfcomm_channel_event_pn_t event_pn;
rfcomm_channel_event_rpn_t event_rpn;
// switch by rfcomm message type
switch(packet[1]) {
case BT_RFCOMM_SABM:
event.type = CH_EVT_RCVD_SABM;
log_info("Received SABM #%u\n", frame_dlci);
rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event);
break;
case BT_RFCOMM_UA:
event.type = CH_EVT_RCVD_UA;
log_info("Received UA #%u - channel opened\n",frame_dlci);
rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event);
break;
case BT_RFCOMM_DISC:
event.type = CH_EVT_RCVD_DISC;
rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event);
break;
case BT_RFCOMM_DM:
case BT_RFCOMM_DM_PF:
event.type = CH_EVT_RCVD_DM;
rfcomm_channel_state_machine_2(multiplexer, frame_dlci, &event);
break;
case BT_RFCOMM_UIH_PF:
case BT_RFCOMM_UIH:
message_len = packet[payload_offset+1] >> 1;
switch (packet[payload_offset]) {
case BT_RFCOMM_PN_CMD:
message_dlci = packet[payload_offset+2];
event_pn.super.type = CH_EVT_RCVD_PN;
event_pn.priority = packet[payload_offset+4];
event_pn.max_frame_size = READ_BT_16(packet, payload_offset+6);
event_pn.credits_outgoing = packet[payload_offset+9];
log_info("Received UIH Parameter Negotiation Command for #%u\n", message_dlci);
rfcomm_channel_state_machine_2(multiplexer, message_dlci, (rfcomm_channel_event_t*) &event_pn);
break;
case BT_RFCOMM_PN_RSP:
message_dlci = packet[payload_offset+2];
event_pn.super.type = CH_EVT_RCVD_PN_RSP;
event_pn.priority = packet[payload_offset+4];
event_pn.max_frame_size = READ_BT_16(packet, payload_offset+6);
event_pn.credits_outgoing = packet[payload_offset+9];
log_info("UIH Parameter Negotiation Response max frame %u, credits %u\n",
event_pn.max_frame_size, event_pn.credits_outgoing);
rfcomm_channel_state_machine_2(multiplexer, message_dlci, (rfcomm_channel_event_t*) &event_pn);
break;
case BT_RFCOMM_MSC_CMD:
message_dlci = packet[payload_offset+2] >> 2;
event.type = CH_EVT_RCVD_MSC_CMD;
log_info("Received MSC CMD for #%u, \n", message_dlci);
rfcomm_channel_state_machine_2(multiplexer, message_dlci, &event);
break;
case BT_RFCOMM_MSC_RSP:
message_dlci = packet[payload_offset+2] >> 2;
event.type = CH_EVT_RCVD_MSC_RSP;
log_info("Received MSC RSP for #%u\n", message_dlci);
rfcomm_channel_state_machine_2(multiplexer, message_dlci, &event);
break;
case BT_RFCOMM_RPN_CMD:
message_dlci = packet[payload_offset+2] >> 2;
switch (message_len){
case 1:
log_info("Received Remote Port Negotiation for #%u\n", message_dlci);
event.type = CH_EVT_RCVD_RPN_REQ;
rfcomm_channel_state_machine_2(multiplexer, message_dlci, &event);
break;
case 8:
log_info("Received Remote Port Negotiation (Info) for #%u\n", message_dlci);
event_rpn.super.type = CH_EVT_RCVD_RPN_CMD;
event_rpn.data.baud_rate = packet[payload_offset+3];
event_rpn.data.flags = packet[payload_offset+4];
event_rpn.data.flow_control = packet[payload_offset+5];
event_rpn.data.xon = packet[payload_offset+6];
event_rpn.data.xoff = packet[payload_offset+7];
event_rpn.data.parameter_mask_0 = packet[payload_offset+8];
event_rpn.data.parameter_mask_1 = packet[payload_offset+9];
rfcomm_channel_state_machine_2(multiplexer, message_dlci, (rfcomm_channel_event_t*) &event_rpn);
break;
default:
break;
}
break;
default:
log_error("Received unknown UIH packet - 0x%02x\n", packet[payload_offset]);
break;
}
break;
default:
log_error("Received unknown RFCOMM message type %x\n", packet[1]);
break;
}
// trigger next action - example W4_PN_RSP: transition to SEND_SABM which only depends on "can send"
rfcomm_run();
}
void rfcomm_packet_handler(uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
// multiplexer handler
int handled = 0;
switch (packet_type) {
case HCI_EVENT_PACKET:
handled = rfcomm_multiplexer_hci_event_handler(packet, size);
break;
case L2CAP_DATA_PACKET:
handled = rfcomm_multiplexer_l2cap_packet_handler(channel, packet, size);
break;
default:
break;
}
if (handled) {
rfcomm_run();
return;
}
// we only handle l2cap packet over open multiplexer channel now
if (packet_type != L2CAP_DATA_PACKET) {
(*app_packet_handler)(NULL, packet_type, channel, packet, size);
return;
}
rfcomm_multiplexer_t * multiplexer = rfcomm_multiplexer_for_l2cap_cid(channel);
if (!multiplexer || multiplexer->state != RFCOMM_MULTIPLEXER_OPEN) {
(*app_packet_handler)(NULL, packet_type, channel, packet, size);
return;
}
// channel data ?
// rfcomm: (0) addr [76543 server channel] [2 direction: initiator uses 1] [1 C/R: CMD by initiator = 1] [0 EA=1]
const uint8_t frame_dlci = packet[0] >> 2;
if (frame_dlci && (packet[1] == BT_RFCOMM_UIH || packet[1] == BT_RFCOMM_UIH_PF)) {
rfcomm_channel_packet_handler_uih(multiplexer, packet, size);
return;
}
rfcomm_channel_packet_handler(multiplexer, packet, size);
}
static int rfcomm_channel_ready_for_open(rfcomm_channel_t *channel){
// log_info("rfcomm_channel_ready_for_open state %u, flags needed %04x, current %04x, rf credits %u, l2cap credits %u \n", channel->state, STATE_VAR_RCVD_MSC_RSP|STATE_VAR_SENT_MSC_RSP|STATE_VAR_SENT_CREDITS, channel->state_var, channel->credits_outgoing, channel->multiplexer->l2cap_credits);
if ((channel->state_var & STATE_VAR_RCVD_MSC_RSP) == 0) return 0;
if ((channel->state_var & STATE_VAR_SENT_MSC_RSP) == 0) return 0;
if ((channel->state_var & STATE_VAR_SENT_CREDITS) == 0) return 0;
if (channel->credits_outgoing == 0) return 0;
return 1;
}
static void rfcomm_channel_state_machine(rfcomm_channel_t *channel, rfcomm_channel_event_t *event){
// log_info("rfcomm_channel_state_machine: state %u, state_var %04x, event %u\n", channel->state, channel->state_var ,event->type);
rfcomm_multiplexer_t *multiplexer = channel->multiplexer;
// TODO: integrate in common switch
if (event->type == CH_EVT_RCVD_DISC){
rfcomm_emit_channel_closed(channel);
channel->state = RFCOMM_CHANNEL_SEND_UA_AFTER_DISC;
return;
}
// TODO: integrate in common switch
if (event->type == CH_EVT_RCVD_DM){
log_info("Received DM message for #%u\n", channel->dlci);
log_info("-> Closing channel locally for #%u\n", channel->dlci);
rfcomm_emit_channel_closed(channel);
rfcomm_channel_finalize(channel);
return;
}
// remote port negotiation command - just accept everything for now
//
// "The RPN command can be used before a new DLC is opened and should be used whenever the port settings change."
// "The RPN command is specified as optional in TS 07.10, but it is mandatory to recognize and respond to it in RFCOMM.
// (Although the handling of individual settings are implementation-dependent.)"
//
// TODO: integrate in common switch
if (event->type == CH_EVT_RCVD_RPN_CMD){
// control port parameters
rfcomm_channel_event_rpn_t *event_rpn = (rfcomm_channel_event_rpn_t*) event;
memcpy(&channel->rpn_data, &event_rpn->data, sizeof(rfcomm_rpn_data_t));
channel->state_var |= STATE_VAR_SEND_RPN_RSP;
return;
}
// TODO: integrate in common switch
if (event->type == CH_EVT_RCVD_RPN_REQ){
// default rpn rsp
rfcomm_rpn_data_t rpn_data;
rpn_data.baud_rate = 0xa0; /* 9600 bps */
rpn_data.flags = 0x03; /* 8-n-1 */
rpn_data.flow_control = 0; /* no flow control */
rpn_data.xon = 0xd1; /* XON */
rpn_data.xoff = 0xd3; /* XOFF */
rpn_data.parameter_mask_0 = 0x7f; /* parameter mask, all values set */
rpn_data.parameter_mask_1 = 0x3f; /* parameter mask, all values set */
memcpy(&channel->rpn_data, &rpn_data, sizeof(rfcomm_rpn_data_t));
channel->state_var |= STATE_VAR_SEND_RPN_RSP;
return;
}
// TODO: integrate in common swich
if (event->type == CH_EVT_READY_TO_SEND){
if (channel->state_var & STATE_VAR_SEND_RPN_RSP){
log_info("Sending Remote Port Negotiation RSP for #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_RPN_RSP;
rfcomm_send_uih_rpn_rsp(multiplexer, channel->dlci, &channel->rpn_data);
return;
}
}
rfcomm_channel_event_pn_t * event_pn = (rfcomm_channel_event_pn_t*) event;
switch (channel->state) {
case RFCOMM_CHANNEL_CLOSED:
switch (event->type){
case CH_EVT_RCVD_SABM:
log_info("-> Inform app\n");
channel->state_var |= STATE_VAR_RCVD_SABM;
channel->state = RFCOMM_CHANNEL_INCOMING_SETUP;
rfcomm_emit_connection_request(channel);
break;
case CH_EVT_RCVD_PN:
rfcomm_channel_accept_pn(channel, event_pn);
log_info("-> Inform app\n");
channel->state_var |= STATE_VAR_RCVD_PN;
channel->state = RFCOMM_CHANNEL_INCOMING_SETUP;
rfcomm_emit_connection_request(channel);
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_INCOMING_SETUP:
switch (event->type){
case CH_EVT_RCVD_SABM:
channel->state_var |= STATE_VAR_RCVD_SABM;
if (channel->state_var & STATE_VAR_CLIENT_ACCEPTED) {
channel->state_var |= STATE_VAR_SEND_UA;
}
break;
case CH_EVT_RCVD_PN:
rfcomm_channel_accept_pn(channel, event_pn);
channel->state_var |= STATE_VAR_RCVD_PN;
if (channel->state_var & STATE_VAR_CLIENT_ACCEPTED) {
channel->state_var |= STATE_VAR_SEND_PN_RSP;
}
break;
case CH_EVT_READY_TO_SEND:
if (channel->state_var & STATE_VAR_SEND_PN_RSP){
log_info("Sending UIH Parameter Negotiation Respond for #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_PN_RSP;
rfcomm_send_uih_pn_response(multiplexer, channel->dlci, channel->pn_priority, channel->max_frame_size);
}
else if (channel->state_var & STATE_VAR_SEND_UA){
log_info("Sending UA #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_UA;
rfcomm_send_ua(multiplexer, channel->dlci);
}
if ((channel->state_var & STATE_VAR_CLIENT_ACCEPTED) && (channel->state_var & STATE_VAR_RCVD_SABM)) {
channel->state_var |= STATE_VAR_SEND_MSC_CMD;
channel->state_var |= STATE_VAR_SEND_CREDITS;
channel->state = RFCOMM_CHANNEL_DLC_SETUP;
}
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_W4_MULTIPLEXER:
switch (event->type) {
case CH_EVT_MULTIPLEXER_READY:
log_info("Muliplexer opened, sending UIH PN next\n");
channel->state = RFCOMM_CHANNEL_SEND_UIH_PN;
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_SEND_UIH_PN:
switch (event->type) {
case CH_EVT_READY_TO_SEND:
log_info("Sending UIH Parameter Negotiation Command for #%u (channel 0x%08x\n", channel->dlci, (int) channel );
channel->state = RFCOMM_CHANNEL_W4_PN_RSP;
rfcomm_send_uih_pn_command(multiplexer, channel->dlci, channel->max_frame_size);
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_W4_PN_RSP:
switch (event->type){
case CH_EVT_RCVD_PN_RSP:
// update max frame size
if (channel->max_frame_size > event_pn->max_frame_size) {
channel->max_frame_size = event_pn->max_frame_size;
}
// new credits
channel->credits_outgoing = event_pn->credits_outgoing;
channel->state = RFCOMM_CHANNEL_SEND_SABM_W4_UA;
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_SEND_SABM_W4_UA:
switch (event->type) {
case CH_EVT_READY_TO_SEND:
log_info("Sending SABM #%u\n", channel->dlci);
channel->state = RFCOMM_CHANNEL_W4_UA;
rfcomm_send_sabm(multiplexer, channel->dlci);
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_W4_UA:
switch (event->type){
case CH_EVT_RCVD_UA:
channel->state = RFCOMM_CHANNEL_DLC_SETUP;
channel->state_var |= STATE_VAR_SEND_MSC_CMD;
channel->state_var |= STATE_VAR_SEND_CREDITS;
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_DLC_SETUP:
switch (event->type){
case CH_EVT_RCVD_MSC_CMD:
channel->state_var |= STATE_VAR_RCVD_MSC_CMD;
channel->state_var |= STATE_VAR_SEND_MSC_RSP;
break;
case CH_EVT_RCVD_MSC_RSP:
channel->state_var |= STATE_VAR_RCVD_MSC_RSP;
break;
case CH_EVT_READY_TO_SEND:
if (channel->state_var & STATE_VAR_SEND_MSC_CMD){
log_info("Sending MSC CMD for #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_MSC_CMD;
channel->state_var |= STATE_VAR_SENT_MSC_CMD;
rfcomm_send_uih_msc_cmd(multiplexer, channel->dlci , 0x8d); // ea=1,fc=0,rtc=1,rtr=1,ic=0,dv=1
break;
}
if (channel->state_var & STATE_VAR_SEND_MSC_RSP){
log_info("Sending MSC RSP for #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_MSC_RSP;
channel->state_var |= STATE_VAR_SENT_MSC_RSP;
rfcomm_send_uih_msc_rsp(multiplexer, channel->dlci, 0x8d); // ea=1,fc=0,rtc=1,rtr=1,ic=0,dv=1
break;
}
if (channel->state_var & STATE_VAR_SEND_CREDITS){
log_info("Providing credits for #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_CREDITS;
channel->state_var |= STATE_VAR_SENT_CREDITS;
rfcomm_channel_provide_credits(channel);
break;
}
break;
default:
break;
}
// finally done?
if (rfcomm_channel_ready_for_open(channel)){
channel->state = RFCOMM_CHANNEL_OPEN;
rfcomm_channel_opened(channel);
}
break;
case RFCOMM_CHANNEL_OPEN:
switch (event->type){
case CH_EVT_RCVD_MSC_CMD:
channel->state_var |= STATE_VAR_SEND_MSC_RSP;
break;
case CH_EVT_READY_TO_SEND:
if (channel->state_var & STATE_VAR_SEND_MSC_RSP){
log_info("Sending MSC RSP for #%u\n", channel->dlci);
channel->state_var &= ~STATE_VAR_SEND_MSC_RSP;
rfcomm_send_uih_msc_rsp(multiplexer, channel->dlci, 0x8d); // ea=1,fc=0,rtc=1,rtr=1,ic=0,dv=1
break;
}
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_SEND_DM:
switch (event->type) {
case CH_EVT_READY_TO_SEND:
log_info("Sending DM_PF for #%u\n", channel->dlci);
// don't emit channel closed - channel was never open
channel->state = RFCOMM_CHANNEL_CLOSED;
rfcomm_send_dm_pf(multiplexer, channel->dlci);
rfcomm_channel_finalize(channel);
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_SEND_DISC:
switch (event->type) {
case CH_EVT_READY_TO_SEND:
channel->state = RFCOMM_CHANNEL_CLOSED;
rfcomm_send_disc(multiplexer, channel->dlci);
rfcomm_emit_channel_closed(channel);
rfcomm_channel_finalize(channel);
break;
default:
break;
}
break;
case RFCOMM_CHANNEL_SEND_UA_AFTER_DISC:
switch (event->type) {
case CH_EVT_READY_TO_SEND:
log_info("Sending UA after DISC for #%u\n", channel->dlci);
channel->state = RFCOMM_CHANNEL_CLOSED;
rfcomm_send_ua(multiplexer, channel->dlci);
rfcomm_channel_finalize(channel);
break;
default:
break;
}
break;
default:
break;
}
}
// MARK: RFCOMM RUN
// process outstanding signaling tasks
static void rfcomm_run(void){
linked_item_t *it;
linked_item_t *next;
for (it = (linked_item_t *) rfcomm_multiplexers; it ; it = next){
next = it->next; // be prepared for removal of channel in state machine
rfcomm_multiplexer_t * multiplexer = ((rfcomm_multiplexer_t *) it);
if (!l2cap_can_send_packet_now(multiplexer->l2cap_cid)) {
// log_info("rfcomm_run cannot send l2cap packet for #%u, credits %u\n", multiplexer->l2cap_cid, multiplexer->l2cap_credits);
continue;
}
// log_info("rfcomm_run: multi 0x%08x, state %u\n", (int) multiplexer, multiplexer->state);
rfcomm_multiplexer_state_machine(multiplexer, MULT_EV_READY_TO_SEND);
}
for (it = (linked_item_t *) rfcomm_channels; it ; it = next){
next = it->next; // be prepared for removal of channel in state machine
rfcomm_channel_t * channel = ((rfcomm_channel_t *) it);
rfcomm_multiplexer_t * multiplexer = channel->multiplexer;
if (!l2cap_can_send_packet_now(multiplexer->l2cap_cid)) continue;
rfcomm_channel_event_t event;
event.type = CH_EVT_READY_TO_SEND;
rfcomm_channel_state_machine(channel, &event);
}
}
// MARK: RFCOMM BTstack API
void rfcomm_init(void){
rfcomm_client_cid_generator = 0;
rfcomm_multiplexers = NULL;
rfcomm_services = NULL;
rfcomm_channels = NULL;
}
// register packet handler
void rfcomm_register_packet_handler(void (*handler)(void * connection, uint8_t packet_type,
uint16_t channel, uint8_t *packet, uint16_t size)){
app_packet_handler = handler;
}
// send packet over specific channel
int rfcomm_send_internal(uint8_t rfcomm_cid, uint8_t *data, uint16_t len){
rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid);
if (!channel){
log_error("rfcomm_send_internal cid %u doesn't exist!\n", rfcomm_cid);
return 0;
}
if (!channel->credits_outgoing){
log_info("rfcomm_send_internal cid %u, no rfcomm outgoing credits!\n", rfcomm_cid);
return RFCOMM_NO_OUTGOING_CREDITS;
}
if (!channel->packets_granted){
log_info("rfcomm_send_internal cid %u, no rfcomm credits granted!\n", rfcomm_cid);
// return RFCOMM_NO_OUTGOING_CREDITS;
}
// log_info("rfcomm_send_internal: len %u... outgoing credits %u, l2cap credit %us, granted %u\n",
// len, channel->credits_outgoing, channel->multiplexer->l2cap_credits, channel->packets_granted);
// send might cause l2cap to emit new credits, update counters first
channel->credits_outgoing--;
int packets_granted_decreased = 0;
if (channel->packets_granted) {
channel->packets_granted--;
packets_granted_decreased++;
}
int result = rfcomm_send_uih_data(channel->multiplexer, channel->dlci, data, len);
if (result != 0) {
channel->credits_outgoing++;
channel->packets_granted += packets_granted_decreased;
log_info("rfcomm_send_internal: error %d\n", result);
return result;
}
// log_info("rfcomm_send_internal: now outgoing credits %u, l2cap credit %us, granted %u\n",
// channel->credits_outgoing, channel->multiplexer->l2cap_credits, channel->packets_granted);
rfcomm_hand_out_credits();
return result;
}
void rfcomm_create_channel_internal(void * connection, bd_addr_t *addr, uint8_t server_channel){
log_info("rfcomm_create_channel_internal to ");
print_bd_addr(*addr);
log_info(" at channel #%02x\n", server_channel);
// create new multiplexer if necessary
rfcomm_multiplexer_t * multiplexer = rfcomm_multiplexer_for_addr(addr);
if (!multiplexer) {
multiplexer = rfcomm_multiplexer_create_for_addr(addr);
multiplexer->outgoing = 1;
multiplexer->state = RFCOMM_MULTIPLEXER_W4_CONNECT;
}
// prepare channel
rfcomm_channel_t * channel = rfcomm_channel_create(multiplexer, 0, server_channel);
channel->connection = connection;
// start multiplexer setup
if (multiplexer->state != RFCOMM_MULTIPLEXER_OPEN) {
channel->state = RFCOMM_CHANNEL_W4_MULTIPLEXER;
l2cap_create_channel_internal(connection, rfcomm_packet_handler, *addr, PSM_RFCOMM, RFCOMM_MAX_PAYLOAD);
return;
}
channel->state = RFCOMM_CHANNEL_SEND_UIH_PN;
// start connecting, if multiplexer is already up and running
rfcomm_run();
}
void rfcomm_disconnect_internal(uint16_t rfcomm_cid){
rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid);
if (channel) {
channel->state = RFCOMM_CHANNEL_SEND_DISC;
}
}
void rfcomm_register_service_internal(void * connection, uint8_t channel, uint16_t max_frame_size){
// check if already registered
rfcomm_service_t * service = rfcomm_service_for_channel(channel);
if (service){
rfcomm_emit_service_registered(service->connection, RFCOMM_CHANNEL_ALREADY_REGISTERED, channel);
return;
}
// alloc structure
service = malloc(sizeof(rfcomm_service_t));
if (!service) {
rfcomm_emit_service_registered(service->connection, BTSTACK_MEMORY_ALLOC_FAILED, channel);
return;
}
// register with l2cap if not registered before
if (linked_list_empty(&rfcomm_services)){
l2cap_register_service_internal(NULL, rfcomm_packet_handler, PSM_RFCOMM, RFCOMM_MAX_PAYLOAD);
}
// fill in
service->connection = connection;
service->server_channel = channel;
service->max_frame_size = max_frame_size;
// add to services list
linked_list_add(&rfcomm_services, (linked_item_t *) service);
// done
rfcomm_emit_service_registered(service->connection, 0, channel);
}
void rfcomm_unregister_service_internal(uint8_t service_channel){
rfcomm_service_t *service = rfcomm_service_for_channel(service_channel);
if (!service) return;
linked_list_remove(&rfcomm_services, (linked_item_t *) service);
free(service);
// unregister if no services active
if (linked_list_empty(&rfcomm_services)){
// bt_send_cmd(&l2cap_unregister_service, PSM_RFCOMM);
l2cap_unregister_service_internal(NULL, PSM_RFCOMM);
}
}
void rfcomm_accept_connection_internal(uint16_t rfcomm_cid){
log_info("Received Accept Connction\n");
rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid);
if (!channel) return;
switch (channel->state) {
case RFCOMM_CHANNEL_INCOMING_SETUP:
channel->state_var |= STATE_VAR_CLIENT_ACCEPTED;
if (channel->state_var & STATE_VAR_RCVD_PN){
channel->state_var |= STATE_VAR_SEND_PN_RSP;
}
if (channel->state_var & STATE_VAR_RCVD_SABM){
channel->state_var |= STATE_VAR_SEND_UA;
}
break;
default:
break;
}
rfcomm_run();
}
void rfcomm_decline_connection_internal(uint16_t rfcomm_cid){
log_info("Received Decline Connction\n");
rfcomm_channel_t * channel = rfcomm_channel_for_rfcomm_cid(rfcomm_cid);
if (!channel) return;
switch (channel->state) {
case RFCOMM_CHANNEL_INCOMING_SETUP:
channel->state = RFCOMM_CHANNEL_SEND_DM;
break;
default:
break;
}
rfcomm_run();
}
//
void rfcomm_close_connection(void *connection){
linked_item_t *it;
// close open channels
for (it = (linked_item_t *) rfcomm_channels; it ; it = it->next){
((rfcomm_channel_t *)it)->state = RFCOMM_CHANNEL_SEND_DISC;
}
// unregister services
it = (linked_item_t *) &rfcomm_services;
while (it->next) {
rfcomm_service_t * service = (rfcomm_service_t *) it->next;
if (service->connection == connection){
it->next = it->next->next;
free(service);
} else {
it = it->next;
}
}
}