btstack/src/hci.c
2021-02-08 17:43:11 +01:00

6320 lines
243 KiB
C

/*
* Copyright (C) 2014 BlueKitchen GmbH
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
* 4. Any redistribution, use, or modification is done solely for
* personal benefit and not for any commercial purpose or for
* monetary gain.
*
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Please inquire about commercial licensing options at
* contact@bluekitchen-gmbh.com
*
*/
#define BTSTACK_FILE__ "hci.c"
/*
* hci.c
*
* Created by Matthias Ringwald on 4/29/09.
*
*/
#include "btstack_config.h"
#ifdef ENABLE_CLASSIC
#ifdef HAVE_EMBEDDED_TICK
#include "btstack_run_loop_embedded.h"
#endif
#endif
#ifdef HAVE_PLATFORM_IPHONE_OS
#include "../port/ios/src/btstack_control_iphone.h"
#endif
#ifdef ENABLE_BLE
#include "gap.h"
#include "ble/le_device_db.h"
#endif
#include <stdarg.h>
#include <string.h>
#include <inttypes.h>
#include "btstack_debug.h"
#include "btstack_event.h"
#include "btstack_linked_list.h"
#include "btstack_memory.h"
#include "bluetooth_company_id.h"
#include "bluetooth_data_types.h"
#include "gap.h"
#include "hci.h"
#include "hci_cmd.h"
#include "hci_dump.h"
#include "ad_parser.h"
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
#ifndef HCI_HOST_ACL_PACKET_NUM
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_NUM"
#endif
#ifndef HCI_HOST_ACL_PACKET_LEN
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_LEN"
#endif
#ifndef HCI_HOST_SCO_PACKET_NUM
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_NUM"
#endif
#ifndef HCI_HOST_SCO_PACKET_LEN
#error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_LEN"
#endif
#endif
#define HCI_CONNECTION_TIMEOUT_MS 10000
#ifndef HCI_RESET_RESEND_TIMEOUT_MS
#define HCI_RESET_RESEND_TIMEOUT_MS 200
#endif
// Names are arbitrarily shortened to 32 bytes if not requested otherwise
#ifndef GAP_INQUIRY_MAX_NAME_LEN
#define GAP_INQUIRY_MAX_NAME_LEN 32
#endif
// GAP inquiry state: 0 = off, 0x01 - 0x30 = requested duration, 0xfe = active, 0xff = stop requested
#define GAP_INQUIRY_DURATION_MIN 0x01
#define GAP_INQUIRY_DURATION_MAX 0x30
#define GAP_INQUIRY_STATE_ACTIVE 0x80
#define GAP_INQUIRY_STATE_IDLE 0
#define GAP_INQUIRY_STATE_W2_CANCEL 0x81
#define GAP_INQUIRY_STATE_W4_CANCELLED 0x82
// GAP Remote Name Request
#define GAP_REMOTE_NAME_STATE_IDLE 0
#define GAP_REMOTE_NAME_STATE_W2_SEND 1
#define GAP_REMOTE_NAME_STATE_W4_COMPLETE 2
// GAP Pairing
#define GAP_PAIRING_STATE_IDLE 0
#define GAP_PAIRING_STATE_SEND_PIN 1
#define GAP_PAIRING_STATE_SEND_PIN_NEGATIVE 2
#define GAP_PAIRING_STATE_SEND_PASSKEY 3
#define GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE 4
#define GAP_PAIRING_STATE_SEND_CONFIRMATION 5
#define GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE 6
// prototypes
#ifdef ENABLE_CLASSIC
static void hci_update_scan_enable(void);
static void hci_emit_discoverable_enabled(uint8_t enabled);
static int hci_local_ssp_activated(void);
static int hci_remote_ssp_supported(hci_con_handle_t con_handle);
static bool hci_ssp_supported(hci_connection_t * connection);
static void hci_notify_if_sco_can_send_now(void);
static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status);
static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection);
static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level);
static void hci_connection_timeout_handler(btstack_timer_source_t *timer);
static void hci_connection_timestamp(hci_connection_t *connection);
static void hci_emit_l2cap_check_timeout(hci_connection_t *conn);
static void gap_inquiry_explode(uint8_t *packet, uint16_t size);
#endif
static int hci_power_control_on(void);
static void hci_power_control_off(void);
static void hci_state_reset(void);
static void hci_emit_transport_packet_sent(void);
static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason);
static void hci_emit_nr_connections_changed(void);
static void hci_emit_hci_open_failed(void);
static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status);
static void hci_emit_event(uint8_t * event, uint16_t size, int dump);
static void hci_emit_acl_packet(uint8_t * packet, uint16_t size);
static void hci_run(void);
static int hci_is_le_connection(hci_connection_t * connection);
static int hci_number_free_acl_slots_for_connection_type( bd_addr_type_t address_type);
#ifdef ENABLE_CLASSIC
static int hci_have_usb_transport(void);
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
// called from test/ble_client/advertising_data_parser.c
void le_handle_advertisement_report(uint8_t *packet, uint16_t size);
static uint8_t hci_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address);
static hci_connection_t * gap_get_outgoing_connection(void);
#endif
#endif
// the STACK is here
#ifndef HAVE_MALLOC
static hci_stack_t hci_stack_static;
#endif
static hci_stack_t * hci_stack = NULL;
#ifdef ENABLE_CLASSIC
// default name
static const char * default_classic_name = "BTstack 00:00:00:00:00:00";
// test helper
static uint8_t disable_l2cap_timeouts = 0;
#endif
/**
* create connection for given address
*
* @return connection OR NULL, if no memory left
*/
static hci_connection_t * create_connection_for_bd_addr_and_type(const bd_addr_t addr, bd_addr_type_t addr_type){
log_info("create_connection_for_addr %s, type %x", bd_addr_to_str(addr), addr_type);
hci_connection_t * conn = btstack_memory_hci_connection_get();
if (!conn) return NULL;
bd_addr_copy(conn->address, addr);
conn->role = HCI_ROLE_INVALID;
conn->address_type = addr_type;
conn->con_handle = 0xffff;
conn->authentication_flags = AUTH_FLAGS_NONE;
conn->bonding_flags = 0;
conn->requested_security_level = LEVEL_0;
#ifdef ENABLE_CLASSIC
conn->request_role = HCI_ROLE_INVALID;
btstack_run_loop_set_timer_handler(&conn->timeout, hci_connection_timeout_handler);
btstack_run_loop_set_timer_context(&conn->timeout, conn);
hci_connection_timestamp(conn);
#endif
conn->acl_recombination_length = 0;
conn->acl_recombination_pos = 0;
conn->num_packets_sent = 0;
conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
#ifdef ENABLE_BLE
conn->le_phy_update_all_phys = 0xff;
#endif
#ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS
conn->le_max_tx_octets = 27;
#endif
btstack_linked_list_add(&hci_stack->connections, (btstack_linked_item_t *) conn);
return conn;
}
/**
* get le connection parameter range
*
* @return le connection parameter range struct
*/
void gap_get_connection_parameter_range(le_connection_parameter_range_t * range){
*range = hci_stack->le_connection_parameter_range;
}
/**
* set le connection parameter range
*
*/
void gap_set_connection_parameter_range(le_connection_parameter_range_t *range){
hci_stack->le_connection_parameter_range = *range;
}
/**
* @brief Test if connection parameters are inside in existing rage
* @param conn_interval_min (unit: 1.25ms)
* @param conn_interval_max (unit: 1.25ms)
* @param conn_latency
* @param supervision_timeout (unit: 10ms)
* @returns 1 if included
*/
int gap_connection_parameter_range_included(le_connection_parameter_range_t * existing_range, uint16_t le_conn_interval_min, uint16_t le_conn_interval_max, uint16_t le_conn_latency, uint16_t le_supervision_timeout){
if (le_conn_interval_min < existing_range->le_conn_interval_min) return 0;
if (le_conn_interval_max > existing_range->le_conn_interval_max) return 0;
if (le_conn_latency < existing_range->le_conn_latency_min) return 0;
if (le_conn_latency > existing_range->le_conn_latency_max) return 0;
if (le_supervision_timeout < existing_range->le_supervision_timeout_min) return 0;
if (le_supervision_timeout > existing_range->le_supervision_timeout_max) return 0;
return 1;
}
/**
* @brief Set max number of connections in LE Peripheral role (if Bluetooth Controller supports it)
* @note: default: 1
* @param max_peripheral_connections
*/
#ifdef ENABLE_LE_PERIPHERAL
void gap_set_max_number_peripheral_connections(int max_peripheral_connections){
hci_stack->le_max_number_peripheral_connections = max_peripheral_connections;
}
#endif
/**
* get hci connections iterator
*
* @return hci connections iterator
*/
void hci_connections_get_iterator(btstack_linked_list_iterator_t *it){
btstack_linked_list_iterator_init(it, &hci_stack->connections);
}
/**
* get connection for a given handle
*
* @return connection OR NULL, if not found
*/
hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * item = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if ( item->con_handle == con_handle ) {
return item;
}
}
return NULL;
}
/**
* get connection for given address
*
* @return connection OR NULL, if not found
*/
hci_connection_t * hci_connection_for_bd_addr_and_type(const bd_addr_t addr, bd_addr_type_t addr_type){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if (connection->address_type != addr_type) continue;
if (memcmp(addr, connection->address, 6) != 0) continue;
return connection;
}
return NULL;
}
inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){
conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags);
}
inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){
conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags);
}
#ifdef ENABLE_CLASSIC
#ifdef ENABLE_SCO_OVER_HCI
static int hci_number_sco_connections(void){
int connections = 0;
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it);
if (connection->address_type != BD_ADDR_TYPE_SCO) continue;
connections++;
}
return connections;
}
#endif
static void hci_connection_timeout_handler(btstack_timer_source_t *timer){
hci_connection_t * connection = (hci_connection_t *) btstack_run_loop_get_timer_context(timer);
#ifdef HAVE_EMBEDDED_TICK
if (btstack_run_loop_embedded_get_ticks() > connection->timestamp + btstack_run_loop_embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){
// connections might be timed out
hci_emit_l2cap_check_timeout(connection);
}
#else
if (btstack_run_loop_get_time_ms() > (connection->timestamp + HCI_CONNECTION_TIMEOUT_MS)){
// connections might be timed out
hci_emit_l2cap_check_timeout(connection);
}
#endif
}
static void hci_connection_timestamp(hci_connection_t *connection){
#ifdef HAVE_EMBEDDED_TICK
connection->timestamp = btstack_run_loop_embedded_get_ticks();
#else
connection->timestamp = btstack_run_loop_get_time_ms();
#endif
}
/**
* add authentication flags and reset timer
* @note: assumes classic connection
* @note: bd_addr is passed in as litle endian uint8_t * as it is called from parsing packets
*/
static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){
bd_addr_t addr;
reverse_bd_addr(bd_addr, addr);
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (conn) {
connectionSetAuthenticationFlags(conn, flags);
hci_connection_timestamp(conn);
}
}
int hci_authentication_active_for_handle(hci_con_handle_t handle){
hci_connection_t * conn = hci_connection_for_handle(handle);
if (!conn) return 0;
if (conn->authentication_flags & LEGACY_PAIRING_ACTIVE) return 1;
if (conn->authentication_flags & SSP_PAIRING_ACTIVE) return 1;
return 0;
}
void gap_drop_link_key_for_bd_addr(bd_addr_t addr){
if (!hci_stack->link_key_db) return;
log_info("gap_drop_link_key_for_bd_addr: %s", bd_addr_to_str(addr));
hci_stack->link_key_db->delete_link_key(addr);
}
void gap_store_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t type){
if (!hci_stack->link_key_db) return;
log_info("gap_store_link_key_for_bd_addr: %s, type %u", bd_addr_to_str(addr), type);
hci_stack->link_key_db->put_link_key(addr, link_key, type);
}
bool gap_get_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t * type){
if (!hci_stack->link_key_db) return false;
int result = hci_stack->link_key_db->get_link_key(addr, link_key, type) != 0;
log_info("link key for %s available %u, type %u", bd_addr_to_str(addr), result, (int) *type);
return result;
}
void gap_delete_all_link_keys(void){
bd_addr_t addr;
link_key_t link_key;
link_key_type_t type;
btstack_link_key_iterator_t it;
int ok = gap_link_key_iterator_init(&it);
if (!ok) {
log_error("could not initialize iterator");
return;
}
while (gap_link_key_iterator_get_next(&it, addr, link_key, &type)){
gap_drop_link_key_for_bd_addr(addr);
}
gap_link_key_iterator_done(&it);
}
int gap_link_key_iterator_init(btstack_link_key_iterator_t * it){
if (!hci_stack->link_key_db) return 0;
if (!hci_stack->link_key_db->iterator_init) return 0;
return hci_stack->link_key_db->iterator_init(it);
}
int gap_link_key_iterator_get_next(btstack_link_key_iterator_t * it, bd_addr_t bd_addr, link_key_t link_key, link_key_type_t * type){
if (!hci_stack->link_key_db) return 0;
return hci_stack->link_key_db->iterator_get_next(it, bd_addr, link_key, type);
}
void gap_link_key_iterator_done(btstack_link_key_iterator_t * it){
if (!hci_stack->link_key_db) return;
hci_stack->link_key_db->iterator_done(it);
}
#endif
static bool hci_is_le_connection_type(bd_addr_type_t address_type){
switch (address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
case BD_ADDR_TYPE_LE_PRIVAT_FALLBACK_PUBLIC:
case BD_ADDR_TYPE_LE_PRIVAT_FALLBACK_RANDOM:
return true;
default:
return false;
}
}
static int hci_is_le_connection(hci_connection_t * connection){
return hci_is_le_connection_type(connection->address_type);
}
/**
* count connections
*/
static int nr_hci_connections(void){
int count = 0;
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL ; it = it->next){
count++;
}
return count;
}
static int hci_number_free_acl_slots_for_connection_type(bd_addr_type_t address_type){
unsigned int num_packets_sent_classic = 0;
unsigned int num_packets_sent_le = 0;
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (hci_is_le_connection(connection)){
num_packets_sent_le += connection->num_packets_sent;
}
if (connection->address_type == BD_ADDR_TYPE_ACL){
num_packets_sent_classic += connection->num_packets_sent;
}
}
log_debug("ACL classic buffers: %u used of %u", num_packets_sent_classic, hci_stack->acl_packets_total_num);
int free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic;
int free_slots_le = 0;
if (free_slots_classic < 0){
log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num);
return 0;
}
if (hci_stack->le_acl_packets_total_num){
// if we have LE slots, they are used
free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le;
if (free_slots_le < 0){
log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num);
return 0;
}
} else {
// otherwise, classic slots are used for LE, too
free_slots_classic -= num_packets_sent_le;
if (free_slots_classic < 0){
log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num);
return 0;
}
}
switch (address_type){
case BD_ADDR_TYPE_UNKNOWN:
log_error("hci_number_free_acl_slots: unknown address type");
return 0;
case BD_ADDR_TYPE_ACL:
return free_slots_classic;
default:
if (hci_stack->le_acl_packets_total_num){
return free_slots_le;
}
return free_slots_classic;
}
}
int hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){
// get connection type
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection){
log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle);
return 0;
}
return hci_number_free_acl_slots_for_connection_type(connection->address_type);
}
#ifdef ENABLE_CLASSIC
static int hci_number_free_sco_slots(void){
unsigned int num_sco_packets_sent = 0;
btstack_linked_item_t *it;
if (hci_stack->synchronous_flow_control_enabled){
// explicit flow control
for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (connection->address_type != BD_ADDR_TYPE_SCO) continue;
num_sco_packets_sent += connection->num_packets_sent;
}
if (num_sco_packets_sent > hci_stack->sco_packets_total_num){
log_info("hci_number_free_sco_slots:packets (%u) > total packets (%u)", num_sco_packets_sent, hci_stack->sco_packets_total_num);
return 0;
}
return hci_stack->sco_packets_total_num - num_sco_packets_sent;
} else {
// implicit flow control -- TODO
int num_ready = 0;
for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (connection->address_type != BD_ADDR_TYPE_SCO) continue;
if (connection->sco_tx_ready == 0) continue;
num_ready++;
}
return num_ready;
}
}
#endif
// only used to send HCI Host Number Completed Packets
static int hci_can_send_comand_packet_transport(void){
if (hci_stack->hci_packet_buffer_reserved) return 0;
// check for async hci transport implementations
if (hci_stack->hci_transport->can_send_packet_now){
if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){
return 0;
}
}
return 1;
}
// new functions replacing hci_can_send_packet_now[_using_packet_buffer]
int hci_can_send_command_packet_now(void){
if (hci_can_send_comand_packet_transport() == 0) return 0;
return hci_stack->num_cmd_packets > 0u;
}
static int hci_transport_can_send_prepared_packet_now(uint8_t packet_type){
// check for async hci transport implementations
if (!hci_stack->hci_transport->can_send_packet_now) return 1;
return hci_stack->hci_transport->can_send_packet_now(packet_type);
}
static int hci_can_send_prepared_acl_packet_for_address_type(bd_addr_type_t address_type){
if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return 0;
return hci_number_free_acl_slots_for_connection_type(address_type) > 0;
}
int hci_can_send_acl_le_packet_now(void){
if (hci_stack->hci_packet_buffer_reserved) return 0;
return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_LE_PUBLIC);
}
int hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) {
if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return 0;
return hci_number_free_acl_slots_for_handle(con_handle) > 0;
}
int hci_can_send_acl_packet_now(hci_con_handle_t con_handle){
if (hci_stack->hci_packet_buffer_reserved) return 0;
return hci_can_send_prepared_acl_packet_now(con_handle);
}
#ifdef ENABLE_CLASSIC
int hci_can_send_acl_classic_packet_now(void){
if (hci_stack->hci_packet_buffer_reserved) return 0;
return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_ACL);
}
int hci_can_send_prepared_sco_packet_now(void){
if (!hci_transport_can_send_prepared_packet_now(HCI_SCO_DATA_PACKET)) return 0;
if (hci_have_usb_transport()){
return hci_stack->sco_can_send_now;
} else {
return hci_number_free_sco_slots() > 0;
}
}
int hci_can_send_sco_packet_now(void){
if (hci_stack->hci_packet_buffer_reserved) return 0;
return hci_can_send_prepared_sco_packet_now();
}
void hci_request_sco_can_send_now_event(void){
hci_stack->sco_waiting_for_can_send_now = 1;
hci_notify_if_sco_can_send_now();
}
#endif
// used for internal checks in l2cap.c
int hci_is_packet_buffer_reserved(void){
return hci_stack->hci_packet_buffer_reserved;
}
// reserves outgoing packet buffer. @returns 1 if successful
int hci_reserve_packet_buffer(void){
if (hci_stack->hci_packet_buffer_reserved) {
log_error("hci_reserve_packet_buffer called but buffer already reserved");
return 0;
}
hci_stack->hci_packet_buffer_reserved = 1;
return 1;
}
void hci_release_packet_buffer(void){
hci_stack->hci_packet_buffer_reserved = 0;
}
// assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call
static int hci_transport_synchronous(void){
return hci_stack->hci_transport->can_send_packet_now == NULL;
}
static int hci_send_acl_packet_fragments(hci_connection_t *connection){
// log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle);
// max ACL data packet length depends on connection type (LE vs. Classic) and available buffers
uint16_t max_acl_data_packet_length = hci_stack->acl_data_packet_length;
if (hci_is_le_connection(connection) && (hci_stack->le_data_packets_length > 0u)){
max_acl_data_packet_length = hci_stack->le_data_packets_length;
}
#ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS
if (hci_is_le_connection(connection)){
max_acl_data_packet_length = connection->le_max_tx_octets;
}
#endif
log_debug("hci_send_acl_packet_fragments entered");
int err;
// multiple packets could be send on a synchronous HCI transport
while (true){
log_debug("hci_send_acl_packet_fragments loop entered");
// get current data
const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4u;
int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos;
bool more_fragments = false;
// if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length
if (current_acl_data_packet_length > max_acl_data_packet_length){
more_fragments = true;
current_acl_data_packet_length = max_acl_data_packet_length;
}
// copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent)
if (acl_header_pos > 0u){
uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
handle_and_flags = (handle_and_flags & 0xcfffu) | (1u << 12u);
little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags);
}
// update header len
little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2u, current_acl_data_packet_length);
// count packet
connection->num_packets_sent++;
log_debug("hci_send_acl_packet_fragments loop before send (more fragments %d)", (int) more_fragments);
// update state for next fragment (if any) as "transport done" might be sent during send_packet already
if (more_fragments){
// update start of next fragment to send
hci_stack->acl_fragmentation_pos += current_acl_data_packet_length;
} else {
// done
hci_stack->acl_fragmentation_pos = 0;
hci_stack->acl_fragmentation_total_size = 0;
}
// send packet
uint8_t * packet = &hci_stack->hci_packet_buffer[acl_header_pos];
const int size = current_acl_data_packet_length + 4;
hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size);
hci_stack->acl_fragmentation_tx_active = 1;
err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size);
log_debug("hci_send_acl_packet_fragments loop after send (more fragments %d)", (int) more_fragments);
// done yet?
if (!more_fragments) break;
// can send more?
if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return err;
}
log_debug("hci_send_acl_packet_fragments loop over");
// release buffer now for synchronous transport
if (hci_transport_synchronous()){
hci_stack->acl_fragmentation_tx_active = 0;
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
}
return err;
}
// pre: caller has reserved the packet buffer
int hci_send_acl_packet_buffer(int size){
// log_info("hci_send_acl_packet_buffer size %u", size);
if (!hci_stack->hci_packet_buffer_reserved) {
log_error("hci_send_acl_packet_buffer called without reserving packet buffer");
return 0;
}
uint8_t * packet = hci_stack->hci_packet_buffer;
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet);
// check for free places on Bluetooth module
if (!hci_can_send_prepared_acl_packet_now(con_handle)) {
log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller");
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
return BTSTACK_ACL_BUFFERS_FULL;
}
hci_connection_t *connection = hci_connection_for_handle( con_handle);
if (!connection) {
log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle);
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
return 0;
}
#ifdef ENABLE_CLASSIC
hci_connection_timestamp(connection);
#endif
// hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size);
// setup data
hci_stack->acl_fragmentation_total_size = size;
hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet
return hci_send_acl_packet_fragments(connection);
}
#ifdef ENABLE_CLASSIC
// pre: caller has reserved the packet buffer
int hci_send_sco_packet_buffer(int size){
// log_info("hci_send_acl_packet_buffer size %u", size);
if (!hci_stack->hci_packet_buffer_reserved) {
log_error("hci_send_acl_packet_buffer called without reserving packet buffer");
return 0;
}
uint8_t * packet = hci_stack->hci_packet_buffer;
// skip checks in loopback mode
if (!hci_stack->loopback_mode){
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); // same for ACL and SCO
// check for free places on Bluetooth module
if (!hci_can_send_prepared_sco_packet_now()) {
log_error("hci_send_sco_packet_buffer called but no free SCO buffers on controller");
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
return BTSTACK_ACL_BUFFERS_FULL;
}
// track send packet in connection struct
hci_connection_t *connection = hci_connection_for_handle( con_handle);
if (!connection) {
log_error("hci_send_sco_packet_buffer called but no connection for handle 0x%04x", con_handle);
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
return 0;
}
if (hci_have_usb_transport()){
// token used
hci_stack->sco_can_send_now = 0;
} else {
if (hci_stack->synchronous_flow_control_enabled){
connection->num_packets_sent++;
} else {
connection->sco_tx_ready--;
}
}
}
hci_dump_packet( HCI_SCO_DATA_PACKET, 0, packet, size);
int err = hci_stack->hci_transport->send_packet(HCI_SCO_DATA_PACKET, packet, size);
if (hci_transport_synchronous()){
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
}
return err;
}
#endif
static void acl_handler(uint8_t *packet, uint16_t size){
// get info
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet);
hci_connection_t *conn = hci_connection_for_handle(con_handle);
uint8_t acl_flags = READ_ACL_FLAGS(packet);
uint16_t acl_length = READ_ACL_LENGTH(packet);
// ignore non-registered handle
if (!conn){
log_error("acl_handler called with non-registered handle %u!" , con_handle);
return;
}
// assert packet is complete
if ((acl_length + 4u) != size){
log_error("acl_handler called with ACL packet of wrong size %d, expected %u => dropping packet", size, acl_length + 4);
return;
}
#ifdef ENABLE_CLASSIC
// update idle timestamp
hci_connection_timestamp(conn);
#endif
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
hci_stack->host_completed_packets = 1;
conn->num_packets_completed++;
#endif
// handle different packet types
switch (acl_flags & 0x03u) {
case 0x01: // continuation fragment
// sanity checks
if (conn->acl_recombination_pos == 0u) {
log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle);
return;
}
if ((conn->acl_recombination_pos + acl_length) > (4u + HCI_ACL_BUFFER_SIZE)){
log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x",
conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle);
conn->acl_recombination_pos = 0;
return;
}
// append fragment payload (header already stored)
(void)memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos],
&packet[4], acl_length);
conn->acl_recombination_pos += acl_length;
// forward complete L2CAP packet if complete.
if (conn->acl_recombination_pos >= (conn->acl_recombination_length + 4u + 4u)){ // pos already incl. ACL header
hci_emit_acl_packet(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos);
// reset recombination buffer
conn->acl_recombination_length = 0;
conn->acl_recombination_pos = 0;
}
break;
case 0x02: { // first fragment
// sanity check
if (conn->acl_recombination_pos) {
log_error( "ACL First Fragment but data in buffer for handle 0x%02x, dropping stale fragments", con_handle);
conn->acl_recombination_pos = 0;
}
// peek into L2CAP packet!
uint16_t l2cap_length = READ_L2CAP_LENGTH( packet );
// compare fragment size to L2CAP packet size
if (acl_length >= (l2cap_length + 4u)){
// forward fragment as L2CAP packet
hci_emit_acl_packet(packet, acl_length + 4u);
} else {
if (acl_length > HCI_ACL_BUFFER_SIZE){
log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x",
4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle);
return;
}
// store first fragment and tweak acl length for complete package
(void)memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE],
packet, acl_length + 4u);
conn->acl_recombination_pos = acl_length + 4u;
conn->acl_recombination_length = l2cap_length;
little_endian_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2u, l2cap_length +4u);
}
break;
}
default:
log_error( "acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03);
return;
}
// execute main loop
hci_run();
}
static void hci_shutdown_connection(hci_connection_t *conn){
log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address));
#ifdef ENABLE_CLASSIC
#ifdef ENABLE_SCO_OVER_HCI
int addr_type = conn->address_type;
#endif
#endif
btstack_run_loop_remove_timer(&conn->timeout);
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
// now it's gone
hci_emit_nr_connections_changed();
#ifdef ENABLE_CLASSIC
#ifdef ENABLE_SCO_OVER_HCI
// update SCO
if (addr_type == BD_ADDR_TYPE_SCO && hci_stack->hci_transport && hci_stack->hci_transport->set_sco_config){
hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections());
}
#endif
#endif
}
#ifdef ENABLE_CLASSIC
static const uint16_t packet_type_sizes[] = {
0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE,
HCI_ACL_DH1_SIZE, 0, 0, 0,
HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE,
HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE
};
static const uint8_t packet_type_feature_requirement_bit[] = {
0, // 3 slot packets
1, // 5 slot packets
25, // EDR 2 mpbs
26, // EDR 3 mbps
39, // 3 slot EDR packts
40, // 5 slot EDR packet
};
static const uint16_t packet_type_feature_packet_mask[] = {
0x0f00, // 3 slot packets
0xf000, // 5 slot packets
0x1102, // EDR 2 mpbs
0x2204, // EDR 3 mbps
0x0300, // 3 slot EDR packts
0x3000, // 5 slot EDR packet
};
static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){
// enable packet types based on size
uint16_t packet_types = 0;
unsigned int i;
for (i=0;i<16;i++){
if (packet_type_sizes[i] == 0) continue;
if (packet_type_sizes[i] <= buffer_size){
packet_types |= 1 << i;
}
}
// disable packet types due to missing local supported features
for (i=0;i<sizeof(packet_type_feature_requirement_bit);i++){
unsigned int bit_idx = packet_type_feature_requirement_bit[i];
int feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0;
if (feature_set) continue;
log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, packet_type_feature_packet_mask[i]);
packet_types &= ~packet_type_feature_packet_mask[i];
}
// flip bits for "may not be used"
packet_types ^= 0x3306;
return packet_types;
}
uint16_t hci_usable_acl_packet_types(void){
return hci_stack->packet_types;
}
#endif
uint8_t* hci_get_outgoing_packet_buffer(void){
// hci packet buffer is >= acl data packet length
return hci_stack->hci_packet_buffer;
}
uint16_t hci_max_acl_data_packet_length(void){
return hci_stack->acl_data_packet_length;
}
#ifdef ENABLE_CLASSIC
int hci_extended_sco_link_supported(void){
// No. 31, byte 3, bit 7
return (hci_stack->local_supported_features[3] & (1 << 7)) != 0;
}
#endif
int hci_non_flushable_packet_boundary_flag_supported(void){
// No. 54, byte 6, bit 6
return (hci_stack->local_supported_features[6u] & (1u << 6u)) != 0u;
}
static int gap_ssp_supported(void){
// No. 51, byte 6, bit 3
return (hci_stack->local_supported_features[6u] & (1u << 3u)) != 0u;
}
static int hci_classic_supported(void){
#ifdef ENABLE_CLASSIC
// No. 37, byte 4, bit 5, = No BR/EDR Support
return (hci_stack->local_supported_features[4] & (1 << 5)) == 0;
#else
return 0;
#endif
}
static int hci_le_supported(void){
#ifdef ENABLE_BLE
// No. 37, byte 4, bit 6 = LE Supported (Controller)
return (hci_stack->local_supported_features[4u] & (1u << 6u)) != 0u;
#else
return 0;
#endif
}
#ifdef ENABLE_BLE
/**
* @brief Get addr type and address used for LE in Advertisements, Scan Responses,
*/
void gap_le_get_own_address(uint8_t * addr_type, bd_addr_t addr){
*addr_type = hci_stack->le_own_addr_type;
if (hci_stack->le_own_addr_type){
(void)memcpy(addr, hci_stack->le_random_address, 6);
} else {
(void)memcpy(addr, hci_stack->local_bd_addr, 6);
}
}
#ifdef ENABLE_LE_CENTRAL
void le_handle_advertisement_report(uint8_t *packet, uint16_t size){
int offset = 3;
int num_reports = packet[offset];
offset += 1;
int i;
// log_info("HCI: handle adv report with num reports: %d", num_reports);
uint8_t event[12 + LE_ADVERTISING_DATA_SIZE]; // use upper bound to avoid var size automatic var
for (i=0; (i<num_reports) && (offset < size);i++){
// sanity checks on data_length:
uint8_t data_length = packet[offset + 8];
if (data_length > LE_ADVERTISING_DATA_SIZE) return;
if ((offset + 9u + data_length + 1u) > size) return;
// setup event
uint8_t event_size = 10u + data_length;
int pos = 0;
event[pos++] = GAP_EVENT_ADVERTISING_REPORT;
event[pos++] = event_size;
(void)memcpy(&event[pos], &packet[offset], 1 + 1 + 6); // event type + address type + address
offset += 8;
pos += 8;
event[pos++] = packet[offset + 1 + data_length]; // rssi
event[pos++] = data_length;
offset++;
(void)memcpy(&event[pos], &packet[offset], data_length);
pos += data_length;
offset += data_length + 1u; // rssi
hci_emit_event(event, pos, 1);
}
}
#endif
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_PERIPHERAL
static void hci_update_advertisements_enabled_for_current_roles(void){
if (hci_stack->le_advertisements_enabled){
// get number of active le slave connections
int num_slave_connections = 0;
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
log_info("state %u, role %u, le_con %u", con->state, con->role, hci_is_le_connection(con));
if (con->state != OPEN) continue;
if (con->role != HCI_ROLE_SLAVE) continue;
if (!hci_is_le_connection(con)) continue;
num_slave_connections++;
}
log_info("Num LE Peripheral roles: %u of %u", num_slave_connections, hci_stack->le_max_number_peripheral_connections);
hci_stack->le_advertisements_enabled_for_current_roles = num_slave_connections < hci_stack->le_max_number_peripheral_connections;
} else {
hci_stack->le_advertisements_enabled_for_current_roles = false;
}
}
#endif
#endif
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
static uint32_t hci_transport_uart_get_main_baud_rate(void){
if (!hci_stack->config) return 0;
uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main;
// Limit baud rate for Broadcom chipsets to 3 mbps
if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) && (baud_rate > 3000000)){
baud_rate = 3000000;
}
return baud_rate;
}
static void hci_initialization_timeout_handler(btstack_timer_source_t * ds){
UNUSED(ds);
switch (hci_stack->substate){
case HCI_INIT_W4_SEND_RESET:
log_info("Resend HCI Reset");
hci_stack->substate = HCI_INIT_SEND_RESET;
hci_stack->num_cmd_packets = 1;
hci_run();
break;
case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET:
log_info("Resend HCI Reset - CSR Warm Boot with Link Reset");
if (hci_stack->hci_transport->reset_link){
hci_stack->hci_transport->reset_link();
}
/* fall through */
case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT:
log_info("Resend HCI Reset - CSR Warm Boot");
hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT;
hci_stack->num_cmd_packets = 1;
hci_run();
break;
case HCI_INIT_W4_SEND_BAUD_CHANGE:
if (hci_stack->hci_transport->set_baudrate){
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
log_info("Local baud rate change to %" PRIu32 "(timeout handler)", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
// For CSR, HCI Reset is sent on new baud rate. Don't forget to reset link for H5/BCSP
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){
if (hci_stack->hci_transport->reset_link){
log_info("Link Reset");
hci_stack->hci_transport->reset_link();
}
hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT;
hci_run();
}
break;
case HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY:
// otherwise continue
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS;
hci_send_cmd(&hci_read_local_supported_commands);
break;
default:
break;
}
}
#endif
static void hci_initializing_next_state(void){
hci_stack->substate = (hci_substate_t )( ((int) hci_stack->substate) + 1);
}
// assumption: hci_can_send_command_packet_now() == true
static void hci_initializing_run(void){
log_debug("hci_initializing_run: substate %u, can send %u", hci_stack->substate, hci_can_send_command_packet_now());
switch (hci_stack->substate){
case HCI_INIT_SEND_RESET:
hci_state_reset();
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
// prepare reset if command complete not received in 100ms
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
#endif
// send command
hci_stack->substate = HCI_INIT_W4_SEND_RESET;
hci_send_cmd(&hci_reset);
break;
case HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION:
hci_send_cmd(&hci_read_local_version_information);
hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION;
break;
case HCI_INIT_SEND_READ_LOCAL_NAME:
hci_send_cmd(&hci_read_local_name);
hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_NAME;
break;
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
case HCI_INIT_SEND_RESET_CSR_WARM_BOOT:
hci_state_reset();
// prepare reset if command complete not received in 100ms
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
// send command
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT;
hci_send_cmd(&hci_reset);
break;
case HCI_INIT_SEND_RESET_ST_WARM_BOOT:
hci_state_reset();
hci_stack->substate = HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT;
hci_send_cmd(&hci_reset);
break;
case HCI_INIT_SEND_BAUD_CHANGE: {
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer);
hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE;
hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3u + hci_stack->hci_packet_buffer[2u]);
// STLC25000D: baudrate change happens within 0.5 s after command was send,
// use timer to update baud rate after 100 ms (knowing exactly, when command was sent is non-trivial)
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS){
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_add_timer(&hci_stack->timeout);
}
break;
}
case HCI_INIT_SEND_BAUD_CHANGE_BCM: {
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer);
hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE_BCM;
hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3u + hci_stack->hci_packet_buffer[2u]);
break;
}
case HCI_INIT_CUSTOM_INIT:
// Custom initialization
if (hci_stack->chipset && hci_stack->chipset->next_command){
hci_stack->chipset_result = (*hci_stack->chipset->next_command)(hci_stack->hci_packet_buffer);
bool send_cmd = false;
switch (hci_stack->chipset_result){
case BTSTACK_CHIPSET_VALID_COMMAND:
send_cmd = true;
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT;
break;
case BTSTACK_CHIPSET_WARMSTART_REQUIRED:
send_cmd = true;
// CSR Warm Boot: Wait a bit, then send HCI Reset until HCI Command Complete
log_info("CSR Warm Boot");
btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO)
&& hci_stack->config
&& hci_stack->chipset
// && hci_stack->chipset->set_baudrate_command -- there's no such command
&& hci_stack->hci_transport->set_baudrate
&& hci_transport_uart_get_main_baud_rate()){
hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE;
} else {
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET;
}
break;
default:
break;
}
if (send_cmd){
int size = 3u + hci_stack->hci_packet_buffer[2u];
hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, hci_stack->hci_packet_buffer, size);
hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, hci_stack->hci_packet_buffer, size);
break;
}
log_info("Init script done");
// Init script download on Broadcom chipsets causes:
if ( (hci_stack->chipset_result != BTSTACK_CHIPSET_NO_INIT_SCRIPT) &&
( (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)
|| (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA)) ){
// - baud rate to reset, restore UART baud rate if needed
int need_baud_change = hci_stack->config
&& hci_stack->chipset
&& hci_stack->chipset->set_baudrate_command
&& hci_stack->hci_transport->set_baudrate
&& ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main;
if (need_baud_change) {
uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_init;
log_info("Local baud rate change to %" PRIu32 " after init script (bcm)", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
uint16_t bcm_delay_ms = 300;
// - UART may or may not be disabled during update and Controller RTS may or may not be high during this time
// -> Work around: wait here.
log_info("BCM delay (%u ms) after init script", bcm_delay_ms);
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY;
btstack_run_loop_set_timer(&hci_stack->timeout, bcm_delay_ms);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
break;
}
}
// otherwise continue
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS;
hci_send_cmd(&hci_read_local_supported_commands);
break;
case HCI_INIT_SET_BD_ADDR:
log_info("Set Public BD ADDR to %s", bd_addr_to_str(hci_stack->custom_bd_addr));
hci_stack->chipset->set_bd_addr_command(hci_stack->custom_bd_addr, hci_stack->hci_packet_buffer);
hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0);
hci_stack->substate = HCI_INIT_W4_SET_BD_ADDR;
hci_send_cmd_packet(hci_stack->hci_packet_buffer, 3u + hci_stack->hci_packet_buffer[2u]);
break;
#endif
case HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS:
log_info("Resend hci_read_local_supported_commands after CSR Warm Boot double reset");
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS;
hci_send_cmd(&hci_read_local_supported_commands);
break;
case HCI_INIT_READ_BD_ADDR:
hci_stack->substate = HCI_INIT_W4_READ_BD_ADDR;
hci_send_cmd(&hci_read_bd_addr);
break;
case HCI_INIT_READ_BUFFER_SIZE:
hci_stack->substate = HCI_INIT_W4_READ_BUFFER_SIZE;
hci_send_cmd(&hci_read_buffer_size);
break;
case HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES:
hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_FEATURES;
hci_send_cmd(&hci_read_local_supported_features);
break;
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
case HCI_INIT_SET_CONTROLLER_TO_HOST_FLOW_CONTROL:
hci_stack->substate = HCI_INIT_W4_SET_CONTROLLER_TO_HOST_FLOW_CONTROL;
hci_send_cmd(&hci_set_controller_to_host_flow_control, 3); // ACL + SCO Flow Control
break;
case HCI_INIT_HOST_BUFFER_SIZE:
hci_stack->substate = HCI_INIT_W4_HOST_BUFFER_SIZE;
hci_send_cmd(&hci_host_buffer_size, HCI_HOST_ACL_PACKET_LEN, HCI_HOST_SCO_PACKET_LEN,
HCI_HOST_ACL_PACKET_NUM, HCI_HOST_SCO_PACKET_NUM);
break;
#endif
case HCI_INIT_SET_EVENT_MASK:
hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK;
if (hci_le_supported()){
hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x3FFFFFFF);
} else {
// Kensington Bluetooth 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff...
hci_send_cmd(&hci_set_event_mask,0xffffffff, 0x1FFFFFFF);
}
break;
#ifdef ENABLE_CLASSIC
case HCI_INIT_WRITE_SIMPLE_PAIRING_MODE:
hci_stack->substate = HCI_INIT_W4_WRITE_SIMPLE_PAIRING_MODE;
hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable);
break;
case HCI_INIT_WRITE_PAGE_TIMEOUT:
hci_stack->substate = HCI_INIT_W4_WRITE_PAGE_TIMEOUT;
hci_send_cmd(&hci_write_page_timeout, 0x6000); // ca. 15 sec
break;
case HCI_INIT_WRITE_DEFAULT_LINK_POLICY_SETTING:
hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_LINK_POLICY_SETTING;
hci_send_cmd(&hci_write_default_link_policy_setting, hci_stack->default_link_policy_settings);
break;
case HCI_INIT_WRITE_CLASS_OF_DEVICE:
hci_stack->substate = HCI_INIT_W4_WRITE_CLASS_OF_DEVICE;
hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device);
break;
case HCI_INIT_WRITE_LOCAL_NAME: {
hci_stack->substate = HCI_INIT_W4_WRITE_LOCAL_NAME;
hci_reserve_packet_buffer();
uint8_t * packet = hci_stack->hci_packet_buffer;
// construct HCI Command and send
uint16_t opcode = hci_write_local_name.opcode;
hci_stack->last_cmd_opcode = opcode;
packet[0] = opcode & 0xff;
packet[1] = opcode >> 8;
packet[2] = DEVICE_NAME_LEN;
memset(&packet[3], 0, DEVICE_NAME_LEN);
uint16_t name_len = (uint16_t) strlen(hci_stack->local_name);
uint16_t bytes_to_copy = btstack_min(name_len, DEVICE_NAME_LEN);
// if shorter than DEVICE_NAME_LEN, it's implicitly NULL-terminated by memset call
(void)memcpy(&packet[3], hci_stack->local_name, bytes_to_copy);
// expand '00:00:00:00:00:00' in name with bd_addr
btstack_replace_bd_addr_placeholder(&packet[3], bytes_to_copy, hci_stack->local_bd_addr);
hci_send_cmd_packet(packet, HCI_CMD_HEADER_SIZE + DEVICE_NAME_LEN);
break;
}
case HCI_INIT_WRITE_EIR_DATA: {
hci_stack->substate = HCI_INIT_W4_WRITE_EIR_DATA;
hci_reserve_packet_buffer();
uint8_t * packet = hci_stack->hci_packet_buffer;
// construct HCI Command in-place and send
uint16_t opcode = hci_write_extended_inquiry_response.opcode;
hci_stack->last_cmd_opcode = opcode;
uint16_t offset = 0;
packet[offset++] = opcode & 0xff;
packet[offset++] = opcode >> 8;
packet[offset++] = 1 + EXTENDED_INQUIRY_RESPONSE_DATA_LEN;
packet[offset++] = 0; // FEC not required
memset(&packet[offset], 0, EXTENDED_INQUIRY_RESPONSE_DATA_LEN);
if (hci_stack->eir_data){
// copy items and expand '00:00:00:00:00:00' in name with bd_addr
ad_context_t context;
for (ad_iterator_init(&context, EXTENDED_INQUIRY_RESPONSE_DATA_LEN, hci_stack->eir_data) ; ad_iterator_has_more(&context) ; ad_iterator_next(&context)) {
uint8_t data_type = ad_iterator_get_data_type(&context);
uint8_t size = ad_iterator_get_data_len(&context);
const uint8_t *data = ad_iterator_get_data(&context);
// copy item
packet[offset++] = size + 1;
packet[offset++] = data_type;
memcpy(&packet[offset], data, size);
// update name item
if ((data_type == BLUETOOTH_DATA_TYPE_SHORTENED_LOCAL_NAME) || (data_type == BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME)){
btstack_replace_bd_addr_placeholder(&packet[offset], size, hci_stack->local_bd_addr);
}
offset += size;
}
} else {
uint16_t name_len = (uint16_t) strlen(hci_stack->local_name);
uint16_t bytes_to_copy = btstack_min(name_len, EXTENDED_INQUIRY_RESPONSE_DATA_LEN - 2);
packet[offset++] = bytes_to_copy + 1;
packet[offset++] = BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME;
(void)memcpy(&packet[6], hci_stack->local_name, bytes_to_copy);
// expand '00:00:00:00:00:00' in name with bd_addr
btstack_replace_bd_addr_placeholder(&packet[offset], bytes_to_copy, hci_stack->local_bd_addr);
}
hci_send_cmd_packet(packet, HCI_CMD_HEADER_SIZE + 1 + EXTENDED_INQUIRY_RESPONSE_DATA_LEN);
break;
}
case HCI_INIT_WRITE_INQUIRY_MODE:
hci_stack->substate = HCI_INIT_W4_WRITE_INQUIRY_MODE;
hci_send_cmd(&hci_write_inquiry_mode, (int) hci_stack->inquiry_mode);
break;
case HCI_INIT_WRITE_SECURE_CONNECTIONS_HOST_ENABLE:
hci_send_cmd(&hci_write_secure_connections_host_support, 1);
hci_stack->secure_connections_active = true;
hci_stack->substate = HCI_INIT_W4_WRITE_SECURE_CONNECTIONS_HOST_ENABLE;
break;
case HCI_INIT_WRITE_SCAN_ENABLE:
hci_send_cmd(&hci_write_scan_enable, (hci_stack->connectable << 1) | hci_stack->discoverable); // page scan
hci_stack->substate = HCI_INIT_W4_WRITE_SCAN_ENABLE;
break;
// only sent if ENABLE_SCO_OVER_HCI is defined
case HCI_INIT_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE:
hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE;
hci_send_cmd(&hci_write_synchronous_flow_control_enable, 1); // SCO tracking enabled
break;
case HCI_INIT_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING:
hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING;
hci_send_cmd(&hci_write_default_erroneous_data_reporting, 1);
break;
// only sent if manufacturer is Broadcom and ENABLE_SCO_OVER_HCI or ENABLE_SCO_OVER_PCM is defined
case HCI_INIT_BCM_WRITE_SCO_PCM_INT:
hci_stack->substate = HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT;
#ifdef ENABLE_SCO_OVER_HCI
log_info("BCM: Route SCO data via HCI transport");
hci_send_cmd(&hci_bcm_write_sco_pcm_int, 1, 0, 0, 0, 0);
#endif
#ifdef ENABLE_SCO_OVER_PCM
log_info("BCM: Route SCO data via PCM interface");
hci_send_cmd(&hci_bcm_write_sco_pcm_int, 0, 4, 0, 1, 1);
#endif
break;
#endif
#ifdef ENABLE_BLE
// LE INIT
case HCI_INIT_LE_READ_BUFFER_SIZE:
hci_stack->substate = HCI_INIT_W4_LE_READ_BUFFER_SIZE;
hci_send_cmd(&hci_le_read_buffer_size);
break;
case HCI_INIT_LE_SET_EVENT_MASK:
hci_stack->substate = HCI_INIT_W4_LE_SET_EVENT_MASK;
hci_send_cmd(&hci_le_set_event_mask, 0x809FF, 0x0); // bits 0-8, 11, 19
break;
case HCI_INIT_WRITE_LE_HOST_SUPPORTED:
// LE Supported Host = 1, Simultaneous Host = 0
hci_stack->substate = HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED;
hci_send_cmd(&hci_write_le_host_supported, 1, 0);
break;
#endif
#ifdef ENABLE_LE_DATA_LENGTH_EXTENSION
case HCI_INIT_LE_READ_MAX_DATA_LENGTH:
hci_stack->substate = HCI_INIT_W4_LE_READ_MAX_DATA_LENGTH;
hci_send_cmd(&hci_le_read_maximum_data_length);
break;
case HCI_INIT_LE_WRITE_SUGGESTED_DATA_LENGTH:
hci_stack->substate = HCI_INIT_W4_LE_WRITE_SUGGESTED_DATA_LENGTH;
hci_send_cmd(&hci_le_write_suggested_default_data_length, hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time);
break;
#endif
#ifdef ENABLE_LE_CENTRAL
case HCI_INIT_READ_WHITE_LIST_SIZE:
hci_stack->substate = HCI_INIT_W4_READ_WHITE_LIST_SIZE;
hci_send_cmd(&hci_le_read_white_list_size);
break;
case HCI_INIT_LE_SET_SCAN_PARAMETERS:
hci_stack->substate = HCI_INIT_W4_LE_SET_SCAN_PARAMETERS;
hci_send_cmd(&hci_le_set_scan_parameters, hci_stack->le_scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->le_own_addr_type, hci_stack->le_scan_filter_policy);
break;
#endif
default:
return;
}
}
static void hci_init_done(void){
// done. tell the app
log_info("hci_init_done -> HCI_STATE_WORKING");
hci_stack->state = HCI_STATE_WORKING;
hci_emit_state();
hci_run();
}
static bool hci_initializing_event_handler_command_completed(const uint8_t * packet){
bool command_completed = false;
if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE){
uint16_t opcode = little_endian_read_16(packet,3);
if (opcode == hci_stack->last_cmd_opcode){
command_completed = true;
log_debug("Command complete for expected opcode %04x at substate %u", opcode, hci_stack->substate);
} else {
log_info("Command complete for different opcode %04x, expected %04x, at substate %u", opcode, hci_stack->last_cmd_opcode, hci_stack->substate);
}
}
if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_STATUS){
uint8_t status = packet[2];
uint16_t opcode = little_endian_read_16(packet,4);
if (opcode == hci_stack->last_cmd_opcode){
if (status){
command_completed = true;
log_debug("Command status error 0x%02x for expected opcode %04x at substate %u", status, opcode, hci_stack->substate);
} else {
log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode);
}
} else {
log_debug("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode);
}
}
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
// Vendor == CSR
if ((hci_stack->substate == HCI_INIT_W4_CUSTOM_INIT) && (hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC)){
// TODO: track actual command
command_completed = true;
}
// Vendor == Toshiba
if ((hci_stack->substate == HCI_INIT_W4_SEND_BAUD_CHANGE) && (hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC)){
// TODO: track actual command
command_completed = true;
// Fix: no HCI Command Complete received, so num_cmd_packets not reset
hci_stack->num_cmd_packets = 1;
}
#endif
return command_completed;
}
static void hci_initializing_event_handler(const uint8_t * packet, uint16_t size){
UNUSED(size); // ok: less than 6 bytes are read from our buffer
bool command_completed = hci_initializing_event_handler_command_completed(packet);
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
// Late response (> 100 ms) for HCI Reset e.g. on Toshiba TC35661:
// Command complete for HCI Reset arrives after we've resent the HCI Reset command
//
// HCI Reset
// Timeout 100 ms
// HCI Reset
// Command Complete Reset
// HCI Read Local Version Information
// Command Complete Reset - but we expected Command Complete Read Local Version Information
// hang...
//
// Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend
if (!command_completed
&& (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE)
&& (hci_stack->substate == HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION)){
uint16_t opcode = little_endian_read_16(packet,3);
if (opcode == hci_reset.opcode){
hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION;
return;
}
}
// CSR & H5
// Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend
if (!command_completed
&& (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE)
&& (hci_stack->substate == HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS)){
uint16_t opcode = little_endian_read_16(packet,3);
if (opcode == hci_reset.opcode){
hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS;
return;
}
}
// on CSR with BCSP/H5, the reset resend timeout leads to substate == HCI_INIT_SEND_RESET or HCI_INIT_SEND_RESET_CSR_WARM_BOOT
// fix: Correct substate and behave as command below
if (command_completed){
switch (hci_stack->substate){
case HCI_INIT_SEND_RESET:
hci_stack->substate = HCI_INIT_W4_SEND_RESET;
break;
case HCI_INIT_SEND_RESET_CSR_WARM_BOOT:
hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT;
break;
default:
break;
}
}
#endif
if (!command_completed) return;
bool need_baud_change = false;
bool need_addr_change = false;
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
need_baud_change = hci_stack->config
&& hci_stack->chipset
&& hci_stack->chipset->set_baudrate_command
&& hci_stack->hci_transport->set_baudrate
&& ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main;
need_addr_change = hci_stack->custom_bd_addr_set
&& hci_stack->chipset
&& hci_stack->chipset->set_bd_addr_command;
#endif
switch(hci_stack->substate){
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
case HCI_INIT_SEND_RESET:
// on CSR with BCSP/H5, resend triggers resend of HCI Reset and leads to substate == HCI_INIT_SEND_RESET
// fix: just correct substate and behave as command below
hci_stack->substate = HCI_INIT_W4_SEND_RESET;
btstack_run_loop_remove_timer(&hci_stack->timeout);
break;
case HCI_INIT_W4_SEND_RESET:
btstack_run_loop_remove_timer(&hci_stack->timeout);
break;
case HCI_INIT_W4_SEND_READ_LOCAL_NAME:
log_info("Received local name, need baud change %d", (int) need_baud_change);
if (need_baud_change){
hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE;
return;
}
// skip baud change
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
case HCI_INIT_W4_SEND_BAUD_CHANGE:
// for STLC2500D, baud rate change already happened.
// for others, baud rate gets changed now
if ((hci_stack->manufacturer != BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS) && need_baud_change){
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
log_info("Local baud rate change to %" PRIu32 "(w4_send_baud_change)", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT:
btstack_run_loop_remove_timer(&hci_stack->timeout);
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
case HCI_INIT_W4_CUSTOM_INIT:
// repeat custom init
hci_stack->substate = HCI_INIT_CUSTOM_INIT;
return;
#else
case HCI_INIT_W4_SEND_RESET:
hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS;
return ;
#endif
case HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS:
if (need_baud_change && (hci_stack->chipset_result != BTSTACK_CHIPSET_NO_INIT_SCRIPT) &&
((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) ||
(hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA))) {
hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE_BCM;
return;
}
if (need_addr_change){
hci_stack->substate = HCI_INIT_SET_BD_ADDR;
return;
}
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
case HCI_INIT_W4_SEND_BAUD_CHANGE_BCM:
if (need_baud_change){
uint32_t baud_rate = hci_transport_uart_get_main_baud_rate();
log_info("Local baud rate change to %" PRIu32 "(w4_send_baud_change_bcm))", baud_rate);
hci_stack->hci_transport->set_baudrate(baud_rate);
}
if (need_addr_change){
hci_stack->substate = HCI_INIT_SET_BD_ADDR;
return;
}
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
case HCI_INIT_W4_SET_BD_ADDR:
// for STLC2500D + ATWILC3000, bd addr change only gets active after sending reset command
if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS)
|| (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ATMEL_CORPORATION)){
hci_stack->substate = HCI_INIT_SEND_RESET_ST_WARM_BOOT;
return;
}
// skipping st warm boot
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
case HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT:
hci_stack->substate = HCI_INIT_READ_BD_ADDR;
return;
#endif
case HCI_INIT_W4_READ_BD_ADDR:
// only read buffer size if supported
if (hci_stack->local_supported_commands[0u] & 0x01u) {
hci_stack->substate = HCI_INIT_READ_BUFFER_SIZE;
return;
}
// skipping read buffer size
hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES;
return;
case HCI_INIT_W4_SET_EVENT_MASK:
// skip Classic init commands for LE only chipsets
if (!hci_classic_supported()){
#ifdef ENABLE_BLE
if (hci_le_supported()){
hci_stack->substate = HCI_INIT_LE_READ_BUFFER_SIZE; // skip all classic command
return;
}
#endif
log_error("Neither BR/EDR nor LE supported");
hci_init_done();
return;
}
if (!gap_ssp_supported()){
hci_stack->substate = HCI_INIT_WRITE_PAGE_TIMEOUT;
return;
}
break;
#ifdef ENABLE_BLE
case HCI_INIT_W4_LE_READ_BUFFER_SIZE:
// skip write le host if not supported (e.g. on LE only EM9301)
if (hci_stack->local_supported_commands[0u] & 0x02u) break;
hci_stack->substate = HCI_INIT_LE_SET_EVENT_MASK;
return;
#ifdef ENABLE_LE_DATA_LENGTH_EXTENSION
case HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED:
log_info("Supported commands %x", hci_stack->local_supported_commands[0] & 0x30);
if ((hci_stack->local_supported_commands[0u] & 0x30u) == 0x30u){
hci_stack->substate = HCI_INIT_LE_SET_EVENT_MASK;
return;
}
// explicit fall through to reduce repetitions
#ifdef ENABLE_LE_CENTRAL
hci_stack->substate = HCI_INIT_READ_WHITE_LIST_SIZE;
#else
hci_init_done();
#endif
return;
#endif /* ENABLE_LE_DATA_LENGTH_EXTENSION */
#endif /* ENABLE_BLE */
case HCI_INIT_W4_WRITE_INQUIRY_MODE:
// skip write secure connections host support if not supported or disabled
if (!hci_stack->secure_connections_enable || (hci_stack->local_supported_commands[1u] & 0x02u) == 0u) {
hci_stack->substate = HCI_INIT_WRITE_SCAN_ENABLE;
return;
}
break;
#ifdef ENABLE_SCO_OVER_HCI
case HCI_INIT_W4_WRITE_SCAN_ENABLE:
// skip write synchronous flow control if not supported
if (hci_stack->local_supported_commands[0] & 0x04) break;
hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE;
/* fall through */
case HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE:
// skip write default erroneous data reporting if not supported
if (hci_stack->local_supported_commands[0] & 0x08) break;
hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING;
/* fall through */
case HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING:
// skip bcm set sco pcm config on non-Broadcom chipsets
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) break;
hci_stack->substate = HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT;
/* fall through */
case HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT:
if (!hci_le_supported()){
// SKIP LE init for Classic only configuration
hci_init_done();
return;
}
break;
#else /* !ENABLE_SCO_OVER_HCI */
case HCI_INIT_W4_WRITE_SCAN_ENABLE:
#ifdef ENABLE_SCO_OVER_PCM
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) {
hci_stack->substate = HCI_INIT_BCM_WRITE_SCO_PCM_INT;
return;
}
#endif
/* fall through */
case HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT:
#ifdef ENABLE_BLE
if (hci_le_supported()){
hci_stack->substate = HCI_INIT_LE_READ_BUFFER_SIZE;
return;
}
#endif
// SKIP LE init for Classic only configuration
hci_init_done();
return;
#endif /* ENABLE_SCO_OVER_HCI */
// avoid compile error due to duplicate cases: HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT == HCI_INIT_DONE-1
#if defined(ENABLE_BLE) || defined(ENABLE_LE_DATA_LENGTH_EXTENSION) || defined(ENABLE_LE_CENTRAL)
// Response to command before init done state -> init done
case (HCI_INIT_DONE-1):
hci_init_done();
return;
#endif
default:
break;
}
hci_initializing_next_state();
}
static void hci_handle_connection_failed(hci_connection_t * conn, uint8_t status){
log_info("Outgoing connection to %s failed", bd_addr_to_str(conn->address));
bd_addr_t bd_address;
(void)memcpy(&bd_address, conn->address, 6);
#ifdef ENABLE_CLASSIC
// cache needed data
int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED;
#endif
// connection failed, remove entry
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
#ifdef ENABLE_CLASSIC
// notify client if dedicated bonding
if (notify_dedicated_bonding_failed){
log_info("hci notify_dedicated_bonding_failed");
hci_emit_dedicated_bonding_result(bd_address, status);
}
// if authentication error, also delete link key
if (status == ERROR_CODE_AUTHENTICATION_FAILURE) {
gap_drop_link_key_for_bd_addr(bd_address);
}
#else
UNUSED(status);
#endif
}
#ifdef ENABLE_CLASSIC
static void hci_handle_remote_features_page_0(hci_connection_t * conn, const uint8_t * features){
// SSP Controller
if (features[6] & (1 << 3)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP_CONTROLLER;
}
// eSCO
if (features[3] & (1<<7)){
conn->remote_supported_features[0] |= 1;
}
// Extended features
if (features[7] & (1<<7)){
conn->remote_supported_features[0] |= 2;
}
}
static void hci_handle_remote_features_page_1(hci_connection_t * conn, const uint8_t * features){
// SSP Host
if (features[0] & (1 << 0)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP_HOST;
}
// SC Host
if (features[0] & (1 << 3)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_HOST;
}
}
static void hci_handle_remote_features_page_2(hci_connection_t * conn, const uint8_t * features){
// SC Controller
if (features[1] & (1 << 0)){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_CONTROLLER;
}
}
static void hci_handle_remote_features_received(hci_connection_t * conn){
conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES;
log_info("Remote features %02x, bonding flags %x", conn->remote_supported_features[0], conn->bonding_flags);
if (conn->bonding_flags & BONDING_DEDICATED){
conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST;
}
}
#endif
static void handle_event_for_current_stack_state(const uint8_t * packet, uint16_t size) {
// handle BT initialization
if (hci_stack->state == HCI_STATE_INITIALIZING) {
hci_initializing_event_handler(packet, size);
}
// help with BT sleep
if ((hci_stack->state == HCI_STATE_FALLING_ASLEEP)
&& (hci_stack->substate == HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE)
&& HCI_EVENT_IS_COMMAND_COMPLETE(packet, hci_write_scan_enable)) {
hci_initializing_next_state();
}
}
#ifdef ENABLE_CLASSIC
static void hci_handle_read_encryption_key_size_complete(hci_connection_t * conn, uint8_t encryption_key_size) {
conn->authentication_flags |= CONNECTION_ENCRYPTED;
conn->encryption_key_size = encryption_key_size;
if ((conn->authentication_flags & CONNECTION_AUTHENTICATED) != 0) {
hci_emit_security_level(conn->con_handle, gap_security_level_for_connection(conn));
return;
}
// Request Authentication if not already done
if ((conn->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) != 0) return;
conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST;
}
#endif
static void handle_command_complete_event(uint8_t * packet, uint16_t size){
UNUSED(size);
uint16_t manufacturer;
#ifdef ENABLE_CLASSIC
hci_con_handle_t handle;
hci_connection_t * conn;
uint8_t status;
#endif
// get num cmd packets - limit to 1 to reduce complexity
hci_stack->num_cmd_packets = packet[2] ? 1 : 0;
uint16_t opcode = hci_event_command_complete_get_command_opcode(packet);
switch (opcode){
case HCI_OPCODE_HCI_READ_LOCAL_NAME:
if (packet[5]) break;
// terminate, name 248 chars
packet[6+248] = 0;
log_info("local name: %s", &packet[6]);
break;
case HCI_OPCODE_HCI_READ_BUFFER_SIZE:
// "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets"
if (hci_stack->state == HCI_STATE_INITIALIZING) {
uint16_t acl_len = little_endian_read_16(packet, 6);
uint16_t sco_len = packet[8];
// determine usable ACL/SCO payload size
hci_stack->acl_data_packet_length = btstack_min(acl_len, HCI_ACL_PAYLOAD_SIZE);
hci_stack->sco_data_packet_length = btstack_min(sco_len, HCI_ACL_PAYLOAD_SIZE);
hci_stack->acl_packets_total_num = little_endian_read_16(packet, 9);
hci_stack->sco_packets_total_num = little_endian_read_16(packet, 11);
log_info("hci_read_buffer_size: ACL size module %u -> used %u, count %u / SCO size %u, count %u",
acl_len, hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num,
hci_stack->sco_data_packet_length, hci_stack->sco_packets_total_num);
}
break;
case HCI_OPCODE_HCI_READ_RSSI:
if (packet[5] == ERROR_CODE_SUCCESS){
uint8_t event[5];
event[0] = GAP_EVENT_RSSI_MEASUREMENT;
event[1] = 3;
(void)memcpy(&event[2], &packet[6], 3);
hci_emit_event(event, sizeof(event), 1);
}
break;
#ifdef ENABLE_BLE
case HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE:
hci_stack->le_data_packets_length = little_endian_read_16(packet, 6);
hci_stack->le_acl_packets_total_num = packet[8];
// determine usable ACL payload size
if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){
hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE;
}
log_info("hci_le_read_buffer_size: size %u, count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num);
break;
#endif
#ifdef ENABLE_LE_DATA_LENGTH_EXTENSION
case HCI_OPCODE_HCI_LE_READ_MAXIMUM_DATA_LENGTH:
hci_stack->le_supported_max_tx_octets = little_endian_read_16(packet, 6);
hci_stack->le_supported_max_tx_time = little_endian_read_16(packet, 8);
log_info("hci_le_read_maximum_data_length: tx octets %u, tx time %u us", hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time);
break;
#endif
#ifdef ENABLE_LE_CENTRAL
case HCI_OPCODE_HCI_LE_READ_WHITE_LIST_SIZE:
hci_stack->le_whitelist_capacity = packet[6];
log_info("hci_le_read_white_list_size: size %u", hci_stack->le_whitelist_capacity);
break;
#endif
case HCI_OPCODE_HCI_READ_BD_ADDR:
reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], hci_stack->local_bd_addr);
log_info("Local Address, Status: 0x%02x: Addr: %s", packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE], bd_addr_to_str(hci_stack->local_bd_addr));
#ifdef ENABLE_CLASSIC
if (hci_stack->link_key_db){
hci_stack->link_key_db->set_local_bd_addr(hci_stack->local_bd_addr);
}
#endif
break;
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_WRITE_SCAN_ENABLE:
hci_emit_discoverable_enabled(hci_stack->discoverable);
break;
case HCI_OPCODE_HCI_INQUIRY_CANCEL:
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W4_CANCELLED){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE;
uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0};
hci_emit_event(event, sizeof(event), 1);
}
break;
#endif
case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_FEATURES:
(void)memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], 8);
#ifdef ENABLE_CLASSIC
// determine usable ACL packet types based on host buffer size and supported features
hci_stack->packet_types = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]);
log_info("Packet types %04x, eSCO %u", hci_stack->packet_types, hci_extended_sco_link_supported());
#endif
// Classic/LE
log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported());
break;
case HCI_OPCODE_HCI_READ_LOCAL_VERSION_INFORMATION:
manufacturer = little_endian_read_16(packet, 10);
// map Cypress to Broadcom
if (manufacturer == BLUETOOTH_COMPANY_ID_CYPRESS_SEMICONDUCTOR){
log_info("Treat Cypress as Broadcom");
manufacturer = BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION;
little_endian_store_16(packet, 10, manufacturer);
}
hci_stack->manufacturer = manufacturer;
log_info("Manufacturer: 0x%04x", hci_stack->manufacturer);
break;
case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_COMMANDS:
hci_stack->local_supported_commands[0] =
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+14u] & 0x80u) >> 7u) | // bit 0 = Octet 14, bit 7 / Read Buffer Size
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+24u] & 0x40u) >> 5u) | // bit 1 = Octet 24, bit 6 / Write Le Host Supported
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+10u] & 0x10u) >> 2u) | // bit 2 = Octet 10, bit 4 / Write Synchronous Flow Control Enable
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+18u] & 0x08u) ) | // bit 3 = Octet 18, bit 3 / Write Default Erroneous Data Reporting
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+34u] & 0x01u) << 4u) | // bit 4 = Octet 34, bit 0 / LE Write Suggested Default Data Length
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+35u] & 0x08u) << 2u) | // bit 5 = Octet 35, bit 3 / LE Read Maximum Data Length
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+35u] & 0x20u) << 1u) | // bit 6 = Octet 35, bit 5 / LE Set Default PHY
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+20u] & 0x10u) << 3u); // bit 7 = Octet 20, bit 4 / Read Encryption Key Size
hci_stack->local_supported_commands[1] =
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+ 2u] & 0x40u) >> 6u) | // bit 8 = Octet 2, bit 6 / Read Remote Extended Features
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+32u] & 0x08u) >> 2u) | // bit 9 = Octet 32, bit 3 / Write Secure Connections Host
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+35u] & 0x02u) << 1u) | // bit 10 = Octet 35, bit 1 / LE Set Address Resolution Enable
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+32u] & 0x02u) << 2u) | // bit 11 = Octet 32, bit 1 / Remote OOB Extended Data Request Reply
((packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1u+32u] & 0x40u) >> 2u); // bit 12 = Octet 32, bit 6 / Read Local OOB Extended Data command
log_info("Local supported commands summary %02x - %02x", hci_stack->local_supported_commands[0], hci_stack->local_supported_commands[1]);
break;
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE:
if (packet[5]) return;
hci_stack->synchronous_flow_control_enabled = 1;
break;
case HCI_OPCODE_HCI_READ_ENCRYPTION_KEY_SIZE:
status = packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE];
handle = little_endian_read_16(packet, OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1);
conn = hci_connection_for_handle(handle);
if (conn != NULL) {
uint8_t key_size = 0;
if (status == 0){
key_size = packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+3];
log_info("Handle %04x key Size: %u", handle, key_size);
} else {
log_info("Read Encryption Key Size failed 0x%02x-> assuming insecure connection with key size of 1", status);
}
hci_handle_read_encryption_key_size_complete(conn, key_size);
}
break;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
case HCI_OPCODE_HCI_READ_LOCAL_OOB_DATA:
case HCI_OPCODE_HCI_READ_LOCAL_EXTENDED_OOB_DATA:{
uint8_t event[67];
event[0] = GAP_EVENT_LOCAL_OOB_DATA;
event[1] = 65;
(void)memset(&event[2], 0, 65);
if (packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE] == ERROR_CODE_SUCCESS){
(void)memcpy(&event[3], &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 32);
if (opcode == HCI_OPCODE_HCI_READ_LOCAL_EXTENDED_OOB_DATA){
event[2] = 3;
(void)memcpy(&event[35], &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+33], 32);
} else {
event[2] = 1;
}
}
hci_emit_event(event, sizeof(event), 0);
break;
}
#endif
#endif
default:
break;
}
}
#ifdef ENABLE_BLE
static void event_handle_le_connection_complete(const uint8_t * packet){
bd_addr_t addr;
bd_addr_type_t addr_type;
hci_connection_t * conn;
// Connection management
reverse_bd_addr(&packet[8], addr);
addr_type = (bd_addr_type_t)packet[7];
log_info("LE Connection_complete (status=%u) type %u, %s", packet[3], addr_type, bd_addr_to_str(addr));
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
#ifdef ENABLE_LE_CENTRAL
// handle error: error is reported only to the initiator -> outgoing connection
if (packet[3]){
// handle cancelled outgoing connection
// "If the cancellation was successful then, after the Command Complete event for the LE_Create_Connection_Cancel command,
// either an LE Connection Complete or an LE Enhanced Connection Complete event shall be generated.
// In either case, the event shall be sent with the error code Unknown Connection Identifier (0x02)."
if (packet[3] == ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER){
// whitelist connect
if (hci_is_le_connection_type(addr_type)){
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
}
// get outgoing connection conn struct for direct connect
conn = gap_get_outgoing_connection();
}
// outgoing le connection establishment is done
if (conn){
// remove entry
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
}
return;
}
#endif
// on success, both hosts receive connection complete event
if (packet[6] == HCI_ROLE_MASTER){
#ifdef ENABLE_LE_CENTRAL
// if we're master on an le connection, it was an outgoing connection and we're done with it
// note: no hci_connection_t object exists yet for connect with whitelist
if (hci_is_le_connection_type(addr_type)){
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
}
#endif
} else {
#ifdef ENABLE_LE_PERIPHERAL
// if we're slave, it was an incoming connection, advertisements have stopped
hci_stack->le_advertisements_active = false;
#endif
}
// LE connections are auto-accepted, so just create a connection if there isn't one already
if (!conn){
conn = create_connection_for_bd_addr_and_type(addr, addr_type);
}
// no memory, sorry.
if (!conn){
return;
}
conn->state = OPEN;
conn->role = packet[6];
conn->con_handle = hci_subevent_le_connection_complete_get_connection_handle(packet);
conn->le_connection_interval = hci_subevent_le_connection_complete_get_conn_interval(packet);
#ifdef ENABLE_LE_PERIPHERAL
if (packet[6] == HCI_ROLE_SLAVE){
hci_update_advertisements_enabled_for_current_roles();
}
#endif
// init unenhanced att bearer mtu
conn->att_connection.mtu = ATT_DEFAULT_MTU;
conn->att_connection.mtu_exchanged = false;
// TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock
// restart timer
// btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS);
// btstack_run_loop_add_timer(&conn->timeout);
log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address));
hci_emit_nr_connections_changed();
}
#endif
static void event_handler(uint8_t *packet, uint16_t size){
uint16_t event_length = packet[1];
// assert packet is complete
if (size != (event_length + 2u)){
log_error("event_handler called with packet of wrong size %d, expected %u => dropping packet", size, event_length + 2);
return;
}
bd_addr_type_t addr_type;
hci_con_handle_t handle;
hci_connection_t * conn;
int i;
int create_connection_cmd;
#ifdef ENABLE_CLASSIC
hci_link_type_t link_type;
bd_addr_t addr;
#endif
// log_info("HCI:EVENT:%02x", hci_event_packet_get_type(packet));
switch (hci_event_packet_get_type(packet)) {
case HCI_EVENT_COMMAND_COMPLETE:
handle_command_complete_event(packet, size);
break;
case HCI_EVENT_COMMAND_STATUS:
// get num cmd packets - limit to 1 to reduce complexity
hci_stack->num_cmd_packets = packet[3] ? 1 : 0;
// check command status to detected failed outgoing connections
create_connection_cmd = 0;
#ifdef ENABLE_CLASSIC
if (HCI_EVENT_IS_COMMAND_STATUS(packet, hci_create_connection)){
create_connection_cmd = 1;
}
#endif
#ifdef ENABLE_LE_CENTRAL
if (HCI_EVENT_IS_COMMAND_STATUS(packet, hci_le_create_connection)){
create_connection_cmd = 1;
}
#endif
if (create_connection_cmd) {
uint8_t status = hci_event_command_status_get_status(packet);
addr_type = hci_stack->outgoing_addr_type;
conn = hci_connection_for_bd_addr_and_type(hci_stack->outgoing_addr, addr_type);
log_info("command status (create connection), status %x, connection %p, addr %s, type %x", status, conn, bd_addr_to_str(hci_stack->outgoing_addr), addr_type);
// reset outgoing address info
memset(hci_stack->outgoing_addr, 0, 6);
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_UNKNOWN;
// on error
if (status != ERROR_CODE_SUCCESS){
#ifdef ENABLE_LE_CENTRAL
if (hci_is_le_connection_type(addr_type)){
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
}
#endif
// error => outgoing connection failed
if (conn != NULL){
hci_handle_connection_failed(conn, status);
}
}
}
break;
case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{
if (size < 3) return;
uint16_t num_handles = packet[2];
if (size != (3u + num_handles * 4u)) return;
uint16_t offset = 3;
for (i=0; i<num_handles;i++){
handle = little_endian_read_16(packet, offset) & 0x0fffu;
offset += 2u;
uint16_t num_packets = little_endian_read_16(packet, offset);
offset += 2u;
conn = hci_connection_for_handle(handle);
if (!conn){
log_error("hci_number_completed_packet lists unused con handle %u", handle);
continue;
}
if (conn->num_packets_sent >= num_packets){
conn->num_packets_sent -= num_packets;
} else {
log_error("hci_number_completed_packets, more packet slots freed then sent.");
conn->num_packets_sent = 0;
}
// log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_packets_sent);
#ifdef ENABLE_CLASSIC
// For SCO, we do the can_send_now_check here
hci_notify_if_sco_can_send_now();
#endif
}
break;
}
#ifdef ENABLE_CLASSIC
case HCI_EVENT_INQUIRY_COMPLETE:
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_ACTIVE){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE;
uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0};
hci_emit_event(event, sizeof(event), 1);
}
break;
case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE:
if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W4_COMPLETE){
hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_IDLE;
}
break;
case HCI_EVENT_CONNECTION_REQUEST:
reverse_bd_addr(&packet[2], addr);
link_type = (hci_link_type_t) packet[11];
if (hci_stack->gap_classic_accept_callback != NULL){
if ((*hci_stack->gap_classic_accept_callback)(addr, link_type) == 0){
hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR;
bd_addr_copy(hci_stack->decline_addr, addr);
break;
}
}
// TODO: eval COD 8-10
log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), (unsigned int) link_type);
addr_type = (link_type == HCI_LINK_TYPE_ACL) ? BD_ADDR_TYPE_ACL : BD_ADDR_TYPE_SCO;
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (!conn) {
conn = create_connection_for_bd_addr_and_type(addr, addr_type);
}
if (!conn) {
// CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D)
hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_LIMITED_RESOURCES;
bd_addr_copy(hci_stack->decline_addr, addr);
break;
}
conn->role = HCI_ROLE_SLAVE;
conn->state = RECEIVED_CONNECTION_REQUEST;
// store info about eSCO
if (link_type == HCI_LINK_TYPE_ESCO){
conn->remote_supported_features[0] |= 1;
}
hci_run();
break;
case HCI_EVENT_CONNECTION_COMPLETE:
// Connection management
reverse_bd_addr(&packet[5], addr);
log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr));
addr_type = BD_ADDR_TYPE_ACL;
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (conn) {
if (!packet[2]){
conn->state = OPEN;
conn->con_handle = little_endian_read_16(packet, 3);
// queue get remote feature
conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_0;
// queue set supervision timeout if we're master
if ((hci_stack->link_supervision_timeout != 0) && (conn->role == HCI_ROLE_MASTER)){
connectionSetAuthenticationFlags(conn, WRITE_SUPERVISION_TIMEOUT);
}
// restart timer
btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS);
btstack_run_loop_add_timer(&conn->timeout);
log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address));
hci_emit_nr_connections_changed();
} else {
// connection failed
hci_handle_connection_failed(conn, packet[2]);
}
}
break;
case HCI_EVENT_SYNCHRONOUS_CONNECTION_COMPLETE:
reverse_bd_addr(&packet[5], addr);
log_info("Synchronous Connection Complete (status=%u) %s", packet[2], bd_addr_to_str(addr));
if (packet[2]){
// connection failed
break;
}
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO);
if (!conn) {
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO);
}
if (!conn) {
break;
}
conn->state = OPEN;
conn->con_handle = little_endian_read_16(packet, 3);
#ifdef ENABLE_SCO_OVER_HCI
// update SCO
if (conn->address_type == BD_ADDR_TYPE_SCO && hci_stack->hci_transport && hci_stack->hci_transport->set_sco_config){
hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections());
}
// trigger can send now
if (hci_have_usb_transport()){
hci_stack->sco_can_send_now = 1;
}
#endif
break;
case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE:
handle = little_endian_read_16(packet, 3);
conn = hci_connection_for_handle(handle);
if (!conn) break;
if (!packet[2]){
const uint8_t * features = &packet[5];
hci_handle_remote_features_page_0(conn, features);
// read extended features if possible
if (((hci_stack->local_supported_commands[1] & 1) != 0) && ((conn->remote_supported_features[0] & 2) != 0)) {
conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_1;
break;
}
}
hci_handle_remote_features_received(conn);
break;
case HCI_EVENT_READ_REMOTE_EXTENDED_FEATURES_COMPLETE:
handle = little_endian_read_16(packet, 3);
conn = hci_connection_for_handle(handle);
if (!conn) break;
// status = ok, page = 1
if (!packet[2]) {
uint8_t page_number = packet[5];
uint8_t maximum_page_number = packet[6];
const uint8_t * features = &packet[7];
bool done = false;
switch (page_number){
case 1:
hci_handle_remote_features_page_1(conn, features);
if (maximum_page_number >= 2){
// get Secure Connections (Controller) from Page 2 if available
conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_2;
} else {
// otherwise, assume SC (Controller) == SC (Host)
if ((conn->bonding_flags & BONDING_REMOTE_SUPPORTS_SC_HOST) != 0){
conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_CONTROLLER;
}
done = true;
}
break;
case 2:
hci_handle_remote_features_page_2(conn, features);
done = true;
break;
default:
break;
}
if (!done) break;
}
hci_handle_remote_features_received(conn);
break;
case HCI_EVENT_LINK_KEY_REQUEST:
log_info("HCI_EVENT_LINK_KEY_REQUEST");
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_LINK_KEY_REQUEST);
// request handled by hci_run()
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], HANDLE_LINK_KEY_REQUEST);
break;
case HCI_EVENT_LINK_KEY_NOTIFICATION: {
reverse_bd_addr(&packet[2], addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) break;
conn->authentication_flags |= RECV_LINK_KEY_NOTIFICATION;
link_key_type_t link_key_type = (link_key_type_t)packet[24];
// Change Connection Encryption keeps link key type
if (link_key_type != CHANGED_COMBINATION_KEY){
conn->link_key_type = link_key_type;
}
gap_store_link_key_for_bd_addr(addr, &packet[8], conn->link_key_type);
// still forward event to allow dismiss of pairing dialog
break;
}
case HCI_EVENT_PIN_CODE_REQUEST:
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], LEGACY_PAIRING_ACTIVE);
// non-bondable mode: pin code negative reply will be sent
if (!hci_stack->bondable){
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], DENY_PIN_CODE_REQUEST);
hci_run();
return;
}
// PIN CODE REQUEST means the link key request didn't succee -> delete stored link key
if (!hci_stack->link_key_db) break;
hci_event_pin_code_request_get_bd_addr(packet, addr);
hci_stack->link_key_db->delete_link_key(addr);
break;
case HCI_EVENT_IO_CAPABILITY_REQUEST:
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], RECV_IO_CAPABILITIES_REQUEST);
log_info("IO Capability Request received, stack bondable %u, io cap %u", hci_stack->bondable, hci_stack->ssp_io_capability);
if (hci_stack->bondable && (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN)){
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_REPLY);
} else {
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
}
break;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
case HCI_EVENT_REMOTE_OOB_DATA_REQUEST:
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE);
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_REMOTE_OOB_DATA_REPLY);
break;
#endif
case HCI_EVENT_USER_CONFIRMATION_REQUEST:
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE);
if (!hci_stack->ssp_auto_accept) break;
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_CONFIRM_REPLY);
break;
case HCI_EVENT_USER_PASSKEY_REQUEST:
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SSP_PAIRING_ACTIVE);
if (!hci_stack->ssp_auto_accept) break;
hci_add_connection_flags_for_flipped_bd_addr(&packet[2], SEND_USER_PASSKEY_REPLY);
break;
case HCI_EVENT_MODE_CHANGE:
handle = hci_event_mode_change_get_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
conn->connection_mode = hci_event_mode_change_get_mode(packet);
log_info("HCI_EVENT_MODE_CHANGE, handle 0x%04x, mode %u", handle, conn->connection_mode);
break;
#endif
case HCI_EVENT_ENCRYPTION_CHANGE:
handle = hci_event_encryption_change_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
if (hci_event_encryption_change_get_status(packet) == 0u) {
uint8_t encryption_enabled = hci_event_encryption_change_get_encryption_enabled(packet);
if (encryption_enabled){
if (hci_is_le_connection(conn)){
// For LE, we accept connection as encrypted
conn->authentication_flags |= CONNECTION_ENCRYPTED;
}
#ifdef ENABLE_CLASSIC
else {
// Detect Secure Connection -> Legacy Connection Downgrade Attack (BIAS)
bool sc_used_during_pairing = gap_secure_connection_for_link_key_type(conn->link_key_type) != 0;
bool connected_uses_aes_ccm = encryption_enabled == 2;
if (hci_stack->secure_connections_active && sc_used_during_pairing && !connected_uses_aes_ccm){
log_info("SC during pairing, but only E0 now -> abort");
conn->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK;
break;
}
// if AES-CCM is used, authentication used SC -> authentication was mutual and we can skip explicit authentication
if (connected_uses_aes_ccm){
conn->authentication_flags |= CONNECTION_AUTHENTICATED;
}
if ((hci_stack->local_supported_commands[0] & 0x80) != 0){
// For Classic, we need to validate encryption key size first, if possible (== supported by Controller)
conn->bonding_flags |= BONDING_SEND_READ_ENCRYPTION_KEY_SIZE;
} else {
// if not, pretend everything is perfect
hci_handle_read_encryption_key_size_complete(conn, 16);
}
}
#endif
} else {
conn->authentication_flags &= ~CONNECTION_ENCRYPTED;
}
}
break;
#ifdef ENABLE_CLASSIC
case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT:
handle = hci_event_authentication_complete_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
// ignore authentication event if we didn't request it
if ((conn->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) == 0) break;
// dedicated bonding: send result and disconnect
if (conn->bonding_flags & BONDING_DEDICATED){
conn->bonding_flags &= ~BONDING_DEDICATED;
conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE;
conn->bonding_status = packet[2];
break;
}
// authenticated only if auth status == 0
if (hci_event_authentication_complete_get_status(packet) == 0){
// authenticated
conn->authentication_flags |= CONNECTION_AUTHENTICATED;
// If link key sufficient for requested security and not already encrypted, start encryption
if (((gap_security_level_for_link_key_type(conn->link_key_type) >= conn->requested_security_level)) &&
((conn->authentication_flags & CONNECTION_ENCRYPTED) == 0)){
conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST;
break;
}
}
// emit updated security level
hci_emit_security_level(handle, gap_security_level_for_connection(conn));
break;
#endif
// HCI_EVENT_DISCONNECTION_COMPLETE
// has been split, to first notify stack before shutting connection down
// see end of function, too.
case HCI_EVENT_DISCONNECTION_COMPLETE:
if (packet[2]) break; // status != 0
handle = little_endian_read_16(packet, 3);
// drop outgoing ACL fragments if it is for closed connection and release buffer if tx not active
if (hci_stack->acl_fragmentation_total_size > 0u) {
if (handle == READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer)){
int release_buffer = hci_stack->acl_fragmentation_tx_active == 0u;
log_info("drop fragmented ACL data for closed connection, release buffer %u", release_buffer);
hci_stack->acl_fragmentation_total_size = 0;
hci_stack->acl_fragmentation_pos = 0;
if (release_buffer){
hci_release_packet_buffer();
}
}
}
conn = hci_connection_for_handle(handle);
if (!conn) break;
// mark connection for shutdown
conn->state = RECEIVED_DISCONNECTION_COMPLETE;
// emit dedicatd bonding event
if (conn->bonding_flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){
hci_emit_dedicated_bonding_result(conn->address, conn->bonding_status);
}
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_PERIPHERAL
// re-enable advertisements for le connections if active
if (hci_is_le_connection(conn)){
hci_update_advertisements_enabled_for_current_roles();
}
#endif
#endif
break;
case HCI_EVENT_HARDWARE_ERROR:
log_error("Hardware Error: 0x%02x", packet[2]);
if (hci_stack->hardware_error_callback){
(*hci_stack->hardware_error_callback)(packet[2]);
} else {
// if no special requests, just reboot stack
hci_power_control_off();
hci_power_control_on();
}
break;
#ifdef ENABLE_CLASSIC
case HCI_EVENT_ROLE_CHANGE:
if (packet[2]) break; // status != 0
reverse_bd_addr(&packet[3], addr);
addr_type = BD_ADDR_TYPE_ACL;
conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (!conn) break;
conn->role = packet[9];
break;
#endif
case HCI_EVENT_TRANSPORT_PACKET_SENT:
// release packet buffer only for asynchronous transport and if there are not further fragements
if (hci_transport_synchronous()) {
log_error("Synchronous HCI Transport shouldn't send HCI_EVENT_TRANSPORT_PACKET_SENT");
return; // instead of break: to avoid re-entering hci_run()
}
hci_stack->acl_fragmentation_tx_active = 0;
if (hci_stack->acl_fragmentation_total_size) break;
hci_release_packet_buffer();
// L2CAP receives this event via the hci_emit_event below
#ifdef ENABLE_CLASSIC
// For SCO, we do the can_send_now_check here
hci_notify_if_sco_can_send_now();
#endif
break;
#ifdef ENABLE_CLASSIC
case HCI_EVENT_SCO_CAN_SEND_NOW:
// For SCO, we do the can_send_now_check here
hci_stack->sco_can_send_now = 1;
hci_notify_if_sco_can_send_now();
return;
// explode inquriy results for easier consumption
case HCI_EVENT_INQUIRY_RESULT:
case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:
case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE:
gap_inquiry_explode(packet, size);
break;
#endif
#ifdef ENABLE_BLE
case HCI_EVENT_LE_META:
switch (packet[2]){
#ifdef ENABLE_LE_CENTRAL
case HCI_SUBEVENT_LE_ADVERTISING_REPORT:
// log_info("advertising report received");
if (!hci_stack->le_scanning_enabled) break;
le_handle_advertisement_report(packet, size);
break;
#endif
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
event_handle_le_connection_complete(packet);
break;
// log_info("LE buffer size: %u, count %u", little_endian_read_16(packet,6), packet[8]);
case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE:
handle = hci_subevent_le_connection_update_complete_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (!conn) break;
conn->le_connection_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet);
break;
case HCI_SUBEVENT_LE_REMOTE_CONNECTION_PARAMETER_REQUEST:
// connection
handle = hci_subevent_le_remote_connection_parameter_request_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (conn) {
// read arguments
uint16_t le_conn_interval_min = hci_subevent_le_remote_connection_parameter_request_get_interval_min(packet);
uint16_t le_conn_interval_max = hci_subevent_le_remote_connection_parameter_request_get_interval_max(packet);
uint16_t le_conn_latency = hci_subevent_le_remote_connection_parameter_request_get_latency(packet);
uint16_t le_supervision_timeout = hci_subevent_le_remote_connection_parameter_request_get_timeout(packet);
// validate against current connection parameter range
le_connection_parameter_range_t existing_range;
gap_get_connection_parameter_range(&existing_range);
int update_parameter = gap_connection_parameter_range_included(&existing_range, le_conn_interval_min, le_conn_interval_max, le_conn_latency, le_supervision_timeout);
if (update_parameter){
conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_REPLY;
conn->le_conn_interval_min = le_conn_interval_min;
conn->le_conn_interval_max = le_conn_interval_max;
conn->le_conn_latency = le_conn_latency;
conn->le_supervision_timeout = le_supervision_timeout;
} else {
conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NEGATIVE_REPLY;
}
}
break;
#ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS
case HCI_SUBEVENT_LE_DATA_LENGTH_CHANGE:
handle = hci_subevent_le_data_length_change_get_connection_handle(packet);
conn = hci_connection_for_handle(handle);
if (conn) {
conn->le_max_tx_octets = hci_subevent_le_data_length_change_get_max_tx_octets(packet);
}
break;
#endif
default:
break;
}
break;
#endif
case HCI_EVENT_VENDOR_SPECIFIC:
// Vendor specific commands often create vendor specific event instead of num completed packets
// To avoid getting stuck as num_cmds_packets is zero, reset it to 1 for controllers with this behaviour
switch (hci_stack->manufacturer){
case BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO:
hci_stack->num_cmd_packets = 1;
break;
default:
break;
}
break;
default:
break;
}
handle_event_for_current_stack_state(packet, size);
// notify upper stack
hci_emit_event(packet, size, 0); // don't dump, already happened in packet handler
// moved here to give upper stack a chance to close down everything with hci_connection_t intact
if ((hci_event_packet_get_type(packet) == HCI_EVENT_DISCONNECTION_COMPLETE) && (packet[2] == 0)){
handle = little_endian_read_16(packet, 3);
hci_connection_t * aConn = hci_connection_for_handle(handle);
// discard connection if app did not trigger a reconnect in the event handler
if (aConn && aConn->state == RECEIVED_DISCONNECTION_COMPLETE){
hci_shutdown_connection(aConn);
}
}
// execute main loop
hci_run();
}
#ifdef ENABLE_CLASSIC
static void sco_tx_timeout_handler(btstack_timer_source_t * ts);
static void sco_schedule_tx(hci_connection_t * conn);
static void sco_tx_timeout_handler(btstack_timer_source_t * ts){
log_debug("SCO TX Timeout");
hci_con_handle_t con_handle = (hci_con_handle_t) (uintptr_t) btstack_run_loop_get_timer_context(ts);
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return;
// trigger send
conn->sco_tx_ready = 1;
// extra packet if CVSD but SCO buffer is too short
if (((hci_stack->sco_voice_setting_active & 0x03) != 0x03) && (hci_stack->sco_data_packet_length < 123)){
conn->sco_tx_ready++;
}
hci_notify_if_sco_can_send_now();
}
#define SCO_TX_AFTER_RX_MS (6)
static void sco_schedule_tx(hci_connection_t * conn){
uint32_t now = btstack_run_loop_get_time_ms();
uint32_t sco_tx_ms = conn->sco_rx_ms + SCO_TX_AFTER_RX_MS;
int time_delta_ms = sco_tx_ms - now;
btstack_timer_source_t * timer = (conn->sco_rx_count & 1) ? &conn->timeout : &conn->timeout_sco;
// log_error("SCO TX at %u in %u", (int) sco_tx_ms, time_delta_ms);
btstack_run_loop_set_timer(timer, time_delta_ms);
btstack_run_loop_set_timer_context(timer, (void *) (uintptr_t) conn->con_handle);
btstack_run_loop_set_timer_handler(timer, &sco_tx_timeout_handler);
btstack_run_loop_add_timer(timer);
}
static void sco_handler(uint8_t * packet, uint16_t size){
// lookup connection struct
hci_con_handle_t con_handle = READ_SCO_CONNECTION_HANDLE(packet);
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return;
// CSR 8811 prefixes 60 byte SCO packet in transparent mode with 20 zero bytes -> skip first 20 payload bytes
if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){
if ((size == 83) && ((hci_stack->sco_voice_setting_active & 0x03) == 0x03)){
packet[2] = 0x3c;
memmove(&packet[3], &packet[23], 63);
size = 63;
}
}
if (hci_have_usb_transport()){
// Nothing to do
} else {
// log_debug("sco flow %u, handle 0x%04x, packets sent %u, bytes send %u", hci_stack->synchronous_flow_control_enabled, (int) con_handle, conn->num_packets_sent, conn->num_sco_bytes_sent);
if (hci_stack->synchronous_flow_control_enabled == 0){
uint32_t now = btstack_run_loop_get_time_ms();
if (!conn->sco_rx_valid){
// ignore first 10 packets
conn->sco_rx_count++;
// log_debug("sco rx count %u", conn->sco_rx_count);
if (conn->sco_rx_count == 10) {
// use first timestamp as is and pretent it just started
conn->sco_rx_ms = now;
conn->sco_rx_valid = 1;
conn->sco_rx_count = 0;
sco_schedule_tx(conn);
}
} else {
// track expected arrival timme
conn->sco_rx_count++;
conn->sco_rx_ms += 7;
int delta = (int32_t) (now - conn->sco_rx_ms);
if (delta > 0){
conn->sco_rx_ms++;
}
// log_debug("sco rx %u", conn->sco_rx_ms);
sco_schedule_tx(conn);
}
}
}
// deliver to app
if (hci_stack->sco_packet_handler) {
hci_stack->sco_packet_handler(HCI_SCO_DATA_PACKET, 0, packet, size);
}
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
conn->num_packets_completed++;
hci_stack->host_completed_packets = 1;
hci_run();
#endif
}
#endif
static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){
hci_dump_packet(packet_type, 1, packet, size);
switch (packet_type) {
case HCI_EVENT_PACKET:
event_handler(packet, size);
break;
case HCI_ACL_DATA_PACKET:
acl_handler(packet, size);
break;
#ifdef ENABLE_CLASSIC
case HCI_SCO_DATA_PACKET:
sco_handler(packet, size);
break;
#endif
default:
break;
}
}
/**
* @brief Add event packet handler.
*/
void hci_add_event_handler(btstack_packet_callback_registration_t * callback_handler){
btstack_linked_list_add_tail(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler);
}
/** Register HCI packet handlers */
void hci_register_acl_packet_handler(btstack_packet_handler_t handler){
hci_stack->acl_packet_handler = handler;
}
#ifdef ENABLE_CLASSIC
/**
* @brief Registers a packet handler for SCO data. Used for HSP and HFP profiles.
*/
void hci_register_sco_packet_handler(btstack_packet_handler_t handler){
hci_stack->sco_packet_handler = handler;
}
#endif
static void hci_state_reset(void){
// no connections yet
hci_stack->connections = NULL;
// keep discoverable/connectable as this has been requested by the client(s)
// hci_stack->discoverable = 0;
// hci_stack->connectable = 0;
// hci_stack->bondable = 1;
// hci_stack->own_addr_type = 0;
// buffer is free
hci_stack->hci_packet_buffer_reserved = 0;
// no pending cmds
hci_stack->decline_reason = 0;
hci_stack->new_scan_enable_value = 0xff;
hci_stack->secure_connections_active = false;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
hci_stack->classic_read_local_oob_data = true;
#endif
// LE
#ifdef ENABLE_BLE
memset(hci_stack->le_random_address, 0, 6);
hci_stack->le_random_address_set = 0;
#endif
#ifdef ENABLE_LE_CENTRAL
hci_stack->le_scanning_active = 0;
hci_stack->le_connecting_state = LE_CONNECTING_IDLE;
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
hci_stack->le_whitelist_capacity = 0;
#endif
}
#ifdef ENABLE_CLASSIC
/**
* @brief Configure Bluetooth hardware control. Has to be called before power on.
*/
void hci_set_link_key_db(btstack_link_key_db_t const * link_key_db){
// store and open remote device db
hci_stack->link_key_db = link_key_db;
if (hci_stack->link_key_db) {
hci_stack->link_key_db->open();
}
}
#endif
void hci_init(const hci_transport_t *transport, const void *config){
#ifdef HAVE_MALLOC
if (!hci_stack) {
hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t));
}
#else
hci_stack = &hci_stack_static;
#endif
memset(hci_stack, 0, sizeof(hci_stack_t));
// reference to use transport layer implementation
hci_stack->hci_transport = transport;
// reference to used config
hci_stack->config = config;
// setup pointer for outgoing packet buffer
hci_stack->hci_packet_buffer = &hci_stack->hci_packet_buffer_data[HCI_OUTGOING_PRE_BUFFER_SIZE];
// max acl payload size defined in config.h
hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE;
// register packet handlers with transport
transport->register_packet_handler(&packet_handler);
hci_stack->state = HCI_STATE_OFF;
// class of device
hci_stack->class_of_device = 0x007a020c; // Smartphone
// bondable by default
hci_stack->bondable = 1;
#ifdef ENABLE_CLASSIC
// classic name
hci_stack->local_name = default_classic_name;
// Master slave policy
hci_stack->master_slave_policy = 1;
// Allow Role Switch
hci_stack->allow_role_switch = 1;
// Default / minimum security level = 2
hci_stack->gap_security_level = LEVEL_2;
// Errata-11838 mandates 7 bytes for GAP Security Level 1-3
hci_stack->gap_required_encyrption_key_size = 7;
#endif
// Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept
hci_stack->ssp_enable = 1;
hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT;
hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING;
hci_stack->ssp_auto_accept = 1;
// Secure Connections: enable (requires support from Controller)
hci_stack->secure_connections_enable = true;
// voice setting - signed 16 bit pcm data with CVSD over the air
hci_stack->sco_voice_setting = 0x60;
#ifdef ENABLE_LE_CENTRAL
// connection parameter to use for outgoing connections
hci_stack->le_connection_scan_interval = 0x0060; // 60ms
hci_stack->le_connection_scan_window = 0x0030; // 30ms
hci_stack->le_connection_interval_min = 0x0008; // 10 ms
hci_stack->le_connection_interval_max = 0x0018; // 30 ms
hci_stack->le_connection_latency = 4; // 4
hci_stack->le_supervision_timeout = 0x0048; // 720 ms
hci_stack->le_minimum_ce_length = 2; // 1.25 ms
hci_stack->le_maximum_ce_length = 0x0030; // 30 ms
// default LE Scanning
hci_stack->le_scan_type = 0x1; // active
hci_stack->le_scan_interval = 0x1e0; // 300 ms
hci_stack->le_scan_window = 0x30; // 30 ms
#endif
#ifdef ENABLE_LE_PERIPHERAL
hci_stack->le_max_number_peripheral_connections = 1; // only single connection as peripheral
#endif
// connection parameter range used to answer connection parameter update requests in l2cap
hci_stack->le_connection_parameter_range.le_conn_interval_min = 6;
hci_stack->le_connection_parameter_range.le_conn_interval_max = 3200;
hci_stack->le_connection_parameter_range.le_conn_latency_min = 0;
hci_stack->le_connection_parameter_range.le_conn_latency_max = 500;
hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 10;
hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 3200;
hci_state_reset();
}
void hci_deinit(void){
#ifdef HAVE_MALLOC
if (hci_stack) {
free(hci_stack);
}
#endif
hci_stack = NULL;
#ifdef ENABLE_CLASSIC
disable_l2cap_timeouts = 0;
#endif
}
/**
* @brief Configure Bluetooth chipset driver. Has to be called before power on, or right after receiving the local version information
*/
void hci_set_chipset(const btstack_chipset_t *chipset_driver){
hci_stack->chipset = chipset_driver;
// reset chipset driver - init is also called on power_up
if (hci_stack->chipset && hci_stack->chipset->init){
hci_stack->chipset->init(hci_stack->config);
}
}
/**
* @brief Configure Bluetooth hardware control. Has to be called after hci_init() but before power on.
*/
void hci_set_control(const btstack_control_t *hardware_control){
// references to used control implementation
hci_stack->control = hardware_control;
// init with transport config
hardware_control->init(hci_stack->config);
}
void hci_close(void){
// close remote device db
if (hci_stack->link_key_db) {
hci_stack->link_key_db->close();
}
btstack_linked_list_iterator_t lit;
btstack_linked_list_iterator_init(&lit, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&lit)){
// cancel all l2cap connections by emitting dicsconnection complete before shutdown (free) connection
hci_connection_t * connection = (hci_connection_t*) btstack_linked_list_iterator_next(&lit);
hci_emit_disconnection_complete(connection->con_handle, 0x16); // terminated by local host
hci_shutdown_connection(connection);
}
hci_power_control(HCI_POWER_OFF);
#ifdef HAVE_MALLOC
free(hci_stack);
#endif
hci_stack = NULL;
}
#ifdef ENABLE_CLASSIC
void gap_set_required_encryption_key_size(uint8_t encryption_key_size){
// validate ranage and set
if (encryption_key_size < 7) return;
if (encryption_key_size > 16) return;
hci_stack->gap_required_encyrption_key_size = encryption_key_size;
}
void gap_set_security_level(gap_security_level_t security_level){
hci_stack->gap_security_level = security_level;
}
gap_security_level_t gap_get_security_level(void){
return hci_stack->gap_security_level;
}
#endif
#ifdef ENABLE_CLASSIC
void gap_set_class_of_device(uint32_t class_of_device){
hci_stack->class_of_device = class_of_device;
}
void gap_set_default_link_policy_settings(uint16_t default_link_policy_settings){
hci_stack->default_link_policy_settings = default_link_policy_settings;
}
void gap_set_allow_role_switch(bool allow_role_switch){
hci_stack->allow_role_switch = allow_role_switch ? 1 : 0;
}
uint8_t hci_get_allow_role_switch(void){
return hci_stack->allow_role_switch;
}
void gap_set_link_supervision_timeout(uint16_t link_supervision_timeout){
hci_stack->link_supervision_timeout = link_supervision_timeout;
}
void hci_disable_l2cap_timeout_check(void){
disable_l2cap_timeouts = 1;
}
#endif
#if !defined(HAVE_PLATFORM_IPHONE_OS) && !defined (HAVE_HOST_CONTROLLER_API)
// Set Public BD ADDR - passed on to Bluetooth chipset if supported in bt_control_h
void hci_set_bd_addr(bd_addr_t addr){
(void)memcpy(hci_stack->custom_bd_addr, addr, 6);
hci_stack->custom_bd_addr_set = 1;
}
#endif
// State-Module-Driver overview
// state module low-level
// HCI_STATE_OFF off close
// HCI_STATE_INITIALIZING, on open
// HCI_STATE_WORKING, on open
// HCI_STATE_HALTING, on open
// HCI_STATE_SLEEPING, off/sleep close
// HCI_STATE_FALLING_ASLEEP on open
static int hci_power_control_on(void){
// power on
int err = 0;
if (hci_stack->control && hci_stack->control->on){
err = (*hci_stack->control->on)();
}
if (err){
log_error( "POWER_ON failed");
hci_emit_hci_open_failed();
return err;
}
// int chipset driver
if (hci_stack->chipset && hci_stack->chipset->init){
hci_stack->chipset->init(hci_stack->config);
}
// init transport
if (hci_stack->hci_transport->init){
hci_stack->hci_transport->init(hci_stack->config);
}
// open transport
err = hci_stack->hci_transport->open();
if (err){
log_error( "HCI_INIT failed, turning Bluetooth off again");
if (hci_stack->control && hci_stack->control->off){
(*hci_stack->control->off)();
}
hci_emit_hci_open_failed();
return err;
}
return 0;
}
static void hci_power_control_off(void){
log_info("hci_power_control_off");
// close low-level device
hci_stack->hci_transport->close();
log_info("hci_power_control_off - hci_transport closed");
// power off
if (hci_stack->control && hci_stack->control->off){
(*hci_stack->control->off)();
}
log_info("hci_power_control_off - control closed");
hci_stack->state = HCI_STATE_OFF;
}
static void hci_power_control_sleep(void){
log_info("hci_power_control_sleep");
#if 0
// don't close serial port during sleep
// close low-level device
hci_stack->hci_transport->close(hci_stack->config);
#endif
// sleep mode
if (hci_stack->control && hci_stack->control->sleep){
(*hci_stack->control->sleep)();
}
hci_stack->state = HCI_STATE_SLEEPING;
}
static int hci_power_control_wake(void){
log_info("hci_power_control_wake");
// wake on
if (hci_stack->control && hci_stack->control->wake){
(*hci_stack->control->wake)();
}
#if 0
// open low-level device
int err = hci_stack->hci_transport->open(hci_stack->config);
if (err){
log_error( "HCI_INIT failed, turning Bluetooth off again");
if (hci_stack->control && hci_stack->control->off){
(*hci_stack->control->off)();
}
hci_emit_hci_open_failed();
return err;
}
#endif
return 0;
}
static void hci_power_transition_to_initializing(void){
// set up state machine
hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent
hci_stack->hci_packet_buffer_reserved = 0;
hci_stack->state = HCI_STATE_INITIALIZING;
hci_stack->substate = HCI_INIT_SEND_RESET;
}
// returns error
static int hci_power_control_state_off(HCI_POWER_MODE power_mode){
int err;
switch (power_mode){
case HCI_POWER_ON:
err = hci_power_control_on();
if (err != 0) {
log_error("hci_power_control_on() error %d", err);
return err;
}
hci_power_transition_to_initializing();
break;
case HCI_POWER_OFF:
// do nothing
break;
case HCI_POWER_SLEEP:
// do nothing (with SLEEP == OFF)
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_initializing(HCI_POWER_MODE power_mode){
switch (power_mode){
case HCI_POWER_ON:
// do nothing
break;
case HCI_POWER_OFF:
// no connections yet, just turn it off
hci_power_control_off();
break;
case HCI_POWER_SLEEP:
// no connections yet, just turn it off
hci_power_control_sleep();
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_working(HCI_POWER_MODE power_mode) {
switch (power_mode){
case HCI_POWER_ON:
// do nothing
break;
case HCI_POWER_OFF:
// see hci_run
hci_stack->state = HCI_STATE_HALTING;
hci_stack->substate = HCI_HALTING_DISCONNECT_ALL_NO_TIMER;
break;
case HCI_POWER_SLEEP:
// see hci_run
hci_stack->state = HCI_STATE_FALLING_ASLEEP;
hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT;
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_halting(HCI_POWER_MODE power_mode) {
switch (power_mode){
case HCI_POWER_ON:
hci_power_transition_to_initializing();
break;
case HCI_POWER_OFF:
// do nothing
break;
case HCI_POWER_SLEEP:
// see hci_run
hci_stack->state = HCI_STATE_FALLING_ASLEEP;
hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT;
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_falling_asleep(HCI_POWER_MODE power_mode) {
switch (power_mode){
case HCI_POWER_ON:
#ifdef HAVE_PLATFORM_IPHONE_OS
// nothing to do, if H4 supports power management
if (btstack_control_iphone_power_management_enabled()){
hci_stack->state = HCI_STATE_INITIALIZING;
hci_stack->substate = HCI_INIT_WRITE_SCAN_ENABLE; // init after sleep
break;
}
#endif
hci_power_transition_to_initializing();
break;
case HCI_POWER_OFF:
// see hci_run
hci_stack->state = HCI_STATE_HALTING;
hci_stack->substate = HCI_HALTING_DISCONNECT_ALL_NO_TIMER;
break;
case HCI_POWER_SLEEP:
// do nothing
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
static int hci_power_control_state_sleeping(HCI_POWER_MODE power_mode) {
int err;
switch (power_mode){
case HCI_POWER_ON:
#ifdef HAVE_PLATFORM_IPHONE_OS
// nothing to do, if H4 supports power management
if (btstack_control_iphone_power_management_enabled()){
hci_stack->state = HCI_STATE_INITIALIZING;
hci_stack->substate = HCI_INIT_AFTER_SLEEP;
hci_update_scan_enable();
break;
}
#endif
err = hci_power_control_wake();
if (err) return err;
hci_power_transition_to_initializing();
break;
case HCI_POWER_OFF:
hci_stack->state = HCI_STATE_HALTING;
hci_stack->substate = HCI_HALTING_DISCONNECT_ALL_NO_TIMER;
break;
case HCI_POWER_SLEEP:
// do nothing
break;
default:
btstack_assert(false);
break;
}
return ERROR_CODE_SUCCESS;
}
int hci_power_control(HCI_POWER_MODE power_mode){
log_info("hci_power_control: %d, current mode %u", power_mode, hci_stack->state);
int err;
switch (hci_stack->state){
case HCI_STATE_OFF:
err = hci_power_control_state_off(power_mode);
break;
case HCI_STATE_INITIALIZING:
err = hci_power_control_state_initializing(power_mode);
break;
case HCI_STATE_WORKING:
err = hci_power_control_state_working(power_mode);
break;
case HCI_STATE_HALTING:
err = hci_power_control_state_halting(power_mode);
break;
case HCI_STATE_FALLING_ASLEEP:
err = hci_power_control_state_falling_asleep(power_mode);
break;
case HCI_STATE_SLEEPING:
err = hci_power_control_state_sleeping(power_mode);
break;
default:
btstack_assert(false);
break;
}
if (err){
return err;
}
// create internal event
hci_emit_state();
// trigger next/first action
hci_run();
return 0;
}
#ifdef ENABLE_CLASSIC
static void hci_update_scan_enable(void){
// 2 = page scan, 1 = inq scan
hci_stack->new_scan_enable_value = (hci_stack->connectable << 1) | hci_stack->discoverable;
hci_run();
}
void gap_discoverable_control(uint8_t enable){
if (enable) enable = 1; // normalize argument
if (hci_stack->discoverable == enable){
hci_emit_discoverable_enabled(hci_stack->discoverable);
return;
}
hci_stack->discoverable = enable;
hci_update_scan_enable();
}
void gap_connectable_control(uint8_t enable){
if (enable) enable = 1; // normalize argument
// don't emit event
if (hci_stack->connectable == enable) return;
hci_stack->connectable = enable;
hci_update_scan_enable();
}
#endif
void gap_local_bd_addr(bd_addr_t address_buffer){
(void)memcpy(address_buffer, hci_stack->local_bd_addr, 6);
}
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
static void hci_host_num_completed_packets(void){
// create packet manually as arrays are not supported and num_commands should not get reduced
hci_reserve_packet_buffer();
uint8_t * packet = hci_get_outgoing_packet_buffer();
uint16_t size = 0;
uint16_t num_handles = 0;
packet[size++] = 0x35;
packet[size++] = 0x0c;
size++; // skip param len
size++; // skip num handles
// add { handle, packets } entries
btstack_linked_item_t * it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
if (connection->num_packets_completed){
little_endian_store_16(packet, size, connection->con_handle);
size += 2;
little_endian_store_16(packet, size, connection->num_packets_completed);
size += 2;
//
num_handles++;
connection->num_packets_completed = 0;
}
}
packet[2] = size - 3;
packet[3] = num_handles;
hci_stack->host_completed_packets = 0;
hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size);
hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size);
// release packet buffer for synchronous transport implementations
if (hci_transport_synchronous()){
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
}
}
#endif
static void hci_halting_timeout_handler(btstack_timer_source_t * ds){
UNUSED(ds);
hci_stack->substate = HCI_HALTING_CLOSE;
// allow packet handlers to defer final shutdown
hci_emit_state();
hci_run();
}
static bool hci_run_acl_fragments(void){
if (hci_stack->acl_fragmentation_total_size > 0u) {
hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer);
hci_connection_t *connection = hci_connection_for_handle(con_handle);
if (connection) {
if (hci_can_send_prepared_acl_packet_now(con_handle)){
hci_send_acl_packet_fragments(connection);
return true;
}
} else {
// connection gone -> discard further fragments
log_info("hci_run: fragmented ACL packet no connection -> discard fragment");
hci_stack->acl_fragmentation_total_size = 0;
hci_stack->acl_fragmentation_pos = 0;
}
}
return false;
}
#ifdef ENABLE_CLASSIC
static bool hci_run_general_gap_classic(void){
// decline incoming connections
if (hci_stack->decline_reason){
uint8_t reason = hci_stack->decline_reason;
hci_stack->decline_reason = 0;
hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason);
return true;
}
// send scan enable
if ((hci_stack->state == HCI_STATE_WORKING) && (hci_stack->new_scan_enable_value != 0xff) && hci_classic_supported()){
hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value);
hci_stack->new_scan_enable_value = 0xff;
return true;
}
// start/stop inquiry
if ((hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN) && (hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX)){
uint8_t duration = hci_stack->inquiry_state;
hci_stack->inquiry_state = GAP_INQUIRY_STATE_ACTIVE;
hci_send_cmd(&hci_inquiry, GAP_IAC_GENERAL_INQUIRY, duration, 0);
return true;
}
if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W2_CANCEL){
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_CANCELLED;
hci_send_cmd(&hci_inquiry_cancel);
return true;
}
// remote name request
if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W2_SEND){
hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W4_COMPLETE;
hci_send_cmd(&hci_remote_name_request, hci_stack->remote_name_addr,
hci_stack->remote_name_page_scan_repetition_mode, 0, hci_stack->remote_name_clock_offset);
return true;
}
#ifdef ENABLE_CLASSIC_PAIRING_OOB
// Local OOB data
if ((hci_stack->state == HCI_STATE_WORKING) && hci_stack->classic_read_local_oob_data){
hci_stack->classic_read_local_oob_data = false;
if (hci_stack->local_supported_commands[1] & 0x10u){
hci_send_cmd(&hci_read_local_extended_oob_data);
} else {
hci_send_cmd(&hci_read_local_oob_data);
}
}
#endif
// pairing
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE){
uint8_t state = hci_stack->gap_pairing_state;
hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE;
switch (state){
case GAP_PAIRING_STATE_SEND_PIN:
hci_send_cmd(&hci_pin_code_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_pin_len, hci_stack->gap_pairing_input.gap_pairing_pin);
break;
case GAP_PAIRING_STATE_SEND_PIN_NEGATIVE:
hci_send_cmd(&hci_pin_code_request_negative_reply, hci_stack->gap_pairing_addr);
break;
case GAP_PAIRING_STATE_SEND_PASSKEY:
hci_send_cmd(&hci_user_passkey_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_input.gap_pairing_passkey);
break;
case GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE:
hci_send_cmd(&hci_user_passkey_request_negative_reply, hci_stack->gap_pairing_addr);
break;
case GAP_PAIRING_STATE_SEND_CONFIRMATION:
hci_send_cmd(&hci_user_confirmation_request_reply, hci_stack->gap_pairing_addr);
break;
case GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE:
hci_send_cmd(&hci_user_confirmation_request_negative_reply, hci_stack->gap_pairing_addr);
break;
default:
break;
}
return true;
}
return false;
}
#endif
#ifdef ENABLE_BLE
static bool hci_run_general_gap_le(void){
// advertisements, active scanning, and creating connections requires random address to be set if using private address
if (hci_stack->state != HCI_STATE_WORKING) return false;
if ( (hci_stack->le_own_addr_type != BD_ADDR_TYPE_LE_PUBLIC) && (hci_stack->le_random_address_set == 0u) ) return false;
// Phase 1: collect what to stop
bool scanning_stop = false;
bool connecting_stop = false;
bool advertising_stop = false;
#ifndef ENABLE_LE_CENTRAL
UNUSED(scanning_stop);
UNUSED(connecting_stop);
#endif
#ifndef ENABLE_LE_PERIPHERAL
UNUSED(advertising_stop);
#endif
// check if whitelist needs modification
bool whitelist_modification_pending = false;
btstack_linked_list_iterator_t lit;
btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&lit)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit);
if (entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)){
whitelist_modification_pending = true;
break;
}
}
// check if resolving list needs modification
bool resolving_list_modification_pending = false;
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
bool resolving_list_supported = (hci_stack->local_supported_commands[1] & (1 << 2)) != 0;
if (resolving_list_supported && hci_stack->le_resolving_list_state != LE_RESOLVING_LIST_DONE){
resolving_list_modification_pending = true;
}
#endif
#ifdef ENABLE_LE_CENTRAL
// scanning control
if (hci_stack->le_scanning_active) {
// stop if:
// - parameter change required
// - it's disabled
// - whitelist change required but used for scanning
// - resolving list modified
bool scanning_uses_whitelist = (hci_stack->le_scan_filter_policy & 1) == 1;
if ((hci_stack->le_scanning_param_update) ||
!hci_stack->le_scanning_enabled ||
scanning_uses_whitelist ||
resolving_list_modification_pending){
scanning_stop = true;
}
}
#endif
#ifdef ENABLE_LE_CENTRAL
// connecting control
bool connecting_with_whitelist;
switch (hci_stack->le_connecting_state){
case LE_CONNECTING_DIRECT:
case LE_CONNECTING_WHITELIST:
// stop connecting if:
// - connecting uses white and whitelist modification pending
// - if it got disabled
// - resolving list modified
connecting_with_whitelist = hci_stack->le_connecting_state == LE_CONNECTING_WHITELIST;
if ((connecting_with_whitelist && whitelist_modification_pending) ||
(hci_stack->le_connecting_request == LE_CONNECTING_IDLE) ||
resolving_list_modification_pending) {
connecting_stop = true;
}
break;
default:
break;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
// le advertisement control
if (hci_stack->le_advertisements_active){
// stop if:
// - parameter change required
// - it's disabled
// - whitelist change required but used for advertisement filter policy
// - resolving list modified
bool advertising_uses_whitelist = hci_stack->le_advertisements_filter_policy > 0;
if ((hci_stack->le_advertisements_todo != 0) ||
!hci_stack->le_advertisements_enabled_for_current_roles ||
(advertising_uses_whitelist & whitelist_modification_pending) ||
resolving_list_modification_pending) {
advertising_stop = true;
}
}
#endif
// Phase 2: stop everything that should be off during modifications
#ifdef ENABLE_LE_CENTRAL
if (scanning_stop){
hci_stack->le_scanning_active = false;
hci_send_cmd(&hci_le_set_scan_enable, 0, 0);
return true;
}
#endif
#ifdef ENABLE_LE_CENTRAL
if (connecting_stop){
hci_send_cmd(&hci_le_create_connection_cancel);
return true;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
if (advertising_stop){
hci_stack->le_advertisements_active = false;
hci_send_cmd(&hci_le_set_advertise_enable, 0);
return true;
}
#endif
// Phase 3: modify
#ifdef ENABLE_LE_CENTRAL
if (hci_stack->le_scanning_param_update){
hci_stack->le_scanning_param_update = false;
hci_send_cmd(&hci_le_set_scan_parameters, hci_stack->le_scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window,
hci_stack->le_own_addr_type, hci_stack->le_scan_filter_policy);
return true;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_send_cmd(&hci_le_set_advertising_parameters,
hci_stack->le_advertisements_interval_min,
hci_stack->le_advertisements_interval_max,
hci_stack->le_advertisements_type,
hci_stack->le_own_addr_type,
hci_stack->le_advertisements_direct_address_type,
hci_stack->le_advertisements_direct_address,
hci_stack->le_advertisements_channel_map,
hci_stack->le_advertisements_filter_policy);
return true;
}
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADV_DATA){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
uint8_t adv_data_clean[31];
memset(adv_data_clean, 0, sizeof(adv_data_clean));
(void)memcpy(adv_data_clean, hci_stack->le_advertisements_data,
hci_stack->le_advertisements_data_len);
btstack_replace_bd_addr_placeholder(adv_data_clean, hci_stack->le_advertisements_data_len, hci_stack->local_bd_addr);
hci_send_cmd(&hci_le_set_advertising_data, hci_stack->le_advertisements_data_len, adv_data_clean);
return true;
}
if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA){
hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA;
uint8_t scan_data_clean[31];
memset(scan_data_clean, 0, sizeof(scan_data_clean));
(void)memcpy(scan_data_clean, hci_stack->le_scan_response_data,
hci_stack->le_scan_response_data_len);
btstack_replace_bd_addr_placeholder(scan_data_clean, hci_stack->le_scan_response_data_len, hci_stack->local_bd_addr);
hci_send_cmd(&hci_le_set_scan_response_data, hci_stack->le_scan_response_data_len, scan_data_clean);
return true;
}
#endif
#ifdef ENABLE_LE_CENTRAL
// if connect with whitelist was active and is not cancelled yet, wait until next time
if (hci_stack->le_connecting_state == LE_CONNECTING_CANCEL) return false;
#endif
// LE Whitelist Management
if (whitelist_modification_pending){
// add/remove entries
btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&lit)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit);
if (entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER){
entry->state &= ~LE_WHITELIST_REMOVE_FROM_CONTROLLER;
hci_send_cmd(&hci_le_remove_device_from_white_list, entry->address_type, entry->address);
return true;
}
if (entry->state & LE_WHITELIST_ADD_TO_CONTROLLER){
entry->state &= ~LE_WHITELIST_ADD_TO_CONTROLLER;
entry->state |= LE_WHITELIST_ON_CONTROLLER;
hci_send_cmd(&hci_le_add_device_to_white_list, entry->address_type, entry->address);
return true;
}
if ((entry->state & LE_WHITELIST_ON_CONTROLLER) == 0){
btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry);
btstack_memory_whitelist_entry_free(entry);
}
}
}
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
// LE Resolving List Management
if (resolving_list_supported) {
uint16_t i;
switch (hci_stack->le_resolving_list_state) {
case LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION:
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_READ_SIZE;
hci_send_cmd(&hci_le_set_address_resolution_enabled, 1);
return true;
case LE_RESOLVING_LIST_READ_SIZE:
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SEND_CLEAR;
hci_send_cmd(&hci_le_read_resolving_list_size);
return true;
case LE_RESOLVING_LIST_SEND_CLEAR:
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_REMOVE_ENTRIES;
(void) memset(hci_stack->le_resolving_list_add_entries, 0xff,
sizeof(hci_stack->le_resolving_list_add_entries));
(void) memset(hci_stack->le_resolving_list_remove_entries, 0,
sizeof(hci_stack->le_resolving_list_remove_entries));
hci_send_cmd(&hci_le_clear_resolving_list);
return true;
case LE_RESOLVING_LIST_REMOVE_ENTRIES:
for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) {
uint8_t offset = i >> 3;
uint8_t mask = 1 << (i & 7);
if ((hci_stack->le_resolving_list_remove_entries[offset] & mask) == 0) continue;
hci_stack->le_resolving_list_remove_entries[offset] &= ~mask;
bd_addr_t peer_identity_addreses;
int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN;
sm_key_t peer_irk;
le_device_db_info(i, &peer_identity_addr_type, peer_identity_addreses, peer_irk);
if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue;
#ifdef ENABLE_LE_WHITELIST_TOUCH_AFTER_RESOLVING_LIST_UPDATE
// trigger whitelist entry 'update' (work around for controller bug)
btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&lit)) {
whitelist_entry_t *entry = (whitelist_entry_t *) btstack_linked_list_iterator_next(&lit);
if (entry->address_type != peer_identity_addr_type) continue;
if (memcmp(entry->address, peer_identity_addreses, 6) != 0) continue;
log_info("trigger whitelist update %s", bd_addr_to_str(peer_identity_addreses));
entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER;
}
#endif
hci_send_cmd(&hci_le_remove_device_from_resolving_list, peer_identity_addr_type,
peer_identity_addreses);
return true;
}
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_ADD_ENTRIES;
/* fall through */
case LE_RESOLVING_LIST_ADD_ENTRIES:
for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) {
uint8_t offset = i >> 3;
uint8_t mask = 1 << (i & 7);
if ((hci_stack->le_resolving_list_add_entries[offset] & mask) == 0) continue;
hci_stack->le_resolving_list_add_entries[offset] &= ~mask;
bd_addr_t peer_identity_addreses;
int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN;
sm_key_t peer_irk;
le_device_db_info(i, &peer_identity_addr_type, peer_identity_addreses, peer_irk);
if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue;
const uint8_t *local_irk = gap_get_persistent_irk();
// command uses format specifier 'P' that stores 16-byte value without flip
uint8_t local_irk_flipped[16];
uint8_t peer_irk_flipped[16];
reverse_128(local_irk, local_irk_flipped);
reverse_128(peer_irk, peer_irk_flipped);
hci_send_cmd(&hci_le_add_device_to_resolving_list, peer_identity_addr_type, peer_identity_addreses,
peer_irk_flipped, local_irk_flipped);
return true;
}
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_DONE;
break;
default:
break;
}
}
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_DONE;
#endif
// Phase 4: restore state
#ifdef ENABLE_LE_CENTRAL
// re-start scanning
if ((hci_stack->le_scanning_enabled && !hci_stack->le_scanning_active)){
hci_stack->le_scanning_active = true;
hci_send_cmd(&hci_le_set_scan_enable, 1, 0);
return true;
}
#endif
#ifdef ENABLE_LE_CENTRAL
// re-start connecting
if ( (hci_stack->le_connecting_state == LE_CONNECTING_IDLE) && (hci_stack->le_connecting_request == LE_CONNECTING_WHITELIST)){
bd_addr_t null_addr;
memset(null_addr, 0, 6);
hci_send_cmd(&hci_le_create_connection,
hci_stack->le_connection_scan_interval, // scan interval: 60 ms
hci_stack->le_connection_scan_window, // scan interval: 30 ms
1, // use whitelist
0, // peer address type
null_addr, // peer bd addr
hci_stack->le_own_addr_type, // our addr type:
hci_stack->le_connection_interval_min, // conn interval min
hci_stack->le_connection_interval_max, // conn interval max
hci_stack->le_connection_latency, // conn latency
hci_stack->le_supervision_timeout, // conn latency
hci_stack->le_minimum_ce_length, // min ce length
hci_stack->le_maximum_ce_length // max ce length
);
return true;
}
#endif
#ifdef ENABLE_LE_PERIPHERAL
// re-start advertising
if (hci_stack->le_advertisements_enabled_for_current_roles && !hci_stack->le_advertisements_active){
// check if advertisements should be enabled given
hci_stack->le_advertisements_active = true;
hci_send_cmd(&hci_le_set_advertise_enable, 1);
return true;
}
#endif
return false;
}
#endif
static bool hci_run_general_pending_commands(void){
btstack_linked_item_t * it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * connection = (hci_connection_t *) it;
switch(connection->state){
case SEND_CREATE_CONNECTION:
switch(connection->address_type){
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_ACL:
log_info("sending hci_create_connection");
hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, hci_stack->allow_role_switch);
break;
#endif
default:
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
log_info("sending hci_le_create_connection");
hci_send_cmd(&hci_le_create_connection,
hci_stack->le_connection_scan_interval, // conn scan interval
hci_stack->le_connection_scan_window, // conn scan windows
0, // don't use whitelist
connection->address_type, // peer address type
connection->address, // peer bd addr
hci_stack->le_own_addr_type, // our addr type:
hci_stack->le_connection_interval_min, // conn interval min
hci_stack->le_connection_interval_max, // conn interval max
hci_stack->le_connection_latency, // conn latency
hci_stack->le_supervision_timeout, // conn latency
hci_stack->le_minimum_ce_length, // min ce length
hci_stack->le_maximum_ce_length // max ce length
);
connection->state = SENT_CREATE_CONNECTION;
#endif
#endif
break;
}
return true;
#ifdef ENABLE_CLASSIC
case RECEIVED_CONNECTION_REQUEST:
connection->role = HCI_ROLE_SLAVE;
if (connection->address_type == BD_ADDR_TYPE_ACL){
log_info("sending hci_accept_connection_request");
connection->state = ACCEPTED_CONNECTION_REQUEST;
hci_send_cmd(&hci_accept_connection_request, connection->address, hci_stack->master_slave_policy);
}
return true;
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
case SEND_CANCEL_CONNECTION:
connection->state = SENT_CANCEL_CONNECTION;
hci_send_cmd(&hci_le_create_connection_cancel);
return true;
#endif
#endif
case SEND_DISCONNECT:
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return true;
default:
break;
}
// no further commands if connection is about to get shut down
if (connection->state == SENT_DISCONNECT) continue;
if (connection->authentication_flags & READ_RSSI){
connectionClearAuthenticationFlags(connection, READ_RSSI);
hci_send_cmd(&hci_read_rssi, connection->con_handle);
return true;
}
#ifdef ENABLE_CLASSIC
if (connection->authentication_flags & WRITE_SUPERVISION_TIMEOUT){
connectionClearAuthenticationFlags(connection, WRITE_SUPERVISION_TIMEOUT);
hci_send_cmd(&hci_write_link_supervision_timeout, connection->con_handle, hci_stack->link_supervision_timeout);
return true;
}
if (connection->authentication_flags & HANDLE_LINK_KEY_REQUEST){
log_info("responding to link key request, have link key db: %u", hci_stack->link_key_db != NULL);
connectionClearAuthenticationFlags(connection, HANDLE_LINK_KEY_REQUEST);
link_key_t link_key;
link_key_type_t link_key_type;
bool have_link_key = hci_stack->link_key_db && hci_stack->link_key_db->get_link_key(connection->address, link_key, &link_key_type);
const uint16_t sc_enabled_mask = BONDING_REMOTE_SUPPORTS_SC_HOST | BONDING_REMOTE_SUPPORTS_SC_CONTROLLER;
bool sc_enabled_remote = (connection->bonding_flags & sc_enabled_mask) == sc_enabled_mask;
bool sc_downgrade = have_link_key && (gap_secure_connection_for_link_key_type(link_key_type) == 1) && !sc_enabled_remote;
if (sc_downgrade){
log_info("Link key based on SC, but remote does not support SC -> disconnect");
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_AUTHENTICATION_FAILURE);
return true;
}
bool security_level_sufficient = have_link_key && (gap_security_level_for_link_key_type(link_key_type) >= connection->requested_security_level);
if (have_link_key && security_level_sufficient){
connection->link_key_type = link_key_type;
hci_send_cmd(&hci_link_key_request_reply, connection->address, &link_key);
} else {
hci_send_cmd(&hci_link_key_request_negative_reply, connection->address);
}
return true;
}
if (connection->authentication_flags & DENY_PIN_CODE_REQUEST){
log_info("denying to pin request");
connectionClearAuthenticationFlags(connection, DENY_PIN_CODE_REQUEST);
hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address);
return true;
}
if (connection->authentication_flags & SEND_IO_CAPABILITIES_REPLY){
connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_REPLY);
// tweak authentication requirements
uint8_t authreq = hci_stack->ssp_authentication_requirement;
if (connection->bonding_flags & BONDING_DEDICATED){
authreq = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING;
}
if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){
authreq |= 1;
}
uint8_t have_oob_data = 0;
#ifdef ENABLE_CLASSIC_PAIRING_OOB
if (connection->classic_oob_c_192 != NULL){
have_oob_data |= 1;
}
if (connection->classic_oob_c_256 != NULL){
have_oob_data |= 2;
}
#endif
hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, have_oob_data, authreq);
return true;
}
if (connection->authentication_flags & SEND_IO_CAPABILITIES_NEGATIVE_REPLY) {
connectionClearAuthenticationFlags(connection, SEND_IO_CAPABILITIES_NEGATIVE_REPLY);
hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED);
return true;
}
#ifdef ENABLE_CLASSIC_PAIRING_OOB
if (connection->authentication_flags & SEND_REMOTE_OOB_DATA_REPLY){
connectionClearAuthenticationFlags(connection, SEND_REMOTE_OOB_DATA_REPLY);
const uint8_t zero[16] = { 0 };
const uint8_t * r_192 = zero;
const uint8_t * c_192 = zero;
const uint8_t * r_256 = zero;
const uint8_t * c_256 = zero;
// verify P-256 OOB
if ((connection->classic_oob_c_256 != NULL) && ((hci_stack->local_supported_commands[1] & 0x08u) != 0)) {
c_256 = connection->classic_oob_c_256;
if (connection->classic_oob_r_256 != NULL) {
r_256 = connection->classic_oob_r_256;
}
}
// verify P-192 OOB
if ((connection->classic_oob_c_192 != NULL)) {
c_192 = connection->classic_oob_c_192;
if (connection->classic_oob_r_192 != NULL) {
r_192 = connection->classic_oob_r_192;
}
}
// Reply
if (c_256 != zero) {
hci_send_cmd(&hci_remote_oob_extended_data_request_reply, &connection->address, c_192, r_192, c_256, r_256);
} else if (c_192 != zero){
hci_send_cmd(&hci_remote_oob_data_request_reply, &connection->address, c_192, r_192);
} else {
hci_send_cmd(&hci_remote_oob_data_request_negative_reply, &connection->address);
}
return true;
}
#endif
if (connection->authentication_flags & SEND_USER_CONFIRM_REPLY){
connectionClearAuthenticationFlags(connection, SEND_USER_CONFIRM_REPLY);
hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address);
return true;
}
if (connection->authentication_flags & SEND_USER_PASSKEY_REPLY){
connectionClearAuthenticationFlags(connection, SEND_USER_PASSKEY_REPLY);
hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000);
return true;
}
if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_0){
connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_0;
hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle);
return true;
}
if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_1){
connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_1;
hci_send_cmd(&hci_read_remote_extended_features_command, connection->con_handle, 1);
return true;
}
if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_2){
connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_2;
hci_send_cmd(&hci_read_remote_extended_features_command, connection->con_handle, 2);
return true;
}
if (connection->bonding_flags & BONDING_DISCONNECT_DEDICATED_DONE){
connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE;
connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT;
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return true;
}
if (connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST){
connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST;
connection->bonding_flags |= BONDING_SENT_AUTHENTICATE_REQUEST;
hci_send_cmd(&hci_authentication_requested, connection->con_handle);
return true;
}
if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){
connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST;
hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1);
return true;
}
if (connection->bonding_flags & BONDING_SEND_READ_ENCRYPTION_KEY_SIZE){
connection->bonding_flags &= ~BONDING_SEND_READ_ENCRYPTION_KEY_SIZE;
hci_send_cmd(&hci_read_encryption_key_size, connection->con_handle, 1);
return true;
}
#endif
if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){
connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK;
if (connection->state != SENT_DISCONNECT){
connection->state = SENT_DISCONNECT;
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_AUTHENTICATION_FAILURE);
return true;
}
}
#ifdef ENABLE_CLASSIC
uint16_t sniff_min_interval;
switch (connection->sniff_min_interval){
case 0:
break;
case 0xffff:
connection->sniff_min_interval = 0;
hci_send_cmd(&hci_exit_sniff_mode, connection->con_handle);
return true;
default:
sniff_min_interval = connection->sniff_min_interval;
connection->sniff_min_interval = 0;
hci_send_cmd(&hci_sniff_mode, connection->con_handle, connection->sniff_max_interval, sniff_min_interval, connection->sniff_attempt, connection->sniff_timeout);
return true;
}
if (connection->request_role != HCI_ROLE_INVALID){
hci_role_t role = connection->request_role;
connection->request_role = HCI_ROLE_INVALID;
hci_send_cmd(&hci_switch_role_command, connection->address, role);
return true;
}
#endif
#ifdef ENABLE_BLE
switch (connection->le_con_parameter_update_state){
// response to L2CAP CON PARAMETER UPDATE REQUEST
case CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS:
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection->le_conn_interval_min,
connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout,
0x0000, 0xffff);
return true;
case CON_PARAMETER_UPDATE_REPLY:
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
hci_send_cmd(&hci_le_remote_connection_parameter_request_reply, connection->con_handle, connection->le_conn_interval_min,
connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout,
0x0000, 0xffff);
return true;
case CON_PARAMETER_UPDATE_NEGATIVE_REPLY:
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE;
hci_send_cmd(&hci_le_remote_connection_parameter_request_negative_reply, ERROR_CODE_UNSUPPORTED_LMP_PARAMETER_VALUE_UNSUPPORTED_LL_PARAMETER_VALUE);
return true;
default:
break;
}
if (connection->le_phy_update_all_phys != 0xffu){
uint8_t all_phys = connection->le_phy_update_all_phys;
connection->le_phy_update_all_phys = 0xff;
hci_send_cmd(&hci_le_set_phy, connection->con_handle, all_phys, connection->le_phy_update_tx_phys, connection->le_phy_update_rx_phys, connection->le_phy_update_phy_options);
return true;
}
#endif
}
return false;
}
static void hci_run(void){
bool done;
// send continuation fragments first, as they block the prepared packet buffer
done = hci_run_acl_fragments();
if (done) return;
#ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL
// send host num completed packets next as they don't require num_cmd_packets > 0
if (!hci_can_send_comand_packet_transport()) return;
if (hci_stack->host_completed_packets){
hci_host_num_completed_packets();
return;
}
#endif
if (!hci_can_send_command_packet_now()) return;
// global/non-connection oriented commands
#ifdef ENABLE_CLASSIC
// general gap classic
done = hci_run_general_gap_classic();
if (done) return;
#endif
#ifdef ENABLE_BLE
// general gap le
done = hci_run_general_gap_le();
if (done) return;
#endif
// send pending HCI commands
done = hci_run_general_pending_commands();
if (done) return;
// stack state sub statemachines
hci_connection_t * connection;
switch (hci_stack->state){
case HCI_STATE_INITIALIZING:
hci_initializing_run();
break;
case HCI_STATE_HALTING:
log_info("HCI_STATE_HALTING, substate %x\n", hci_stack->substate);
switch (hci_stack->substate){
case HCI_HALTING_DISCONNECT_ALL_NO_TIMER:
case HCI_HALTING_DISCONNECT_ALL_TIMER:
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
// free whitelist entries
{
btstack_linked_list_iterator_t lit;
btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&lit)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit);
btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry);
btstack_memory_whitelist_entry_free(entry);
}
}
#endif
#endif
// close all open connections
connection = (hci_connection_t *) hci_stack->connections;
if (connection){
hci_con_handle_t con_handle = (uint16_t) connection->con_handle;
if (!hci_can_send_command_packet_now()) return;
// check state
if (connection->state == SENT_DISCONNECT) return;
connection->state = SENT_DISCONNECT;
log_info("HCI_STATE_HALTING, connection %p, handle %u", connection, con_handle);
// cancel all l2cap connections right away instead of waiting for disconnection complete event ...
hci_emit_disconnection_complete(con_handle, 0x16); // terminated by local host
// ... which would be ignored anyway as we shutdown (free) the connection now
hci_shutdown_connection(connection);
// finally, send the disconnect command
hci_send_cmd(&hci_disconnect, con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
return;
}
if (hci_stack->substate == HCI_HALTING_DISCONNECT_ALL_TIMER){
// no connections left, wait a bit to assert that btstack_cyrpto isn't waiting for an HCI event
log_info("HCI_STATE_HALTING: wait 50 ms");
hci_stack->substate = HCI_HALTING_W4_TIMER;
btstack_run_loop_set_timer(&hci_stack->timeout, 50);
btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_halting_timeout_handler);
btstack_run_loop_add_timer(&hci_stack->timeout);
break;
}
/* fall through */
case HCI_HALTING_CLOSE:
log_info("HCI_STATE_HALTING, calling off");
// switch mode
hci_power_control_off();
log_info("HCI_STATE_HALTING, emitting state");
hci_emit_state();
log_info("HCI_STATE_HALTING, done");
break;
case HCI_HALTING_W4_TIMER:
// keep waiting
break;
default:
break;
}
break;
case HCI_STATE_FALLING_ASLEEP:
switch(hci_stack->substate) {
case HCI_FALLING_ASLEEP_DISCONNECT:
log_info("HCI_STATE_FALLING_ASLEEP");
// close all open connections
connection = (hci_connection_t *) hci_stack->connections;
#ifdef HAVE_PLATFORM_IPHONE_OS
// don't close connections, if H4 supports power management
if (btstack_control_iphone_power_management_enabled()){
connection = NULL;
}
#endif
if (connection){
// send disconnect
if (!hci_can_send_command_packet_now()) return;
log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", connection, (uint16_t)connection->con_handle);
hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION);
// send disconnected event right away - causes higher layer connections to get closed, too.
hci_shutdown_connection(connection);
return;
}
if (hci_classic_supported()){
// disable page and inquiry scan
if (!hci_can_send_command_packet_now()) return;
log_info("HCI_STATE_HALTING, disabling inq scans");
hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan
// continue in next sub state
hci_stack->substate = HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE;
break;
}
/* fall through */
case HCI_FALLING_ASLEEP_COMPLETE:
log_info("HCI_STATE_HALTING, calling sleep");
#ifdef HAVE_PLATFORM_IPHONE_OS
// don't actually go to sleep, if H4 supports power management
if (btstack_control_iphone_power_management_enabled()){
// SLEEP MODE reached
hci_stack->state = HCI_STATE_SLEEPING;
hci_emit_state();
break;
}
#endif
// switch mode
hci_power_control_sleep(); // changes hci_stack->state to SLEEP
hci_emit_state();
break;
default:
break;
}
break;
default:
break;
}
}
int hci_send_cmd_packet(uint8_t *packet, int size){
// house-keeping
#ifdef ENABLE_CLASSIC
bd_addr_t addr;
hci_connection_t * conn;
#endif
#ifdef ENABLE_LE_CENTRAL
uint8_t initiator_filter_policy;
#endif
uint16_t opcode = little_endian_read_16(packet, 0);
switch (opcode) {
case HCI_OPCODE_HCI_WRITE_LOOPBACK_MODE:
hci_stack->loopback_mode = packet[3];
break;
#ifdef ENABLE_CLASSIC
case HCI_OPCODE_HCI_CREATE_CONNECTION:
reverse_bd_addr(&packet[3], addr);
log_info("Create_connection to %s", bd_addr_to_str(addr));
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) {
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) {
// notify client that alloc failed
hci_emit_connection_complete(addr, 0, BTSTACK_MEMORY_ALLOC_FAILED);
return -1; // packet not sent to controller
}
conn->state = SEND_CREATE_CONNECTION;
conn->role = HCI_ROLE_MASTER;
}
log_info("conn state %u", conn->state);
switch (conn->state) {
// if connection active exists
case OPEN:
// and OPEN, emit connection complete command
hci_emit_connection_complete(addr, conn->con_handle, 0);
return -1; // packet not sent to controller
case RECEIVED_DISCONNECTION_COMPLETE:
// create connection triggered in disconnect complete event, let's do it now
break;
case SEND_CREATE_CONNECTION:
// connection created by hci, e.g. dedicated bonding, but not executed yet, let's do it now
break;
default:
// otherwise, just ignore as it is already in the open process
return -1; // packet not sent to controller
}
conn->state = SENT_CREATE_CONNECTION;
// track outgoing connection
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_ACL;
(void) memcpy(hci_stack->outgoing_addr, addr, 6);
break;
case HCI_OPCODE_HCI_LINK_KEY_REQUEST_REPLY:
hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_REPLY);
break;
case HCI_OPCODE_HCI_LINK_KEY_REQUEST_NEGATIVE_REPLY:
hci_add_connection_flags_for_flipped_bd_addr(&packet[3], SENT_LINK_KEY_NEGATIVE_REQUEST);
break;
case HCI_OPCODE_HCI_DELETE_STORED_LINK_KEY:
if (hci_stack->link_key_db) {
reverse_bd_addr(&packet[3], addr);
hci_stack->link_key_db->delete_link_key(addr);
}
break;
case HCI_OPCODE_HCI_PIN_CODE_REQUEST_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_PIN_CODE_REQUEST_REPLY:
reverse_bd_addr(&packet[3], addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (conn) {
connectionClearAuthenticationFlags(conn, LEGACY_PAIRING_ACTIVE);
}
break;
case HCI_OPCODE_HCI_USER_CONFIRMATION_REQUEST_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_USER_CONFIRMATION_REQUEST_REPLY:
case HCI_OPCODE_HCI_USER_PASSKEY_REQUEST_NEGATIVE_REPLY:
case HCI_OPCODE_HCI_USER_PASSKEY_REQUEST_REPLY:
reverse_bd_addr(&packet[3], addr);
conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (conn) {
connectionClearAuthenticationFlags(conn, SSP_PAIRING_ACTIVE);
}
break;
#ifdef ENABLE_SCO_OVER_HCI
case HCI_OPCODE_HCI_SETUP_SYNCHRONOUS_CONNECTION:
// setup_synchronous_connection? Voice setting at offset 22
// TODO: compare to current setting if sco connection already active
hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 15);
break;
case HCI_OPCODE_HCI_ACCEPT_SYNCHRONOUS_CONNECTION:
// accept_synchronus_connection? Voice setting at offset 18
// TODO: compare to current setting if sco connection already active
hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 19);
break;
#endif
#endif
#ifdef ENABLE_BLE
case HCI_OPCODE_HCI_LE_SET_RANDOM_ADDRESS:
hci_stack->le_random_address_set = 1;
reverse_bd_addr(&packet[3], hci_stack->le_random_address);
break;
#ifdef ENABLE_LE_PERIPHERAL
case HCI_OPCODE_HCI_LE_SET_ADVERTISE_ENABLE:
hci_stack->le_advertisements_active = packet[3] != 0;
break;
#endif
#ifdef ENABLE_LE_CENTRAL
case HCI_OPCODE_HCI_LE_CREATE_CONNECTION:
// white list used?
initiator_filter_policy = packet[7];
switch (initiator_filter_policy) {
case 0:
// whitelist not used
hci_stack->le_connecting_state = LE_CONNECTING_DIRECT;
break;
case 1:
hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST;
break;
default:
log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy);
break;
}
// track outgoing connection
hci_stack->outgoing_addr_type = (bd_addr_type_t) packet[8]; // peer addres type
reverse_bd_addr( &packet[9], hci_stack->outgoing_addr); // peer address
break;
case HCI_OPCODE_HCI_LE_CREATE_CONNECTION_CANCEL:
hci_stack->le_connecting_state = LE_CONNECTING_CANCEL;
break;
#endif
#endif
default:
break;
}
hci_stack->num_cmd_packets--;
hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size);
return hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size);
}
// disconnect because of security block
void hci_disconnect_security_block(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return;
connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK;
}
// Configure Secure Simple Pairing
#ifdef ENABLE_CLASSIC
// enable will enable SSP during init
void gap_ssp_set_enable(int enable){
hci_stack->ssp_enable = enable;
}
static int hci_local_ssp_activated(void){
return gap_ssp_supported() && hci_stack->ssp_enable;
}
// if set, BTstack will respond to io capability request using authentication requirement
void gap_ssp_set_io_capability(int io_capability){
hci_stack->ssp_io_capability = io_capability;
}
void gap_ssp_set_authentication_requirement(int authentication_requirement){
hci_stack->ssp_authentication_requirement = authentication_requirement;
}
// if set, BTstack will confirm a numberic comparion and enter '000000' if requested
void gap_ssp_set_auto_accept(int auto_accept){
hci_stack->ssp_auto_accept = auto_accept;
}
void gap_secure_connections_enable(bool enable){
hci_stack->secure_connections_enable = enable;
}
#endif
// va_list part of hci_send_cmd
int hci_send_cmd_va_arg(const hci_cmd_t *cmd, va_list argptr){
if (!hci_can_send_command_packet_now()){
log_error("hci_send_cmd called but cannot send packet now");
return 0;
}
// for HCI INITIALIZATION
// log_info("hci_send_cmd: opcode %04x", cmd->opcode);
hci_stack->last_cmd_opcode = cmd->opcode;
hci_reserve_packet_buffer();
uint8_t * packet = hci_stack->hci_packet_buffer;
uint16_t size = hci_cmd_create_from_template(packet, cmd, argptr);
int err = hci_send_cmd_packet(packet, size);
// release packet buffer on error or for synchronous transport implementations
if ((err < 0) || hci_transport_synchronous()){
hci_release_packet_buffer();
hci_emit_transport_packet_sent();
}
return err;
}
/**
* pre: numcmds >= 0 - it's allowed to send a command to the controller
*/
int hci_send_cmd(const hci_cmd_t *cmd, ...){
va_list argptr;
va_start(argptr, cmd);
int res = hci_send_cmd_va_arg(cmd, argptr);
va_end(argptr);
return res;
}
// Create various non-HCI events.
// TODO: generalize, use table similar to hci_create_command
static void hci_emit_event(uint8_t * event, uint16_t size, int dump){
// dump packet
if (dump) {
hci_dump_packet( HCI_EVENT_PACKET, 0, event, size);
}
// dispatch to all event handlers
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->event_handlers);
while (btstack_linked_list_iterator_has_next(&it)){
btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it);
entry->callback(HCI_EVENT_PACKET, 0, event, size);
}
}
static void hci_emit_acl_packet(uint8_t * packet, uint16_t size){
if (!hci_stack->acl_packet_handler) return;
hci_stack->acl_packet_handler(HCI_ACL_DATA_PACKET, 0, packet, size);
}
#ifdef ENABLE_CLASSIC
static void hci_notify_if_sco_can_send_now(void){
// notify SCO sender if waiting
if (!hci_stack->sco_waiting_for_can_send_now) return;
if (hci_can_send_sco_packet_now()){
hci_stack->sco_waiting_for_can_send_now = 0;
uint8_t event[2] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 };
hci_dump_packet(HCI_EVENT_PACKET, 1, event, sizeof(event));
hci_stack->sco_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event));
}
}
// parsing end emitting has been merged to reduce code size
static void gap_inquiry_explode(uint8_t *packet, uint16_t size) {
uint8_t event[19+GAP_INQUIRY_MAX_NAME_LEN];
uint8_t * eir_data;
ad_context_t context;
const uint8_t * name;
uint8_t name_len;
if (size < 3) return;
int event_type = hci_event_packet_get_type(packet);
int num_reserved_fields = (event_type == HCI_EVENT_INQUIRY_RESULT) ? 2 : 1; // 2 for old event, 1 otherwise
int num_responses = hci_event_inquiry_result_get_num_responses(packet);
switch (event_type){
case HCI_EVENT_INQUIRY_RESULT:
case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:
if (size != (3 + (num_responses * 14))) return;
break;
case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE:
if (size != 257) return;
if (num_responses != 1) return;
break;
default:
return;
}
// event[1] is set at the end
int i;
for (i=0; i<num_responses;i++){
memset(event, 0, sizeof(event));
event[0] = GAP_EVENT_INQUIRY_RESULT;
uint8_t event_size = 18; // if name is not set by EIR
(void)memcpy(&event[2], &packet[3 + (i * 6)], 6); // bd_addr
event[8] = packet[3 + (num_responses*(6)) + (i*1)]; // page_scan_repetition_mode
(void)memcpy(&event[9],
&packet[3 + (num_responses * (6 + 1 + num_reserved_fields)) + (i * 3)],
3); // class of device
(void)memcpy(&event[12],
&packet[3 + (num_responses * (6 + 1 + num_reserved_fields + 3)) + (i * 2)],
2); // clock offset
switch (event_type){
case HCI_EVENT_INQUIRY_RESULT:
// 14,15,16,17 = 0, size 18
break;
case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI:
event[14] = 1;
event[15] = packet [3 + (num_responses*(6+1+num_reserved_fields+3+2)) + (i*1)]; // rssi
// 16,17 = 0, size 18
break;
case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE:
event[14] = 1;
event[15] = packet [3 + (num_responses*(6+1+num_reserved_fields+3+2)) + (i*1)]; // rssi
// EIR packets only contain a single inquiry response
eir_data = &packet[3 + (6+1+num_reserved_fields+3+2+1)];
name = NULL;
// Iterate over EIR data
for (ad_iterator_init(&context, EXTENDED_INQUIRY_RESPONSE_DATA_LEN, eir_data) ; ad_iterator_has_more(&context) ; ad_iterator_next(&context)){
uint8_t data_type = ad_iterator_get_data_type(&context);
uint8_t data_size = ad_iterator_get_data_len(&context);
const uint8_t * data = ad_iterator_get_data(&context);
// Prefer Complete Local Name over Shortend Local Name
switch (data_type){
case BLUETOOTH_DATA_TYPE_SHORTENED_LOCAL_NAME:
if (name) continue;
/* fall through */
case BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME:
name = data;
name_len = data_size;
break;
default:
break;
}
}
if (name){
event[16] = 1;
// truncate name if needed
int len = btstack_min(name_len, GAP_INQUIRY_MAX_NAME_LEN);
event[17] = len;
(void)memcpy(&event[18], name, len);
event_size += len;
}
break;
default:
return;
}
event[1] = event_size - 2;
hci_emit_event(event, event_size, 1);
}
}
#endif
void hci_emit_state(void){
log_info("BTSTACK_EVENT_STATE %u", hci_stack->state);
uint8_t event[3];
event[0] = BTSTACK_EVENT_STATE;
event[1] = sizeof(event) - 2u;
event[2] = hci_stack->state;
hci_emit_event(event, sizeof(event), 1);
}
#ifdef ENABLE_CLASSIC
static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){
uint8_t event[13];
event[0] = HCI_EVENT_CONNECTION_COMPLETE;
event[1] = sizeof(event) - 2;
event[2] = status;
little_endian_store_16(event, 3, con_handle);
reverse_bd_addr(address, &event[5]);
event[11] = 1; // ACL connection
event[12] = 0; // encryption disabled
hci_emit_event(event, sizeof(event), 1);
}
static void hci_emit_l2cap_check_timeout(hci_connection_t *conn){
if (disable_l2cap_timeouts) return;
log_info("L2CAP_EVENT_TIMEOUT_CHECK");
uint8_t event[4];
event[0] = L2CAP_EVENT_TIMEOUT_CHECK;
event[1] = sizeof(event) - 2;
little_endian_store_16(event, 2, conn->con_handle);
hci_emit_event(event, sizeof(event), 1);
}
#endif
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
static void hci_emit_le_connection_complete(uint8_t address_type, const bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){
uint8_t event[21];
event[0] = HCI_EVENT_LE_META;
event[1] = sizeof(event) - 2u;
event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE;
event[3] = status;
little_endian_store_16(event, 4, con_handle);
event[6] = 0; // TODO: role
event[7] = address_type;
reverse_bd_addr(address, &event[8]);
little_endian_store_16(event, 14, 0); // interval
little_endian_store_16(event, 16, 0); // latency
little_endian_store_16(event, 18, 0); // supervision timeout
event[20] = 0; // master clock accuracy
hci_emit_event(event, sizeof(event), 1);
}
#endif
#endif
static void hci_emit_transport_packet_sent(void){
// notify upper stack that it might be possible to send again
uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
hci_emit_event(&event[0], sizeof(event), 0); // don't dump
}
static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason){
uint8_t event[6];
event[0] = HCI_EVENT_DISCONNECTION_COMPLETE;
event[1] = sizeof(event) - 2u;
event[2] = 0; // status = OK
little_endian_store_16(event, 3, con_handle);
event[5] = reason;
hci_emit_event(event, sizeof(event), 1);
}
static void hci_emit_nr_connections_changed(void){
log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections());
uint8_t event[3];
event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED;
event[1] = sizeof(event) - 2u;
event[2] = nr_hci_connections();
hci_emit_event(event, sizeof(event), 1);
}
static void hci_emit_hci_open_failed(void){
log_info("BTSTACK_EVENT_POWERON_FAILED");
uint8_t event[2];
event[0] = BTSTACK_EVENT_POWERON_FAILED;
event[1] = sizeof(event) - 2u;
hci_emit_event(event, sizeof(event), 1);
}
static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){
log_info("hci_emit_dedicated_bonding_result %u ", status);
uint8_t event[9];
int pos = 0;
event[pos++] = GAP_EVENT_DEDICATED_BONDING_COMPLETED;
event[pos++] = sizeof(event) - 2u;
event[pos++] = status;
reverse_bd_addr(address, &event[pos]);
hci_emit_event(event, sizeof(event), 1);
}
#ifdef ENABLE_CLASSIC
static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){
log_info("hci_emit_security_level %u for handle %x", level, con_handle);
uint8_t event[5];
int pos = 0;
event[pos++] = GAP_EVENT_SECURITY_LEVEL;
event[pos++] = sizeof(event) - 2;
little_endian_store_16(event, 2, con_handle);
pos += 2;
event[pos++] = level;
hci_emit_event(event, sizeof(event), 1);
}
static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){
if (!connection) return LEVEL_0;
if ((connection->authentication_flags & CONNECTION_ENCRYPTED) == 0) return LEVEL_0;
if ((connection->authentication_flags & CONNECTION_AUTHENTICATED) == 0) return LEVEL_0;
if (connection->encryption_key_size < hci_stack->gap_required_encyrption_key_size) return LEVEL_0;
gap_security_level_t security_level = gap_security_level_for_link_key_type(connection->link_key_type);
// LEVEL 4 always requires 128 bit encrytion key size
if ((security_level == LEVEL_4) && (connection->encryption_key_size < 16)){
security_level = LEVEL_3;
}
return security_level;
}
static void hci_emit_discoverable_enabled(uint8_t enabled){
log_info("BTSTACK_EVENT_DISCOVERABLE_ENABLED %u", enabled);
uint8_t event[3];
event[0] = BTSTACK_EVENT_DISCOVERABLE_ENABLED;
event[1] = sizeof(event) - 2;
event[2] = enabled;
hci_emit_event(event, sizeof(event), 1);
}
// query if remote side supports eSCO
int hci_remote_esco_supported(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return 0;
return (connection->remote_supported_features[0] & 1) != 0;
}
static bool hci_ssp_supported(hci_connection_t * connection){
const uint8_t mask = BONDING_REMOTE_SUPPORTS_SSP_CONTROLLER | BONDING_REMOTE_SUPPORTS_SSP_HOST;
return (connection->bonding_flags & mask) == mask;
}
// query if remote side supports SSP
int hci_remote_ssp_supported(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return 0;
return hci_ssp_supported(connection) ? 1 : 0;
}
int gap_ssp_supported_on_both_sides(hci_con_handle_t handle){
return hci_local_ssp_activated() && hci_remote_ssp_supported(handle);
}
// GAP API
/**
* @bbrief enable/disable bonding. default is enabled
* @praram enabled
*/
void gap_set_bondable_mode(int enable){
hci_stack->bondable = enable ? 1 : 0;
}
/**
* @brief Get bondable mode.
* @return 1 if bondable
*/
int gap_get_bondable_mode(void){
return hci_stack->bondable;
}
/**
* @brief map link keys to security levels
*/
gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){
switch (link_key_type){
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
return LEVEL_4;
case COMBINATION_KEY:
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192:
return LEVEL_3;
default:
return LEVEL_2;
}
}
/**
* @brief map link keys to secure connection yes/no
*/
int gap_secure_connection_for_link_key_type(link_key_type_t link_key_type){
switch (link_key_type){
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
case UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
return 1;
default:
return 0;
}
}
/**
* @brief map link keys to authenticated
*/
int gap_authenticated_for_link_key_type(link_key_type_t link_key_type){
switch (link_key_type){
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256:
case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192:
return 1;
default:
return 0;
}
}
int gap_mitm_protection_required_for_security_level(gap_security_level_t level){
log_info("gap_mitm_protection_required_for_security_level %u", level);
return level > LEVEL_2;
}
/**
* @brief get current security level
*/
gap_security_level_t gap_security_level(hci_con_handle_t con_handle){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return LEVEL_0;
return gap_security_level_for_connection(connection);
}
/**
* @brief request connection to device to
* @result GAP_AUTHENTICATION_RESULT
*/
void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection){
hci_emit_security_level(con_handle, LEVEL_0);
return;
}
btstack_assert(hci_is_le_connection(connection) == false);
gap_security_level_t current_level = gap_security_level(con_handle);
log_info("gap_request_security_level requested level %u, planned level %u, current level %u",
requested_level, connection->requested_security_level, current_level);
// assumption: earlier requested security higher than current level => security request is active
if (current_level < connection->requested_security_level){
if (connection->requested_security_level < requested_level){
// increase requested level as new level is higher
// TODO: handle re-authentication when done
connection->requested_security_level = requested_level;
}
return;
}
// no request active, notify if security sufficient
if (requested_level <= current_level){
hci_emit_security_level(con_handle, current_level);
return;
}
// store request
connection->requested_security_level = requested_level;
// start to authenticate connection if authentication not already active
if ((connection->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) != 0) return;
connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST;
hci_run();
}
/**
* @brief start dedicated bonding with device. disconnect after bonding
* @param device
* @param request MITM protection
* @result GAP_DEDICATED_BONDING_COMPLETE
*/
int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){
// create connection state machine
hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_ACL);
if (!connection){
return BTSTACK_MEMORY_ALLOC_FAILED;
}
// delete linkn key
gap_drop_link_key_for_bd_addr(device);
// configure LEVEL_2/3, dedicated bonding
connection->state = SEND_CREATE_CONNECTION;
connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2;
log_info("gap_dedicated_bonding, mitm %d -> level %u", mitm_protection_required, connection->requested_security_level);
connection->bonding_flags = BONDING_DEDICATED;
// wait for GAP Security Result and send GAP Dedicated Bonding complete
// handle: connnection failure (connection complete != ok)
// handle: authentication failure
// handle: disconnect on done
hci_run();
return 0;
}
#endif
void gap_set_local_name(const char * local_name){
hci_stack->local_name = local_name;
}
#ifdef ENABLE_BLE
#ifdef ENABLE_LE_CENTRAL
void gap_start_scan(void){
hci_stack->le_scanning_enabled = true;
hci_run();
}
void gap_stop_scan(void){
hci_stack->le_scanning_enabled = false;
hci_run();
}
void gap_set_scan_params(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window, uint8_t scanning_filter_policy){
hci_stack->le_scan_type = scan_type;
hci_stack->le_scan_filter_policy = scanning_filter_policy;
hci_stack->le_scan_interval = scan_interval;
hci_stack->le_scan_window = scan_window;
hci_stack->le_scanning_param_update = true;
hci_run();
}
void gap_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){
gap_set_scan_params(scan_type, scan_interval, scan_window, 0);
}
uint8_t gap_connect(const bd_addr_t addr, bd_addr_type_t addr_type){
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type);
if (!conn){
// disallow if le connection is already outgoing
if (hci_is_le_connection_type(addr_type) && hci_stack->le_connecting_request != LE_CONNECTING_IDLE){
log_error("le connection already active");
return ERROR_CODE_COMMAND_DISALLOWED;
}
log_info("gap_connect: no connection exists yet, creating context");
conn = create_connection_for_bd_addr_and_type(addr, addr_type);
if (!conn){
// notify client that alloc failed
hci_emit_le_connection_complete(addr_type, addr, 0, BTSTACK_MEMORY_ALLOC_FAILED);
log_info("gap_connect: failed to alloc hci_connection_t");
return GATT_CLIENT_NOT_CONNECTED; // don't sent packet to controller
}
// set le connecting state
if (hci_is_le_connection_type(addr_type)){
hci_stack->le_connecting_request = LE_CONNECTING_DIRECT;
}
conn->state = SEND_CREATE_CONNECTION;
log_info("gap_connect: send create connection next");
hci_run();
return ERROR_CODE_SUCCESS;
}
if (!hci_is_le_connection(conn) ||
(conn->state == SEND_CREATE_CONNECTION) ||
(conn->state == SENT_CREATE_CONNECTION)) {
hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_COMMAND_DISALLOWED);
log_error("gap_connect: classic connection or connect is already being created");
return GATT_CLIENT_IN_WRONG_STATE;
}
// check if connection was just disconnected
if (conn->state == RECEIVED_DISCONNECTION_COMPLETE){
log_info("gap_connect: send create connection (again)");
conn->state = SEND_CREATE_CONNECTION;
hci_run();
return ERROR_CODE_SUCCESS;
}
log_info("gap_connect: context exists with state %u", conn->state);
hci_emit_le_connection_complete(conn->address_type, conn->address, conn->con_handle, ERROR_CODE_SUCCESS);
hci_run();
return ERROR_CODE_SUCCESS;
}
// @assumption: only a single outgoing LE Connection exists
static hci_connection_t * gap_get_outgoing_connection(void){
btstack_linked_item_t *it;
for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){
hci_connection_t * conn = (hci_connection_t *) it;
if (!hci_is_le_connection(conn)) continue;
switch (conn->state){
case SEND_CREATE_CONNECTION:
case SENT_CREATE_CONNECTION:
case SENT_CANCEL_CONNECTION:
return conn;
default:
break;
};
}
return NULL;
}
uint8_t gap_connect_cancel(void){
hci_connection_t * conn = gap_get_outgoing_connection();
if (!conn) return 0;
switch (conn->state){
case SEND_CREATE_CONNECTION:
// skip sending create connection and emit event instead
hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER);
btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn);
btstack_memory_hci_connection_free( conn );
break;
case SENT_CREATE_CONNECTION:
// request to send cancel connection
conn->state = SEND_CANCEL_CONNECTION;
hci_run();
break;
default:
break;
}
return 0;
}
#endif
#ifdef ENABLE_LE_CENTRAL
/**
* @brief Set connection parameters for outgoing connections
* @param conn_scan_interval (unit: 0.625 msec), default: 60 ms
* @param conn_scan_window (unit: 0.625 msec), default: 30 ms
* @param conn_interval_min (unit: 1.25ms), default: 10 ms
* @param conn_interval_max (unit: 1.25ms), default: 30 ms
* @param conn_latency, default: 4
* @param supervision_timeout (unit: 10ms), default: 720 ms
* @param min_ce_length (unit: 0.625ms), default: 10 ms
* @param max_ce_length (unit: 0.625ms), default: 30 ms
*/
void gap_set_connection_parameters(uint16_t conn_scan_interval, uint16_t conn_scan_window,
uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency,
uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length){
hci_stack->le_connection_scan_interval = conn_scan_interval;
hci_stack->le_connection_scan_window = conn_scan_window;
hci_stack->le_connection_interval_min = conn_interval_min;
hci_stack->le_connection_interval_max = conn_interval_max;
hci_stack->le_connection_latency = conn_latency;
hci_stack->le_supervision_timeout = supervision_timeout;
hci_stack->le_minimum_ce_length = min_ce_length;
hci_stack->le_maximum_ce_length = max_ce_length;
}
#endif
/**
* @brief Updates the connection parameters for a given LE connection
* @param handle
* @param conn_interval_min (unit: 1.25ms)
* @param conn_interval_max (unit: 1.25ms)
* @param conn_latency
* @param supervision_timeout (unit: 10ms)
* @returns 0 if ok
*/
int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min,
uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
connection->le_conn_interval_min = conn_interval_min;
connection->le_conn_interval_max = conn_interval_max;
connection->le_conn_latency = conn_latency;
connection->le_supervision_timeout = supervision_timeout;
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS;
hci_run();
return 0;
}
/**
* @brief Request an update of the connection parameter for a given LE connection
* @param handle
* @param conn_interval_min (unit: 1.25ms)
* @param conn_interval_max (unit: 1.25ms)
* @param conn_latency
* @param supervision_timeout (unit: 10ms)
* @returns 0 if ok
*/
int gap_request_connection_parameter_update(hci_con_handle_t con_handle, uint16_t conn_interval_min,
uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){
hci_connection_t * connection = hci_connection_for_handle(con_handle);
if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
connection->le_conn_interval_min = conn_interval_min;
connection->le_conn_interval_max = conn_interval_max;
connection->le_conn_latency = conn_latency;
connection->le_supervision_timeout = supervision_timeout;
connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_SEND_REQUEST;
uint8_t l2cap_trigger_run_event[2] = { L2CAP_EVENT_TRIGGER_RUN, 0};
hci_emit_event(l2cap_trigger_run_event, sizeof(l2cap_trigger_run_event), 0);
return 0;
}
#ifdef ENABLE_LE_PERIPHERAL
/**
* @brief Set Advertisement Data
* @param advertising_data_length
* @param advertising_data (max 31 octets)
* @note data is not copied, pointer has to stay valid
*/
void gap_advertisements_set_data(uint8_t advertising_data_length, uint8_t * advertising_data){
hci_stack->le_advertisements_data_len = advertising_data_length;
hci_stack->le_advertisements_data = advertising_data;
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA;
hci_run();
}
/**
* @brief Set Scan Response Data
* @param advertising_data_length
* @param advertising_data (max 31 octets)
* @note data is not copied, pointer has to stay valid
*/
void gap_scan_response_set_data(uint8_t scan_response_data_length, uint8_t * scan_response_data){
hci_stack->le_scan_response_data_len = scan_response_data_length;
hci_stack->le_scan_response_data = scan_response_data;
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA;
hci_run();
}
/**
* @brief Set Advertisement Parameters
* @param adv_int_min
* @param adv_int_max
* @param adv_type
* @param direct_address_type
* @param direct_address
* @param channel_map
* @param filter_policy
*
* @note internal use. use gap_advertisements_set_params from gap_le.h instead.
*/
void hci_le_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type,
uint8_t direct_address_typ, bd_addr_t direct_address,
uint8_t channel_map, uint8_t filter_policy) {
hci_stack->le_advertisements_interval_min = adv_int_min;
hci_stack->le_advertisements_interval_max = adv_int_max;
hci_stack->le_advertisements_type = adv_type;
hci_stack->le_advertisements_direct_address_type = direct_address_typ;
hci_stack->le_advertisements_channel_map = channel_map;
hci_stack->le_advertisements_filter_policy = filter_policy;
(void)memcpy(hci_stack->le_advertisements_direct_address, direct_address,
6);
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_run();
}
/**
* @brief Enable/Disable Advertisements
* @param enabled
*/
void gap_advertisements_enable(int enabled){
hci_stack->le_advertisements_enabled = enabled != 0;
hci_update_advertisements_enabled_for_current_roles();
hci_run();
}
#endif
void hci_le_set_own_address_type(uint8_t own_address_type){
log_info("hci_le_set_own_address_type: old %u, new %u", hci_stack->le_own_addr_type, own_address_type);
if (own_address_type == hci_stack->le_own_addr_type) return;
hci_stack->le_own_addr_type = own_address_type;
#ifdef ENABLE_LE_PERIPHERAL
// update advertisement parameters, too
hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS;
hci_run();
#endif
#ifdef ENABLE_LE_CENTRAL
// note: we don't update scan parameters or modify ongoing connection attempts
#endif
}
#endif
uint8_t gap_disconnect(hci_con_handle_t handle){
hci_connection_t * conn = hci_connection_for_handle(handle);
if (!conn){
hci_emit_disconnection_complete(handle, 0);
return 0;
}
// ignore if already disconnected
if (conn->state == RECEIVED_DISCONNECTION_COMPLETE){
return 0;
}
conn->state = SEND_DISCONNECT;
hci_run();
return 0;
}
int gap_read_rssi(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
connectionSetAuthenticationFlags(hci_connection, READ_RSSI);
hci_run();
return 1;
}
/**
* @brief Get connection type
* @param con_handle
* @result connection_type
*/
gap_connection_type_t gap_get_connection_type(hci_con_handle_t connection_handle){
hci_connection_t * conn = hci_connection_for_handle(connection_handle);
if (!conn) return GAP_CONNECTION_INVALID;
switch (conn->address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
return GAP_CONNECTION_LE;
case BD_ADDR_TYPE_SCO:
return GAP_CONNECTION_SCO;
case BD_ADDR_TYPE_ACL:
return GAP_CONNECTION_ACL;
default:
return GAP_CONNECTION_INVALID;
}
}
hci_role_t gap_get_role(hci_con_handle_t connection_handle){
hci_connection_t * conn = hci_connection_for_handle(connection_handle);
if (!conn) return HCI_ROLE_INVALID;
return (hci_role_t) conn->role;
}
#ifdef ENABLE_CLASSIC
uint8_t gap_request_role(const bd_addr_t addr, hci_role_t role){
hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->request_role = role;
hci_run();
return ERROR_CODE_SUCCESS;
}
#endif
#ifdef ENABLE_BLE
uint8_t gap_le_set_phy(hci_con_handle_t connection_handle, uint8_t all_phys, uint8_t tx_phys, uint8_t rx_phys, uint8_t phy_options){
hci_connection_t * conn = hci_connection_for_handle(connection_handle);
if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
conn->le_phy_update_all_phys = all_phys;
conn->le_phy_update_tx_phys = tx_phys;
conn->le_phy_update_rx_phys = rx_phys;
conn->le_phy_update_phy_options = phy_options;
hci_run();
return 0;
}
static uint8_t hci_whitelist_add(bd_addr_type_t address_type, const bd_addr_t address){
// check if already in list
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)) {
whitelist_entry_t *entry = (whitelist_entry_t *) btstack_linked_list_iterator_next(&it);
if (entry->address_type != address_type) {
continue;
}
if (memcmp(entry->address, address, 6) != 0) {
continue;
}
// disallow if already scheduled to add
if ((entry->state & LE_WHITELIST_ADD_TO_CONTROLLER) != 0){
return ERROR_CODE_COMMAND_DISALLOWED;
}
// still on controller, but scheduled to remove -> re-add
entry->state |= LE_WHITELIST_ADD_TO_CONTROLLER;
return ERROR_CODE_SUCCESS;
}
// alloc and add to list
whitelist_entry_t * entry = btstack_memory_whitelist_entry_get();
if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED;
entry->address_type = address_type;
(void)memcpy(entry->address, address, 6);
entry->state = LE_WHITELIST_ADD_TO_CONTROLLER;
btstack_linked_list_add(&hci_stack->le_whitelist, (btstack_linked_item_t*) entry);
return ERROR_CODE_SUCCESS;
}
static uint8_t hci_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->address_type != address_type) {
continue;
}
if (memcmp(entry->address, address, 6) != 0) {
continue;
}
if (entry->state & LE_WHITELIST_ON_CONTROLLER){
// remove from controller if already present
entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER;
} else {
// directly remove entry from whitelist
btstack_linked_list_iterator_remove(&it);
btstack_memory_whitelist_entry_free(entry);
}
return ERROR_CODE_SUCCESS;
}
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
static void hci_whitelist_clear(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist);
while (btstack_linked_list_iterator_has_next(&it)){
whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it);
if (entry->state & LE_WHITELIST_ON_CONTROLLER){
// remove from controller if already present
entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER;
continue;
}
// directly remove entry from whitelist
btstack_linked_list_iterator_remove(&it);
btstack_memory_whitelist_entry_free(entry);
}
}
/**
* @brief Clear Whitelist
* @returns 0 if ok
*/
uint8_t gap_whitelist_clear(void){
hci_whitelist_clear();
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Add Device to Whitelist
* @param address_typ
* @param address
* @returns 0 if ok
*/
uint8_t gap_whitelist_add(bd_addr_type_t address_type, const bd_addr_t address){
uint8_t status = hci_whitelist_add(address_type, address);
if (status){
return status;
}
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Remove Device from Whitelist
* @param address_typ
* @param address
* @returns 0 if ok
*/
uint8_t gap_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address){
uint8_t status = hci_whitelist_remove(address_type, address);
if (status){
return status;
}
hci_run();
return ERROR_CODE_SUCCESS;
}
#ifdef ENABLE_LE_CENTRAL
/**
* @brief Connect with Whitelist
* @note Explicit whitelist management and this connect with whitelist replace deprecated gap_auto_connection_* functions
* @returns - if ok
*/
uint8_t gap_connect_with_whitelist(void){
if (hci_stack->le_connecting_request != LE_CONNECTING_IDLE){
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_stack->le_connecting_request = LE_CONNECTING_WHITELIST;
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Auto Connection Establishment - Start Connecting to device
* @param address_typ
* @param address
* @returns 0 if ok
*/
uint8_t gap_auto_connection_start(bd_addr_type_t address_type, const bd_addr_t address){
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){
return ERROR_CODE_COMMAND_DISALLOWED;
}
uint8_t status = hci_whitelist_add(address_type, address);
if (status == BTSTACK_MEMORY_ALLOC_FAILED) {
return status;
}
hci_stack->le_connecting_request = LE_CONNECTING_WHITELIST;
hci_run();
return ERROR_CODE_SUCCESS;
}
/**
* @brief Auto Connection Establishment - Stop Connecting to device
* @param address_typ
* @param address
* @returns 0 if ok
*/
uint8_t gap_auto_connection_stop(bd_addr_type_t address_type, const bd_addr_t address){
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_whitelist_remove(address_type, address);
if (btstack_linked_list_empty(&hci_stack->le_whitelist)){
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
}
hci_run();
return 0;
}
/**
* @brief Auto Connection Establishment - Stop everything
* @note Convenience function to stop all active auto connection attempts
*/
uint8_t gap_auto_connection_stop_all(void){
if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT) {
return ERROR_CODE_COMMAND_DISALLOWED;
}
hci_whitelist_clear();
hci_stack->le_connecting_request = LE_CONNECTING_IDLE;
hci_run();
return ERROR_CODE_SUCCESS;
}
uint16_t gap_le_connection_interval(hci_con_handle_t connection_handle){
hci_connection_t * conn = hci_connection_for_handle(connection_handle);
if (!conn) return 0;
return conn->le_connection_interval;
}
#endif
#endif
#ifdef ENABLE_CLASSIC
/**
* @brief Set Extended Inquiry Response data
* @param eir_data size HCI_EXTENDED_INQUIRY_RESPONSE_DATA_LEN (240) bytes, is not copied make sure memory is accessible during stack startup
* @note has to be done before stack starts up
*/
void gap_set_extended_inquiry_response(const uint8_t * data){
hci_stack->eir_data = data;
}
/**
* @brief Start GAP Classic Inquiry
* @param duration in 1.28s units
* @return 0 if ok
* @events: GAP_EVENT_INQUIRY_RESULT, GAP_EVENT_INQUIRY_COMPLETE
*/
int gap_inquiry_start(uint8_t duration_in_1280ms_units){
if (hci_stack->state != HCI_STATE_WORKING) return ERROR_CODE_COMMAND_DISALLOWED;
if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
if ((duration_in_1280ms_units < GAP_INQUIRY_DURATION_MIN) || (duration_in_1280ms_units > GAP_INQUIRY_DURATION_MAX)){
return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;
}
hci_stack->inquiry_state = duration_in_1280ms_units;
hci_run();
return 0;
}
/**
* @brief Stop GAP Classic Inquiry
* @returns 0 if ok
*/
int gap_inquiry_stop(void){
if ((hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN) && (hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX)) {
// emit inquiry complete event, before it even started
uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0};
hci_emit_event(event, sizeof(event), 1);
return 0;
}
if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_ACTIVE) return ERROR_CODE_COMMAND_DISALLOWED;
hci_stack->inquiry_state = GAP_INQUIRY_STATE_W2_CANCEL;
hci_run();
return 0;
}
/**
* @brief Remote Name Request
* @param addr
* @param page_scan_repetition_mode
* @param clock_offset only used when bit 15 is set
* @events: HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE
*/
int gap_remote_name_request(const bd_addr_t addr, uint8_t page_scan_repetition_mode, uint16_t clock_offset){
if (hci_stack->remote_name_state != GAP_REMOTE_NAME_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
(void)memcpy(hci_stack->remote_name_addr, addr, 6);
hci_stack->remote_name_page_scan_repetition_mode = page_scan_repetition_mode;
hci_stack->remote_name_clock_offset = clock_offset;
hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W2_SEND;
hci_run();
return 0;
}
static int gap_pairing_set_state_and_run(const bd_addr_t addr, uint8_t state){
hci_stack->gap_pairing_state = state;
(void)memcpy(hci_stack->gap_pairing_addr, addr, 6);
hci_run();
return 0;
}
/**
* @brief Legacy Pairing Pin Code Response for binary data / non-strings
* @param addr
* @param pin_data
* @param pin_len
* @return 0 if ok
*/
int gap_pin_code_response_binary(const bd_addr_t addr, const uint8_t * pin_data, uint8_t pin_len){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
hci_stack->gap_pairing_input.gap_pairing_pin = pin_data;
hci_stack->gap_pairing_pin_len = pin_len;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN);
}
/**
* @brief Legacy Pairing Pin Code Response
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_pin_code_response(const bd_addr_t addr, const char * pin){
return gap_pin_code_response_binary(addr, (const uint8_t*) pin, strlen(pin));
}
/**
* @brief Abort Legacy Pairing
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_pin_code_negative(bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN_NEGATIVE);
}
/**
* @brief SSP Passkey Response
* @param addr
* @param passkey
* @return 0 if ok
*/
int gap_ssp_passkey_response(const bd_addr_t addr, uint32_t passkey){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
hci_stack->gap_pairing_input.gap_pairing_passkey = passkey;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY);
}
/**
* @brief Abort SSP Passkey Entry/Pairing
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_ssp_passkey_negative(const bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE);
}
/**
* @brief Accept SSP Numeric Comparison
* @param addr
* @param passkey
* @return 0 if ok
*/
int gap_ssp_confirmation_response(const bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION);
}
/**
* @brief Abort SSP Numeric Comparison/Pairing
* @param addr
* @param pin
* @return 0 if ok
*/
int gap_ssp_confirmation_negative(const bd_addr_t addr){
if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED;
return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE);
}
#ifdef ENABLE_CLASSIC_PAIRING_OOB
/**
* @brief Report Remote OOB Data
* @param bd_addr
* @param c_192 Simple Pairing Hash C derived from P-192 public key
* @param r_192 Simple Pairing Randomizer derived from P-192 public key
* @param c_256 Simple Pairing Hash C derived from P-256 public key
* @param r_256 Simple Pairing Randomizer derived from P-256 public key
*/
uint8_t gap_ssp_remote_oob_data(const bd_addr_t addr, const uint8_t * c_192, const uint8_t * r_192, const uint8_t * c_256, const uint8_t * r_256){
hci_connection_t * connection = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
if (connection == NULL) {
return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER;
}
connection->classic_oob_c_192 = c_192;
connection->classic_oob_r_192 = r_192;
connection->classic_oob_c_256 = c_256;
connection->classic_oob_r_256 = r_256;
return ERROR_CODE_SUCCESS;
}
/**
* @brief Generate new OOB data
* @note OOB data will be provided in GAP_EVENT_LOCAL_OOB_DATA and be used in future pairing procedures
*/
void gap_ssp_generate_oob_data(void){
hci_stack->classic_read_local_oob_data = true;
hci_run();
}
#endif
/**
* @brief Set inquiry mode: standard, with RSSI, with RSSI + Extended Inquiry Results. Has to be called before power on.
* @param inquiry_mode see bluetooth_defines.h
*/
void hci_set_inquiry_mode(inquiry_mode_t mode){
hci_stack->inquiry_mode = mode;
}
/**
* @brief Configure Voice Setting for use with SCO data in HSP/HFP
*/
void hci_set_sco_voice_setting(uint16_t voice_setting){
hci_stack->sco_voice_setting = voice_setting;
}
/**
* @brief Get SCO Voice Setting
* @return current voice setting
*/
uint16_t hci_get_sco_voice_setting(void){
return hci_stack->sco_voice_setting;
}
static int hci_have_usb_transport(void){
if (!hci_stack->hci_transport) return 0;
const char * transport_name = hci_stack->hci_transport->name;
if (!transport_name) return 0;
return (transport_name[0] == 'H') && (transport_name[1] == '2');
}
/** @brief Get SCO packet length for current SCO Voice setting
* @note Using SCO packets of the exact length is required for USB transfer
* @return Length of SCO packets in bytes (not audio frames)
*/
int hci_get_sco_packet_length(void){
int sco_packet_length = 0;
#ifdef ENABLE_SCO_OVER_HCI
// Transparent = mSBC => 1, CVSD with 16-bit samples requires twice as much bytes
int multiplier = ((hci_stack->sco_voice_setting_active & 0x03) == 0x03) ? 1 : 2;
if (hci_have_usb_transport()){
// see Core Spec for H2 USB Transfer.
// 3 byte SCO header + 24 bytes per connection
int num_sco_connections = btstack_max(1, hci_number_sco_connections());
sco_packet_length = 3 + 24 * num_sco_connections * multiplier;
} else {
// 3 byte SCO header + SCO packet size over the air (60 bytes)
sco_packet_length = 3 + 60 * multiplier;
// assert that it still fits inside an SCO buffer
if (sco_packet_length > hci_stack->sco_data_packet_length){
sco_packet_length = 3 + 60;
}
}
#endif
return sco_packet_length;
}
/**
* @brief Sets the master/slave policy
* @param policy (0: attempt to become master, 1: let connecting device decide)
*/
void hci_set_master_slave_policy(uint8_t policy){
hci_stack->master_slave_policy = policy;
}
#endif
HCI_STATE hci_get_state(void){
return hci_stack->state;
}
#ifdef ENABLE_CLASSIC
void gap_register_classic_connection_filter(int (*accept_callback)(bd_addr_t addr, hci_link_type_t link_type)){
hci_stack->gap_classic_accept_callback = accept_callback;
}
#endif
/**
* @brief Set callback for Bluetooth Hardware Error
*/
void hci_set_hardware_error_callback(void (*fn)(uint8_t error)){
hci_stack->hardware_error_callback = fn;
}
void hci_disconnect_all(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
if (con->state == SENT_DISCONNECT) continue;
con->state = SEND_DISCONNECT;
}
hci_run();
}
uint16_t hci_get_manufacturer(void){
return hci_stack->manufacturer;
}
#ifdef ENABLE_BLE
static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){
hci_connection_t * hci_con = hci_connection_for_handle(con_handle);
if (!hci_con) return NULL;
return &hci_con->sm_connection;
}
// extracted from sm.c to allow enabling of l2cap le data channels without adding sm.c to the build
// without sm.c default values from create_connection_for_bd_addr_and_type() resulg in non-encrypted, not-authenticated
int gap_encryption_key_size(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
if (hci_is_le_connection(hci_connection)){
sm_connection_t * sm_conn = &hci_connection->sm_connection;
if (sm_conn->sm_connection_encrypted) {
return sm_conn->sm_actual_encryption_key_size;
}
}
#ifdef ENABLE_CLASSIC
else {
if ((hci_connection->authentication_flags & CONNECTION_ENCRYPTED)){
return hci_connection->encryption_key_size;
}
}
#endif
return 0;
}
int gap_authenticated(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
switch (hci_connection->address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
if (hci_connection->sm_connection.sm_connection_encrypted == 0) return 0; // unencrypted connection cannot be authenticated
return hci_connection->sm_connection.sm_connection_authenticated;
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_SCO:
case BD_ADDR_TYPE_ACL:
return gap_authenticated_for_link_key_type(hci_connection->link_key_type);
#endif
default:
return 0;
}
}
int gap_secure_connection(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
switch (hci_connection->address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
if (hci_connection->sm_connection.sm_connection_encrypted == 0) return 0; // unencrypted connection cannot be authenticated
return hci_connection->sm_connection.sm_connection_sc;
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_SCO:
case BD_ADDR_TYPE_ACL:
return gap_secure_connection_for_link_key_type(hci_connection->link_key_type);
#endif
default:
return 0;
}
}
bool gap_bonded(hci_con_handle_t con_handle){
hci_connection_t * hci_connection = hci_connection_for_handle(con_handle);
if (hci_connection == NULL) return 0;
#ifdef ENABLE_CLASSIC
link_key_t link_key;
link_key_type_t link_key_type;
#endif
switch (hci_connection->address_type){
case BD_ADDR_TYPE_LE_PUBLIC:
case BD_ADDR_TYPE_LE_RANDOM:
return hci_connection->sm_connection.sm_le_db_index >= 0;
#ifdef ENABLE_CLASSIC
case BD_ADDR_TYPE_SCO:
case BD_ADDR_TYPE_ACL:
return hci_stack->link_key_db && hci_stack->link_key_db->get_link_key(hci_connection->address, link_key, &link_key_type);
#endif
default:
return false;
}
}
authorization_state_t gap_authorization_state(hci_con_handle_t con_handle){
sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle);
if (!sm_conn) return AUTHORIZATION_UNKNOWN; // wrong connection
if (!sm_conn->sm_connection_encrypted) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized
if (!sm_conn->sm_connection_authenticated) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized
return sm_conn->sm_connection_authorization_state;
}
#endif
#ifdef ENABLE_CLASSIC
uint8_t gap_sniff_mode_enter(hci_con_handle_t con_handle, uint16_t sniff_min_interval, uint16_t sniff_max_interval, uint16_t sniff_attempt, uint16_t sniff_timeout){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return GAP_CONNECTION_INVALID;
conn->sniff_min_interval = sniff_min_interval;
conn->sniff_max_interval = sniff_max_interval;
conn->sniff_attempt = sniff_attempt;
conn->sniff_timeout = sniff_timeout;
hci_run();
return 0;
}
/**
* @brief Exit Sniff mode
* @param con_handle
@ @return 0 if ok
*/
uint8_t gap_sniff_mode_exit(hci_con_handle_t con_handle){
hci_connection_t * conn = hci_connection_for_handle(con_handle);
if (!conn) return GAP_CONNECTION_INVALID;
conn->sniff_min_interval = 0xffff;
hci_run();
return 0;
}
#endif
void hci_halting_defer(void){
if (hci_stack->state != HCI_STATE_HALTING) return;
switch (hci_stack->substate){
case HCI_HALTING_DISCONNECT_ALL_NO_TIMER:
case HCI_HALTING_CLOSE:
hci_stack->substate = HCI_HALTING_DISCONNECT_ALL_TIMER;
break;
default:
break;
}
}
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
void hci_load_le_device_db_entry_into_resolving_list(uint16_t le_device_db_index){
if (le_device_db_index >= MAX_NUM_RESOLVING_LIST_ENTRIES) return;
if (le_device_db_index >= le_device_db_max_count()) return;
uint8_t offset = le_device_db_index >> 3;
uint8_t mask = 1 << (le_device_db_index & 7);
hci_stack->le_resolving_list_add_entries[offset] |= mask;
if (hci_stack->le_resolving_list_state == LE_RESOLVING_LIST_DONE){
// note: go back to remove entries, otherwise, a remove + add will skip the add
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_REMOVE_ENTRIES;
}
}
void hci_remove_le_device_db_entry_from_resolving_list(uint16_t le_device_db_index){
if (le_device_db_index >= MAX_NUM_RESOLVING_LIST_ENTRIES) return;
if (le_device_db_index >= le_device_db_max_count()) return;
uint8_t offset = le_device_db_index >> 3;
uint8_t mask = 1 << (le_device_db_index & 7);
hci_stack->le_resolving_list_remove_entries[offset] |= mask;
if (hci_stack->le_resolving_list_state == LE_RESOLVING_LIST_DONE){
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_REMOVE_ENTRIES;
}
}
uint8_t gap_load_resolving_list_from_le_device_db(void){
if ((hci_stack->local_supported_commands[1] & (1 << 2)) == 0) {
return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE;
}
if (hci_stack->le_resolving_list_state != LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION){
// restart le resolving list update
hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_READ_SIZE;
}
return ERROR_CODE_SUCCESS;
}
#endif
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
void hci_setup_test_connections_fuzz(void){
hci_connection_t * conn;
// default address: 66:55:44:33:00:01
bd_addr_t addr = { 0x66, 0x55, 0x44, 0x33, 0x00, 0x00};
// setup Controller info
hci_stack->num_cmd_packets = 255;
hci_stack->acl_packets_total_num = 255;
// setup incoming Classic ACL connection with con handle 0x0001, 66:55:44:33:22:01
addr[5] = 0x01;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
conn->con_handle = addr[5];
conn->role = HCI_ROLE_SLAVE;
conn->state = RECEIVED_CONNECTION_REQUEST;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup incoming Classic SCO connection with con handle 0x0002
addr[5] = 0x02;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO);
conn->con_handle = addr[5];
conn->role = HCI_ROLE_SLAVE;
conn->state = RECEIVED_CONNECTION_REQUEST;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup ready Classic ACL connection with con handle 0x0003
addr[5] = 0x03;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL);
conn->con_handle = addr[5];
conn->role = HCI_ROLE_SLAVE;
conn->state = OPEN;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup ready Classic SCO connection with con handle 0x0004
addr[5] = 0x04;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO);
conn->con_handle = addr[5];
conn->role = HCI_ROLE_SLAVE;
conn->state = OPEN;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
// setup ready LE ACL connection with con handle 0x005 and public address
addr[5] = 0x05;
conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_LE_PUBLIC);
conn->con_handle = addr[5];
conn->role = HCI_ROLE_SLAVE;
conn->state = OPEN;
conn->sm_connection.sm_role = HCI_ROLE_SLAVE;
}
void hci_free_connections_fuzz(void){
btstack_linked_list_iterator_t it;
btstack_linked_list_iterator_init(&it, &hci_stack->connections);
while (btstack_linked_list_iterator_has_next(&it)){
hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it);
btstack_linked_list_iterator_remove(&it);
btstack_memory_hci_connection_free(con);
}
}
void hci_simulate_working_fuzz(void){
hci_init_done();
hci_stack->num_cmd_packets = 255;
}
#endif