mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-01-12 15:47:14 +00:00
1796 lines
68 KiB
C
1796 lines
68 KiB
C
/*
|
||
* Copyright (C) 2011-2012 BlueKitchen GmbH
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
* 3. Neither the name of the copyright holders nor the names of
|
||
* contributors may be used to endorse or promote products derived
|
||
* from this software without specific prior written permission.
|
||
* 4. Any redistribution, use, or modification is done solely for
|
||
* personal benefit and not for any commercial purpose or for
|
||
* monetary gain.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY MATTHIAS RINGWALD AND CONTRIBUTORS
|
||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
|
||
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
||
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
* SUCH DAMAGE.
|
||
*
|
||
* Please inquire about commercial licensing options at contact@bluekitchen-gmbh.com
|
||
*
|
||
*/
|
||
|
||
#include <stdio.h>
|
||
#include <strings.h>
|
||
|
||
#include "debug.h"
|
||
#include "hci.h"
|
||
#include "l2cap.h"
|
||
#include "central_device_db.h"
|
||
#include "sm.h"
|
||
#include "gap_le.h"
|
||
|
||
//
|
||
// SM internal types and globals
|
||
//
|
||
|
||
typedef enum {
|
||
|
||
SM_STATE_IDLE,
|
||
|
||
SM_STATE_SEND_SECURITY_REQUEST,
|
||
SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY,
|
||
|
||
// Phase 1: Pairing Feature Exchange
|
||
|
||
SM_STATE_PH1_SEND_PAIRING_RESPONSE,
|
||
SM_STATE_PH1_W4_PAIRING_CONFIRM,
|
||
SM_STATE_PH1_W4_USER_RESPONSE,
|
||
|
||
SM_STATE_SEND_PAIRING_FAILED,
|
||
SM_STATE_SEND_PAIRING_RANDOM,
|
||
|
||
// Phase 2: Authenticating and Encrypting
|
||
|
||
// get random number for TK if we show it
|
||
SM_STATE_PH2_GET_RANDOM_TK,
|
||
SM_STATE_PH2_W4_RANDOM_TK,
|
||
|
||
// calculate confirm values for local and remote connection
|
||
SM_STATE_PH2_C1_GET_RANDOM_A,
|
||
SM_STATE_PH2_C1_W4_RANDOM_A,
|
||
SM_STATE_PH2_C1_GET_RANDOM_B,
|
||
SM_STATE_PH2_C1_W4_RANDOM_B,
|
||
SM_STATE_PH2_C1_GET_ENC_A,
|
||
SM_STATE_PH2_C1_W4_ENC_A,
|
||
SM_STATE_PH2_C1_GET_ENC_B,
|
||
SM_STATE_PH2_C1_W4_ENC_B,
|
||
SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM,
|
||
SM_STATE_PH2_W4_PAIRING_RANDOM,
|
||
SM_STATE_PH2_C1_GET_ENC_C,
|
||
SM_STATE_PH2_C1_W4_ENC_C,
|
||
SM_STATE_PH2_C1_GET_ENC_D,
|
||
SM_STATE_PH2_C1_W4_ENC_D,
|
||
|
||
// calc STK
|
||
SM_STATE_PH2_CALC_STK,
|
||
SM_STATE_PH2_W4_STK,
|
||
SM_STATE_PH2_SEND_STK,
|
||
SM_STATE_PH2_W4_LTK_REQUEST,
|
||
SM_STATE_PH2_W4_CONNECTION_ENCRYPTED,
|
||
|
||
// Phase 3: Transport Specific Key Distribution
|
||
|
||
// calculate DHK, Y, EDIV, and LTK
|
||
SM_STATE_PH3_GET_RANDOM,
|
||
SM_STATE_PH3_W4_RANDOM,
|
||
SM_STATE_PH3_GET_DIV,
|
||
SM_STATE_PH3_W4_DIV,
|
||
SM_STATE_PH3_Y_GET_ENC,
|
||
SM_STATE_PH3_Y_W4_ENC,
|
||
SM_STATE_PH3_LTK_GET_ENC,
|
||
SM_STATE_PH3_LTK_W4_ENC,
|
||
|
||
//
|
||
SM_STATE_DISTRIBUTE_KEYS,
|
||
|
||
// re establish previously distribued LTK
|
||
SM_STATE_PH4_Y_GET_ENC,
|
||
SM_STATE_PH4_Y_W4_ENC,
|
||
SM_STATE_PH4_LTK_GET_ENC,
|
||
SM_STATE_PH4_LTK_W4_ENC,
|
||
SM_STATE_PH4_SEND_LTK,
|
||
|
||
SM_STATE_TIMEOUT, // no other security messages are exchanged
|
||
|
||
} security_manager_state_t;
|
||
|
||
typedef enum {
|
||
DKG_W4_WORKING,
|
||
DKG_CALC_IRK,
|
||
DKG_W4_IRK,
|
||
DKG_CALC_DHK,
|
||
DKG_W4_DHK,
|
||
DKG_READY
|
||
} derived_key_generation_t;
|
||
|
||
typedef enum {
|
||
RAU_IDLE,
|
||
RAU_GET_RANDOM,
|
||
RAU_W4_RANDOM,
|
||
RAU_GET_ENC,
|
||
RAU_W4_ENC,
|
||
RAU_SET_ADDRESS,
|
||
} random_address_update_t;
|
||
|
||
typedef enum {
|
||
CMAC_IDLE,
|
||
CMAC_CALC_SUBKEYS,
|
||
CMAC_W4_SUBKEYS,
|
||
CMAC_CALC_MI,
|
||
CMAC_W4_MI,
|
||
CMAC_CALC_MLAST,
|
||
CMAC_W4_MLAST
|
||
} cmac_state_t;
|
||
|
||
typedef enum {
|
||
JUST_WORKS,
|
||
PK_RESP_INPUT, // Initiator displays PK, initiator inputs PK
|
||
PK_INIT_INPUT, // Responder displays PK, responder inputs PK
|
||
OK_BOTH_INPUT, // Only input on both, both input PK
|
||
OOB // OOB available on both sides
|
||
} stk_generation_method_t;
|
||
|
||
typedef enum {
|
||
SM_USER_RESPONSE_IDLE,
|
||
SM_USER_RESPONSE_PENDING,
|
||
SM_USER_RESPONSE_CONFIRM,
|
||
SM_USER_RESPONSE_PASSKEY,
|
||
SM_USER_RESPONSE_DECLINE
|
||
} sm_user_response_t;
|
||
|
||
//
|
||
// GLOBAL DATA
|
||
//
|
||
|
||
// Security Manager Master Keys, please use sm_set_er(er) and sm_set_ir(ir) with your own 128 bit random values
|
||
static sm_key_t sm_persistent_er;
|
||
static sm_key_t sm_persistent_ir;
|
||
|
||
// derived from sm_persistent_ir
|
||
static sm_key_t sm_persistent_dhk;
|
||
static sm_key_t sm_persistent_irk;
|
||
static uint8_t sm_persistent_irk_ready = 0; // used for testing
|
||
|
||
// derived from sm_persistent_er
|
||
// ..
|
||
|
||
static uint8_t sm_accepted_stk_generation_methods;
|
||
static uint8_t sm_max_encryption_key_size;
|
||
static uint8_t sm_min_encryption_key_size;
|
||
|
||
static uint8_t sm_s_auth_req = 0;
|
||
static uint8_t sm_s_io_capabilities = IO_CAPABILITY_UNKNOWN;
|
||
static uint8_t sm_s_request_security = 0;
|
||
|
||
//
|
||
static derived_key_generation_t dkg_state = DKG_W4_WORKING;
|
||
|
||
// random address update
|
||
static random_address_update_t rau_state = RAU_IDLE;
|
||
static bd_addr_t sm_random_address;
|
||
|
||
// resolvable private address lookup
|
||
static int sm_central_device_test;
|
||
static int sm_central_device_matched;
|
||
static int sm_central_ah_calculation_active;
|
||
|
||
//
|
||
static uint8_t sm_s_addr_type;
|
||
static bd_addr_t sm_s_address;
|
||
static uint8_t sm_actual_encryption_key_size;
|
||
static uint8_t sm_connection_encrypted;
|
||
static uint8_t sm_connection_authenticated; // [0..1]
|
||
static uint8_t sm_connection_authorization_state;
|
||
|
||
// PER INSTANCE DATA
|
||
|
||
static security_manager_state_t sm_state_responding = SM_STATE_IDLE;
|
||
static uint16_t sm_response_handle = 0;
|
||
static uint8_t sm_pairing_failed_reason = 0;
|
||
|
||
// SM timeout
|
||
static timer_source_t sm_timeout;
|
||
|
||
// data to send to aes128 crypto engine, see sm_aes128_set_key and sm_aes128_set_plaintext
|
||
static sm_key_t sm_aes128_key;
|
||
static sm_key_t sm_aes128_plaintext;
|
||
static uint8_t sm_aes128_active;
|
||
|
||
// generation method and temporary key for STK - STK is stored in sm_s_ltk
|
||
static stk_generation_method_t sm_stk_generation_method;
|
||
static sm_key_t sm_tk;
|
||
|
||
// user response
|
||
static uint8_t sm_user_response;
|
||
|
||
// defines which keys will be send after connection is encrypted
|
||
static int sm_key_distribution_send_set;
|
||
static int sm_key_distribution_received_set;
|
||
|
||
//
|
||
// Volume 3, Part H, Chapter 24
|
||
// "Security shall be initiated by the Security Manager in the device in the master role.
|
||
// The device in the slave role shall be the responding device."
|
||
// -> master := initiator, slave := responder
|
||
//
|
||
|
||
static uint8_t sm_m_io_capabilities;
|
||
static uint8_t sm_m_have_oob_data;
|
||
static uint8_t sm_m_auth_req;
|
||
static uint8_t sm_m_max_encryption_key_size;
|
||
static uint8_t sm_m_key_distribution;
|
||
static uint8_t sm_m_preq[7];
|
||
static sm_key_t sm_m_random;
|
||
static sm_key_t sm_m_confirm;
|
||
|
||
static sm_key_t sm_s_random;
|
||
static uint8_t sm_s_have_oob_data;
|
||
static sm_key_t sm_s_confirm;
|
||
static uint8_t sm_s_pres[7];
|
||
|
||
// key distribution, slave sends
|
||
static sm_key_t sm_s_ltk;
|
||
static uint16_t sm_s_y;
|
||
static uint16_t sm_s_div;
|
||
static uint16_t sm_s_ediv;
|
||
static uint8_t sm_s_rand[8];
|
||
// commented keys are not used in Perihperal role
|
||
// static sm_key_t sm_s_csrk;
|
||
|
||
// key distribution, received from master
|
||
// commented keys that are not stored or used by Peripheral role
|
||
// static sm_key_t sm_m_ltk;
|
||
// static uint16_t sm_m_ediv;
|
||
// static uint8_t sm_m_rand[8];
|
||
static uint8_t sm_m_addr_type;
|
||
static bd_addr_t sm_m_address;
|
||
static sm_key_t sm_m_csrk;
|
||
static sm_key_t sm_m_irk;
|
||
|
||
// CMAC calculation - only used by signed writes
|
||
static cmac_state_t sm_cmac_state;
|
||
static sm_key_t sm_cmac_k;
|
||
static uint16_t sm_cmac_message_len;
|
||
static uint8_t * sm_cmac_message;
|
||
static sm_key_t sm_cmac_m_last;
|
||
static sm_key_t sm_cmac_x;
|
||
static uint8_t sm_cmac_block_current;
|
||
static uint8_t sm_cmac_block_count;
|
||
static void (*sm_cmac_done_handler)(uint8_t hash[8]);
|
||
|
||
// @returns 1 if oob data is available
|
||
// stores oob data in provided 16 byte buffer if not null
|
||
static int (*sm_get_oob_data)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data) = NULL;
|
||
|
||
// used to notify applicationss that user interaction is neccessary, see sm_notify_t below
|
||
static btstack_packet_handler_t sm_client_packet_handler = NULL;
|
||
|
||
// horizontal: initiator capabilities
|
||
// vertial: responder capabilities
|
||
static const stk_generation_method_t stk_generation_method[5][5] = {
|
||
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
|
||
{ JUST_WORKS, JUST_WORKS, PK_INIT_INPUT, JUST_WORKS, PK_INIT_INPUT },
|
||
{ PK_RESP_INPUT, PK_RESP_INPUT, OK_BOTH_INPUT, JUST_WORKS, PK_RESP_INPUT },
|
||
{ JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS, JUST_WORKS },
|
||
{ PK_RESP_INPUT, PK_RESP_INPUT, PK_INIT_INPUT, JUST_WORKS, PK_RESP_INPUT },
|
||
};
|
||
|
||
static void sm_run();
|
||
|
||
// Utils
|
||
static inline void swapX(uint8_t *src, uint8_t *dst, int len){
|
||
int i;
|
||
for (i = 0; i < len; i++)
|
||
dst[len - 1 - i] = src[i];
|
||
}
|
||
static inline void swap24(uint8_t src[3], uint8_t dst[3]){
|
||
swapX(src, dst, 3);
|
||
}
|
||
static inline void swap56(uint8_t src[7], uint8_t dst[7]){
|
||
swapX(src, dst, 7);
|
||
}
|
||
static inline void swap64(uint8_t src[8], uint8_t dst[8]){
|
||
swapX(src, dst, 8);
|
||
}
|
||
static inline void swap128(uint8_t src[16], uint8_t dst[16]){
|
||
swapX(src, dst, 16);
|
||
}
|
||
|
||
static void print_hex16(const char * name, uint16_t value){
|
||
printf("%-6s 0x%04x\n", name, value);
|
||
}
|
||
|
||
// @returns 1 if all bytes are 0
|
||
static int sm_is_null_random(uint8_t random[8]){
|
||
int i;
|
||
for (i=0; i < 8 ; i++){
|
||
if (random[i]) return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
// Key utils
|
||
static void sm_reset_tk(){
|
||
int i;
|
||
for (i=0;i<16;i++){
|
||
sm_tk[i] = 0;
|
||
}
|
||
}
|
||
|
||
// "For example, if a 128-bit encryption key is 0x123456789ABCDEF0123456789ABCDEF0
|
||
// and it is reduced to 7 octets (56 bits), then the resulting key is 0x0000000000000000003456789ABCDEF0.""
|
||
static void sm_truncate_key(sm_key_t key, int max_encryption_size){
|
||
int i;
|
||
for (i = max_encryption_size ; i < 16 ; i++){
|
||
key[15-i] = 0;
|
||
}
|
||
}
|
||
|
||
// SMP Timeout implementation
|
||
|
||
// Upon transmission of the Pairing Request command or reception of the Pairing Request command,
|
||
// the Security Manager Timer shall be reset and started.
|
||
//
|
||
// The Security Manager Timer shall be reset when an L2CAP SMP command is queued for transmission.
|
||
//
|
||
// If the Security Manager Timer reaches 30 seconds, the procedure shall be considered to have failed,
|
||
// and the local higher layer shall be notified. No further SMP commands shall be sent over the L2CAP
|
||
// Security Manager Channel. A new SM procedure shall only be performed when a new physical link has been
|
||
// established.
|
||
|
||
static void sm_timeout_handler(timer_source_t * timer){
|
||
printf("SM timeout\n");
|
||
sm_state_responding = SM_STATE_TIMEOUT;
|
||
}
|
||
static void sm_timeout_start(){
|
||
run_loop_remove_timer(&sm_timeout);
|
||
run_loop_set_timer_handler(&sm_timeout, sm_timeout_handler);
|
||
run_loop_set_timer(&sm_timeout, 30000); // 30 seconds sm timeout
|
||
run_loop_add_timer(&sm_timeout);
|
||
}
|
||
static void sm_timeout_stop(){
|
||
run_loop_remove_timer(&sm_timeout);
|
||
}
|
||
static void sm_timeout_reset(){
|
||
sm_timeout_stop();
|
||
sm_timeout_start();
|
||
}
|
||
|
||
// end of sm timeout
|
||
|
||
// GAP Random Address updates
|
||
static gap_random_address_type_t gap_random_adress_type;
|
||
static timer_source_t gap_random_address_update_timer;
|
||
static uint32_t gap_random_adress_update_period;
|
||
|
||
static void gap_random_address_trigger(){
|
||
if (rau_state != RAU_IDLE) return;
|
||
printf("gap_random_address_trigger\n");
|
||
rau_state = RAU_GET_RANDOM;
|
||
sm_run();
|
||
}
|
||
|
||
static void gap_random_address_update_handler(timer_source_t * timer){
|
||
printf("GAP Random Address Update due\n");
|
||
run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
|
||
run_loop_add_timer(&gap_random_address_update_timer);
|
||
gap_random_address_trigger();
|
||
}
|
||
|
||
static void gap_random_address_update_start(){
|
||
run_loop_set_timer_handler(&gap_random_address_update_timer, gap_random_address_update_handler);
|
||
run_loop_set_timer(&gap_random_address_update_timer, gap_random_adress_update_period);
|
||
run_loop_add_timer(&gap_random_address_update_timer);
|
||
}
|
||
|
||
static void gap_random_address_update_stop(){
|
||
run_loop_remove_timer(&gap_random_address_update_timer);
|
||
}
|
||
|
||
static inline void sm_aes128_set_key(sm_key_t key){
|
||
memcpy(sm_aes128_key, key, 16);
|
||
}
|
||
|
||
static inline void sm_aes128_set_plaintext(sm_key_t plaintext){
|
||
memcpy(sm_aes128_plaintext, plaintext, 16);
|
||
}
|
||
|
||
// asserts: sm_aes128_active == 0, hci_can_send_command == 1
|
||
static void sm_aes128_start(sm_key_t key, sm_key_t plaintext){
|
||
sm_aes128_active = 1;
|
||
sm_key_t key_flipped, plaintext_flipped;
|
||
swap128(key, key_flipped);
|
||
swap128(plaintext, plaintext_flipped);
|
||
hci_send_cmd(&hci_le_encrypt, key_flipped, plaintext_flipped);
|
||
}
|
||
|
||
static void sm_ah_r_prime(uint8_t r[3], sm_key_t d1_prime){
|
||
// r'= padding || r
|
||
memset(d1_prime, 0, 16);
|
||
memcpy(&d1_prime[13], r, 3);
|
||
}
|
||
|
||
static void sm_d1_d_prime(uint16_t d, uint16_t r, sm_key_t d1_prime){
|
||
// d'= padding || r || d
|
||
memset(d1_prime, 0, 16);
|
||
net_store_16(d1_prime, 12, r);
|
||
net_store_16(d1_prime, 14, d);
|
||
}
|
||
|
||
static void sm_dm_r_prime(uint8_t r[8], sm_key_t r_prime){
|
||
// r’ = padding || r
|
||
memset(r_prime, 0, 16);
|
||
memcpy(&r_prime[8], r, 8);
|
||
}
|
||
|
||
// calculate arguments for first AES128 operation in C1 function
|
||
static void sm_c1_t1(sm_key_t r, uint8_t preq[7], uint8_t pres[7], uint8_t iat, uint8_t rat, sm_key_t t1){
|
||
|
||
// p1 = pres || preq || rat’ || iat’
|
||
// "The octet of iat’ becomes the least significant octet of p1 and the most signifi-
|
||
// cant octet of pres becomes the most significant octet of p1.
|
||
// For example, if the 8-bit iat’ is 0x01, the 8-bit rat’ is 0x00, the 56-bit preq
|
||
// is 0x07071000000101 and the 56 bit pres is 0x05000800000302 then
|
||
// p1 is 0x05000800000302070710000001010001."
|
||
|
||
sm_key_t p1;
|
||
swap56(pres, &p1[0]);
|
||
swap56(preq, &p1[7]);
|
||
p1[14] = rat;
|
||
p1[15] = iat;
|
||
print_key("p1", p1);
|
||
print_key("r", r);
|
||
|
||
// t1 = r xor p1
|
||
int i;
|
||
for (i=0;i<16;i++){
|
||
t1[i] = r[i] ^ p1[i];
|
||
}
|
||
print_key("t1", t1);
|
||
}
|
||
|
||
// calculate arguments for second AES128 operation in C1 function
|
||
static void sm_c1_t3(sm_key_t t2, bd_addr_t ia, bd_addr_t ra, sm_key_t t3){
|
||
// p2 = padding || ia || ra
|
||
// "The least significant octet of ra becomes the least significant octet of p2 and
|
||
// the most significant octet of padding becomes the most significant octet of p2.
|
||
// For example, if 48-bit ia is 0xA1A2A3A4A5A6 and the 48-bit ra is
|
||
// 0xB1B2B3B4B5B6 then p2 is 0x00000000A1A2A3A4A5A6B1B2B3B4B5B6.
|
||
|
||
sm_key_t p2;
|
||
memset(p2, 0, 16);
|
||
memcpy(&p2[4], ia, 6);
|
||
memcpy(&p2[10], ra, 6);
|
||
print_key("p2", p2);
|
||
|
||
// c1 = e(k, t2_xor_p2)
|
||
int i;
|
||
for (i=0;i<16;i++){
|
||
t3[i] = t2[i] ^ p2[i];
|
||
}
|
||
print_key("t3", t3);
|
||
}
|
||
|
||
static void sm_s1_r_prime(sm_key_t r1, sm_key_t r2, sm_key_t r_prime){
|
||
print_key("r1", r1);
|
||
print_key("r2", r2);
|
||
memcpy(&r_prime[8], &r2[8], 8);
|
||
memcpy(&r_prime[0], &r1[8], 8);
|
||
}
|
||
|
||
static void sm_notify_client(uint8_t type, uint8_t addr_type, bd_addr_t address, uint32_t passkey, uint16_t index){
|
||
|
||
sm_event_t event;
|
||
event.type = type;
|
||
event.addr_type = addr_type;
|
||
BD_ADDR_COPY(event.address, address);
|
||
event.passkey = passkey;
|
||
event.central_device_db_index = index;
|
||
|
||
log_info("sm_notify_client %02x, addres_type %u, address %s, num '%06u', index %u", event.type, event.addr_type, bd_addr_to_str(event.address), event.passkey, event.central_device_db_index);
|
||
|
||
if (!sm_client_packet_handler) return;
|
||
sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
|
||
}
|
||
|
||
static void sm_notify_client_authorization(uint8_t type, uint8_t addr_type, bd_addr_t address, uint8_t result){
|
||
|
||
sm_event_t event;
|
||
event.type = type;
|
||
event.addr_type = addr_type;
|
||
BD_ADDR_COPY(event.address, address);
|
||
event.authorization_result = result;
|
||
|
||
log_info("sm_notify_client_authorization %02x, address_type %u, address %s, result %u", event.type, event.addr_type, bd_addr_to_str(event.address), event.authorization_result);
|
||
|
||
if (!sm_client_packet_handler) return;
|
||
sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) &event, sizeof(event));
|
||
}
|
||
|
||
// decide on stk generation based on
|
||
// - pairing request
|
||
// - io capabilities
|
||
// - OOB data availability
|
||
static void sm_tk_setup(){
|
||
|
||
// default: just works
|
||
sm_stk_generation_method = JUST_WORKS;
|
||
sm_reset_tk();
|
||
|
||
// query client for OOB data
|
||
sm_s_have_oob_data = (*sm_get_oob_data)(sm_m_addr_type, &sm_m_address, sm_tk);
|
||
|
||
// If both devices have out of band authentication data, then the Authentication
|
||
// Requirements Flags shall be ignored when selecting the pairing method and the
|
||
// Out of Band pairing method shall be used.
|
||
if (sm_m_have_oob_data && sm_s_have_oob_data){
|
||
printf("SM: have OOB data");
|
||
print_key("OOB", sm_tk);
|
||
sm_stk_generation_method = OOB;
|
||
return;
|
||
}
|
||
|
||
// If both devices have not set the MITM option in the Authentication Requirements
|
||
// Flags, then the IO capabilities shall be ignored and the Just Works association
|
||
// model shall be used.
|
||
if ( ((sm_m_auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0x00) && ((sm_s_auth_req & SM_AUTHREQ_MITM_PROTECTION) == 0)){
|
||
return;
|
||
}
|
||
|
||
// Also use just works if unknown io capabilites
|
||
if ((sm_m_io_capabilities > IO_CAPABILITY_KEYBOARD_DISPLAY) || (sm_m_io_capabilities > IO_CAPABILITY_KEYBOARD_DISPLAY)){
|
||
return;
|
||
}
|
||
|
||
// Otherwise the IO capabilities of the devices shall be used to determine the
|
||
// pairing method as defined in Table 2.4.
|
||
sm_stk_generation_method = stk_generation_method[sm_s_io_capabilities][sm_m_io_capabilities];
|
||
printf("sm_tk_setup: master io cap: %u, slave io cap: %u -> method %u\n",
|
||
sm_m_io_capabilities, sm_s_io_capabilities, sm_stk_generation_method);
|
||
}
|
||
|
||
static int sm_key_distribution_flags_for_set(uint8_t key_set){
|
||
int flags = 0;
|
||
if (key_set & SM_KEYDIST_ENC_KEY){
|
||
flags |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
|
||
flags |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
|
||
}
|
||
if (key_set & SM_KEYDIST_ID_KEY){
|
||
flags |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
|
||
flags |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
|
||
}
|
||
if (key_set & SM_KEYDIST_SIGN){
|
||
flags |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
|
||
}
|
||
return flags;
|
||
}
|
||
|
||
static void sm_setup_key_distribution(uint8_t key_set){
|
||
|
||
// TODO: handle initiator case here
|
||
|
||
// distribute keys as requested by initiator
|
||
sm_key_distribution_received_set = 0;
|
||
sm_key_distribution_send_set = sm_key_distribution_flags_for_set(key_set);
|
||
}
|
||
|
||
// CMAC Implementation using AES128 engine
|
||
static void sm_shift_left_by_one_bit_inplace(int len, uint8_t * data){
|
||
int i;
|
||
int carry = 0;
|
||
for (i=len-1; i >= 0 ; i--){
|
||
int new_carry = data[i] >> 7;
|
||
data[i] = data[i] << 1 | carry;
|
||
carry = new_carry;
|
||
}
|
||
}
|
||
|
||
static int sm_cmac_last_block_complete(){
|
||
if (sm_cmac_message_len == 0) return 0;
|
||
return (sm_cmac_message_len & 0x0f) == 0;
|
||
}
|
||
|
||
void sm_cmac_start(sm_key_t k, uint16_t message_len, uint8_t * message, void (*done_handler)(uint8_t hash[8])){
|
||
memcpy(sm_cmac_k, k, 16);
|
||
sm_cmac_message_len = message_len;
|
||
sm_cmac_message = message;
|
||
sm_cmac_done_handler = done_handler;
|
||
sm_cmac_block_current = 0;
|
||
memset(sm_cmac_x, 0, 16);
|
||
|
||
// step 2: n := ceil(len/const_Bsize);
|
||
sm_cmac_block_count = (message_len + 15) / 16;
|
||
|
||
// step 3: ..
|
||
if (sm_cmac_block_count==0){
|
||
sm_cmac_block_count = 1;
|
||
}
|
||
|
||
// first, we need to compute l for k1, k2, and m_last
|
||
sm_cmac_state = CMAC_CALC_SUBKEYS;
|
||
|
||
// let's go
|
||
sm_run();
|
||
}
|
||
|
||
int sm_cmac_ready(){
|
||
return sm_cmac_state == CMAC_IDLE;
|
||
}
|
||
|
||
static void sm_cmac_handle_aes_engine_ready(){
|
||
switch (sm_cmac_state){
|
||
case CMAC_CALC_SUBKEYS:
|
||
{
|
||
sm_key_t const_zero;
|
||
memset(const_zero, 0, 16);
|
||
sm_aes128_start(sm_cmac_k, const_zero);
|
||
sm_cmac_state++;
|
||
break;
|
||
}
|
||
case CMAC_CALC_MI: {
|
||
int j;
|
||
sm_key_t y;
|
||
for (j=0;j<16;j++){
|
||
y[j] = sm_cmac_x[j] ^ sm_cmac_message[sm_cmac_block_current*16 + j];
|
||
}
|
||
sm_cmac_block_current++;
|
||
sm_aes128_start(sm_cmac_k, y);
|
||
sm_cmac_state++;
|
||
break;
|
||
}
|
||
case CMAC_CALC_MLAST: {
|
||
int i;
|
||
sm_key_t y;
|
||
for (i=0;i<16;i++){
|
||
y[i] = sm_cmac_x[i] ^ sm_cmac_m_last[i];
|
||
}
|
||
print_key("Y", y);
|
||
sm_cmac_block_current++;
|
||
sm_aes128_start(sm_cmac_k, y);
|
||
sm_cmac_state++;
|
||
break;
|
||
}
|
||
default:
|
||
printf("sm_cmac_handle_aes_engine_ready called in state %u\n", sm_cmac_state);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void sm_cmac_handle_encryption_result(sm_key_t data){
|
||
switch (sm_cmac_state){
|
||
case CMAC_W4_SUBKEYS: {
|
||
sm_key_t k1;
|
||
memcpy(k1, data, 16);
|
||
sm_shift_left_by_one_bit_inplace(16, k1);
|
||
if (data[0] & 0x80){
|
||
k1[15] ^= 0x87;
|
||
}
|
||
sm_key_t k2;
|
||
memcpy(k2, k1, 16);
|
||
sm_shift_left_by_one_bit_inplace(16, k2);
|
||
if (k1[0] & 0x80){
|
||
k2[15] ^= 0x87;
|
||
}
|
||
|
||
print_key("k", sm_cmac_k);
|
||
print_key("k1", k1);
|
||
print_key("k2", k2);
|
||
|
||
// step 4: set m_last
|
||
int i;
|
||
if (sm_cmac_last_block_complete()){
|
||
for (i=0;i<16;i++){
|
||
sm_cmac_m_last[i] = sm_cmac_message[sm_cmac_message_len - 16 + i] ^ k1[i];
|
||
}
|
||
} else {
|
||
int valid_octets_in_last_block = sm_cmac_message_len & 0x0f;
|
||
for (i=0;i<16;i++){
|
||
if (i < valid_octets_in_last_block){
|
||
sm_cmac_m_last[i] = sm_cmac_message[(sm_cmac_message_len & 0xfff0) + i] ^ k2[i];
|
||
continue;
|
||
}
|
||
if (i == valid_octets_in_last_block){
|
||
sm_cmac_m_last[i] = 0x80 ^ k2[i];
|
||
continue;
|
||
}
|
||
sm_cmac_m_last[i] = k2[i];
|
||
}
|
||
}
|
||
|
||
|
||
// next
|
||
sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
|
||
break;
|
||
}
|
||
case CMAC_W4_MI:
|
||
memcpy(sm_cmac_x, data, 16);
|
||
sm_cmac_state = sm_cmac_block_current < sm_cmac_block_count - 1 ? CMAC_CALC_MI : CMAC_CALC_MLAST;
|
||
break;
|
||
case CMAC_W4_MLAST:
|
||
// done
|
||
print_key("CMAC", data);
|
||
sm_cmac_done_handler(data);
|
||
break;
|
||
default:
|
||
printf("sm_cmac_handle_encryption_result called in state %u\n", sm_cmac_state);
|
||
break;
|
||
}
|
||
}
|
||
|
||
static int sm_key_distribution_done(){
|
||
if (sm_key_distribution_send_set) return 0;
|
||
int recv_flags = sm_key_distribution_flags_for_set(sm_m_key_distribution);
|
||
return recv_flags == sm_key_distribution_received_set;
|
||
}
|
||
|
||
static void sm_pdu_received_in_wrong_state(){
|
||
sm_pairing_failed_reason = SM_REASON_UNSPECIFIED_REASON;
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
|
||
}
|
||
|
||
static void sm_run(void){
|
||
|
||
// assert that we can send either one
|
||
if (!hci_can_send_packet_now(HCI_COMMAND_DATA_PACKET)) return;
|
||
if (!hci_can_send_packet_now(HCI_ACL_DATA_PACKET)) return;
|
||
|
||
// distributed key generation
|
||
switch (dkg_state){
|
||
case DKG_CALC_IRK:
|
||
// already busy?
|
||
if (sm_aes128_active) break;
|
||
{
|
||
// IRK = d1(IR, 1, 0)
|
||
sm_key_t d1_prime;
|
||
sm_d1_d_prime(1, 0, d1_prime); // plaintext
|
||
sm_aes128_start(sm_persistent_ir, d1_prime);
|
||
dkg_state++;
|
||
}
|
||
case DKG_CALC_DHK:
|
||
// already busy?
|
||
if (sm_aes128_active) break;
|
||
{
|
||
// DHK = d1(IR, 3, 0)
|
||
sm_key_t d1_prime;
|
||
sm_d1_d_prime(3, 0, d1_prime); // plaintext
|
||
sm_aes128_start(sm_persistent_ir, d1_prime);
|
||
dkg_state++;
|
||
}
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// random address updates
|
||
if (rau_state) printf("sm_run(): rau_state %u\n", rau_state);
|
||
switch (rau_state){
|
||
case RAU_GET_RANDOM:
|
||
hci_send_cmd(&hci_le_rand);
|
||
rau_state++;
|
||
return;
|
||
case RAU_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_active) break;
|
||
{
|
||
sm_key_t r_prime;
|
||
sm_ah_r_prime(sm_random_address, r_prime);
|
||
sm_aes128_start(sm_persistent_irk, r_prime);
|
||
rau_state++;
|
||
return;
|
||
}
|
||
case RAU_SET_ADDRESS:
|
||
printf("New random address: %s\n", bd_addr_to_str(sm_random_address));
|
||
hci_send_cmd(&hci_le_set_random_address, sm_random_address);
|
||
rau_state = RAU_IDLE;
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// CSRK device lookup by public or resolvable private address
|
||
if (sm_central_device_test >= 0){
|
||
printf("Central Device Lookup: device %u/%u\n", sm_central_device_test, central_device_db_count());
|
||
while (sm_central_device_test < central_device_db_count()){
|
||
int addr_type;
|
||
bd_addr_t addr;
|
||
sm_key_t irk;
|
||
central_device_db_info(sm_central_device_test, &addr_type, addr, irk);
|
||
printf("device type %u, addr: %s\n", addr_type, bd_addr_to_str(addr));
|
||
|
||
if (sm_m_addr_type == addr_type && memcmp(addr, sm_m_address, 6) == 0){
|
||
printf("Central Device Lookup: found CSRK by { addr_type, address} \n");
|
||
sm_central_device_matched = sm_central_device_test;
|
||
sm_central_device_test = -1;
|
||
central_device_db_csrk(sm_central_device_matched, sm_m_csrk);
|
||
sm_notify_client(SM_IDENTITY_RESOLVING_SUCCEEDED, sm_m_addr_type, sm_m_address, 0, sm_central_device_matched);
|
||
break;
|
||
}
|
||
|
||
if (sm_m_addr_type == 0){
|
||
sm_central_device_test++;
|
||
continue;
|
||
}
|
||
|
||
if (sm_aes128_active) break;
|
||
|
||
printf("Central Device Lookup: calculate AH\n");
|
||
print_key("IRK", irk);
|
||
|
||
sm_key_t r_prime;
|
||
sm_ah_r_prime(sm_m_address, r_prime);
|
||
sm_aes128_start(irk, r_prime);
|
||
sm_central_ah_calculation_active = 1;
|
||
return;
|
||
}
|
||
|
||
if (sm_central_device_test >= central_device_db_count()){
|
||
printf("Central Device Lookup: not found\n");
|
||
sm_central_device_test = -1;
|
||
sm_notify_client(SM_IDENTITY_RESOLVING_FAILED, sm_m_addr_type, sm_m_address, 0, 0);
|
||
}
|
||
}
|
||
|
||
// cmac
|
||
switch (sm_cmac_state){
|
||
case CMAC_CALC_SUBKEYS:
|
||
case CMAC_CALC_MI:
|
||
case CMAC_CALC_MLAST:
|
||
// already busy?
|
||
if (sm_aes128_active) break;
|
||
sm_cmac_handle_aes_engine_ready();
|
||
return;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// responding state
|
||
switch (sm_state_responding){
|
||
|
||
case SM_STATE_SEND_SECURITY_REQUEST: {
|
||
uint8_t buffer[2];
|
||
buffer[0] = SM_CODE_SECURITY_REQUEST;
|
||
buffer[1] = SM_AUTHREQ_BONDING;
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
return;
|
||
}
|
||
|
||
case SM_STATE_PH1_SEND_PAIRING_RESPONSE: {
|
||
|
||
uint8_t buffer[7];
|
||
|
||
memcpy(buffer, sm_m_preq, 7);
|
||
buffer[0] = SM_CODE_PAIRING_RESPONSE;
|
||
buffer[1] = sm_s_io_capabilities;
|
||
buffer[2] = sm_s_have_oob_data;
|
||
buffer[3] = sm_s_auth_req;
|
||
buffer[4] = sm_max_encryption_key_size;
|
||
|
||
memcpy(sm_s_pres, buffer, 7);
|
||
|
||
// for validate
|
||
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
|
||
// notify client for: JUST WORKS confirm, PASSKEY display or input
|
||
sm_user_response = SM_USER_RESPONSE_IDLE;
|
||
switch (sm_stk_generation_method){
|
||
case PK_RESP_INPUT:
|
||
sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client(SM_PASSKEY_INPUT_NUMBER, sm_m_addr_type, sm_m_address, 0, 0);
|
||
break;
|
||
case PK_INIT_INPUT:
|
||
sm_notify_client(SM_PASSKEY_DISPLAY_NUMBER, sm_m_addr_type, sm_m_address, READ_NET_32(sm_tk, 12), 0);
|
||
break;
|
||
case JUST_WORKS:
|
||
switch (sm_s_io_capabilities){
|
||
case IO_CAPABILITY_KEYBOARD_DISPLAY:
|
||
case IO_CAPABILITY_DISPLAY_YES_NO:
|
||
sm_user_response = SM_USER_RESPONSE_PENDING;
|
||
sm_notify_client(SM_JUST_WORKS_REQUEST, sm_m_addr_type, sm_m_address, READ_NET_32(sm_tk, 12), 0);
|
||
break;
|
||
default:
|
||
// cannot ask user
|
||
break;
|
||
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
sm_state_responding = SM_STATE_PH1_W4_PAIRING_CONFIRM;
|
||
return;
|
||
}
|
||
|
||
case SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY:
|
||
hci_send_cmd(&hci_le_long_term_key_negative_reply, sm_response_handle);
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
return;
|
||
|
||
case SM_STATE_SEND_PAIRING_FAILED: {
|
||
uint8_t buffer[2];
|
||
buffer[0] = SM_CODE_PAIRING_FAILED;
|
||
buffer[1] = sm_pairing_failed_reason;
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_stop();
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
break;
|
||
}
|
||
|
||
case SM_STATE_SEND_PAIRING_RANDOM: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_RANDOM;
|
||
swap128(sm_s_random, &buffer[1]);
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
sm_state_responding = SM_STATE_PH2_W4_LTK_REQUEST;
|
||
break;
|
||
}
|
||
|
||
case SM_STATE_PH2_GET_RANDOM_TK:
|
||
case SM_STATE_PH2_C1_GET_RANDOM_A:
|
||
case SM_STATE_PH2_C1_GET_RANDOM_B:
|
||
case SM_STATE_PH3_GET_RANDOM:
|
||
case SM_STATE_PH3_GET_DIV:
|
||
hci_send_cmd(&hci_le_rand);
|
||
sm_state_responding++;
|
||
return;
|
||
case SM_STATE_PH2_C1_GET_ENC_A:
|
||
case SM_STATE_PH2_C1_GET_ENC_B:
|
||
case SM_STATE_PH2_C1_GET_ENC_C:
|
||
case SM_STATE_PH2_C1_GET_ENC_D:
|
||
case SM_STATE_PH2_CALC_STK:
|
||
case SM_STATE_PH3_Y_GET_ENC:
|
||
case SM_STATE_PH3_LTK_GET_ENC:
|
||
case SM_STATE_PH4_Y_GET_ENC:
|
||
case SM_STATE_PH4_LTK_GET_ENC:
|
||
// already busy?
|
||
if (sm_aes128_active) break;
|
||
sm_aes128_start(sm_aes128_key, sm_aes128_plaintext);
|
||
sm_state_responding++;
|
||
return;
|
||
case SM_STATE_PH2_C1_SEND_PAIRING_CONFIRM: {
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_PAIRING_CONFIRM;
|
||
swap128(sm_s_confirm, &buffer[1]);
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
sm_state_responding = SM_STATE_PH2_W4_PAIRING_RANDOM;
|
||
return;
|
||
}
|
||
case SM_STATE_PH2_SEND_STK: {
|
||
sm_key_t stk_flipped;
|
||
swap128(sm_s_ltk, stk_flipped);
|
||
hci_send_cmd(&hci_le_long_term_key_request_reply, sm_response_handle, stk_flipped);
|
||
sm_state_responding = SM_STATE_PH2_W4_CONNECTION_ENCRYPTED;
|
||
return;
|
||
}
|
||
case SM_STATE_PH4_SEND_LTK: {
|
||
sm_key_t ltk_flipped;
|
||
swap128(sm_s_ltk, ltk_flipped);
|
||
hci_send_cmd(&hci_le_long_term_key_request_reply, sm_response_handle, ltk_flipped);
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
return;
|
||
}
|
||
|
||
case SM_STATE_DISTRIBUTE_KEYS:
|
||
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION){
|
||
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_ENCRYPTION_INFORMATION;
|
||
swap128(sm_s_ltk, &buffer[1]);
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
return;
|
||
}
|
||
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_MASTER_IDENTIFICATION){
|
||
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
|
||
uint8_t buffer[11];
|
||
buffer[0] = SM_CODE_MASTER_IDENTIFICATION;
|
||
bt_store_16(buffer, 1, sm_s_ediv);
|
||
swap64(sm_s_rand, &buffer[3]);
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
return;
|
||
}
|
||
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION){
|
||
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_IDENTITY_INFORMATION;
|
||
swap128(sm_persistent_irk, &buffer[1]);
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
return;
|
||
}
|
||
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION){
|
||
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
|
||
uint8_t buffer[8];
|
||
buffer[0] = SM_CODE_IDENTITY_ADDRESS_INFORMATION;
|
||
buffer[1] = sm_s_addr_type;
|
||
bt_flip_addr(&buffer[2], sm_s_address);
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
return;
|
||
}
|
||
if (sm_key_distribution_send_set & SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION){
|
||
sm_key_distribution_send_set &= ~SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
|
||
uint8_t buffer[17];
|
||
buffer[0] = SM_CODE_SIGNING_INFORMATION;
|
||
// swap128(sm_s_csrk, &buffer[1]);
|
||
memset(&buffer[1], 0, 16); // csrk not calculated
|
||
l2cap_send_connectionless(sm_response_handle, L2CAP_CID_SECURITY_MANAGER_PROTOCOL, (uint8_t*) buffer, sizeof(buffer));
|
||
sm_timeout_reset();
|
||
return;
|
||
}
|
||
|
||
if (sm_key_distribution_done()){
|
||
sm_timeout_stop();
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
}
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void sm_packet_handler(uint8_t packet_type, uint16_t handle, uint8_t *packet, uint16_t size){
|
||
|
||
if (packet_type != SM_DATA_PACKET) return;
|
||
|
||
if (handle != sm_response_handle){
|
||
printf("sm_packet_handler: packet from handle %u, but expecting from %u\n", handle, sm_response_handle);
|
||
return;
|
||
}
|
||
|
||
if (packet[0] == SM_CODE_PAIRING_FAILED){
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
return;
|
||
}
|
||
|
||
switch (sm_state_responding){
|
||
|
||
// a sm timeout requries a new physical connection
|
||
case SM_STATE_TIMEOUT:
|
||
return;
|
||
|
||
case SM_STATE_IDLE: {
|
||
if (packet[0] != SM_CODE_PAIRING_REQUEST){
|
||
sm_pdu_received_in_wrong_state();
|
||
break;;
|
||
}
|
||
|
||
// store key distribtion request
|
||
sm_m_io_capabilities = packet[1];
|
||
sm_m_have_oob_data = packet[2];
|
||
sm_m_auth_req = packet[3];
|
||
sm_m_max_encryption_key_size = packet[4];
|
||
|
||
// assert max encryption size above our minimum
|
||
if (sm_m_max_encryption_key_size < sm_min_encryption_key_size){
|
||
sm_pairing_failed_reason = SM_REASON_ENCRYPTION_KEY_SIZE;
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
|
||
break;
|
||
}
|
||
|
||
// min{}
|
||
sm_actual_encryption_key_size = sm_max_encryption_key_size;
|
||
if (sm_m_max_encryption_key_size < sm_max_encryption_key_size){
|
||
sm_actual_encryption_key_size = sm_m_max_encryption_key_size;
|
||
}
|
||
|
||
// setup key distribution
|
||
sm_m_key_distribution = packet[5];
|
||
sm_setup_key_distribution(packet[6]);
|
||
|
||
// for validate
|
||
memcpy(sm_m_preq, packet, 7);
|
||
|
||
// start SM timeout
|
||
sm_timeout_start();
|
||
|
||
// decide on STK generation method
|
||
sm_tk_setup();
|
||
printf("SMP: generation method %u\n", sm_stk_generation_method);
|
||
|
||
// check if STK generation method is acceptable by client
|
||
int ok = 0;
|
||
switch (sm_stk_generation_method){
|
||
case JUST_WORKS:
|
||
ok = (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_JUST_WORKS) != 0;
|
||
break;
|
||
case PK_RESP_INPUT:
|
||
case PK_INIT_INPUT:
|
||
case OK_BOTH_INPUT:
|
||
ok = (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_PASSKEY) != 0;
|
||
break;
|
||
case OOB:
|
||
ok = (sm_accepted_stk_generation_methods & SM_STK_GENERATION_METHOD_OOB) != 0;
|
||
break;
|
||
}
|
||
if (!ok){
|
||
sm_pairing_failed_reason = SM_REASON_AUTHENTHICATION_REQUIREMENTS;
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
|
||
break;
|
||
}
|
||
|
||
// JUST WORKS doens't provide authentication
|
||
sm_connection_authenticated = sm_stk_generation_method == JUST_WORKS ? 0 : 1;
|
||
|
||
// generate random number first, if we need to show passkey
|
||
if (sm_stk_generation_method == PK_INIT_INPUT){
|
||
sm_state_responding = SM_STATE_PH2_GET_RANDOM_TK;
|
||
break;
|
||
}
|
||
|
||
sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE;
|
||
break;
|
||
}
|
||
|
||
case SM_STATE_PH1_W4_PAIRING_CONFIRM:
|
||
if (packet[0] != SM_CODE_PAIRING_CONFIRM){
|
||
sm_pdu_received_in_wrong_state();
|
||
break;;
|
||
}
|
||
|
||
// received confirm value
|
||
swap128(&packet[1], sm_m_confirm);
|
||
|
||
// notify client to hide shown passkey
|
||
if (sm_stk_generation_method == PK_INIT_INPUT){
|
||
sm_notify_client(SM_PASSKEY_DISPLAY_CANCEL, sm_m_addr_type, sm_m_address, 0, 0);
|
||
}
|
||
|
||
// handle user cancel pairing?
|
||
if (sm_user_response == SM_USER_RESPONSE_DECLINE){
|
||
sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
|
||
break;
|
||
}
|
||
|
||
// wait for user action?
|
||
if (sm_user_response == SM_USER_RESPONSE_PENDING){
|
||
sm_state_responding = SM_STATE_PH1_W4_USER_RESPONSE;
|
||
break;
|
||
}
|
||
|
||
// calculate and send s_confirm
|
||
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
|
||
break;
|
||
|
||
case SM_STATE_PH2_W4_PAIRING_RANDOM:
|
||
if (packet[0] != SM_CODE_PAIRING_RANDOM){
|
||
sm_pdu_received_in_wrong_state();
|
||
break;;
|
||
}
|
||
|
||
// received random value
|
||
swap128(&packet[1], sm_m_random);
|
||
|
||
// use aes128 engine
|
||
// calculate m_confirm using aes128 engine - step 1
|
||
sm_aes128_set_key(sm_tk);
|
||
sm_c1_t1(sm_m_random, sm_m_preq, sm_s_pres, sm_m_addr_type, sm_s_addr_type, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH2_C1_GET_ENC_C;
|
||
break;
|
||
|
||
case SM_STATE_DISTRIBUTE_KEYS:
|
||
switch(packet[0]){
|
||
case SM_CODE_ENCRYPTION_INFORMATION:
|
||
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_ENCRYPTION_INFORMATION;
|
||
// swap128(&packet[1], sm_m_ltk);
|
||
break;
|
||
|
||
case SM_CODE_MASTER_IDENTIFICATION:
|
||
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_MASTER_IDENTIFICATION;
|
||
// sm_m_ediv = READ_BT_16(packet, 1);
|
||
// swap64(&packet[3], sm_m_rand);
|
||
break;
|
||
|
||
case SM_CODE_IDENTITY_INFORMATION:
|
||
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_INFORMATION;
|
||
swap128(&packet[1], sm_m_irk);
|
||
break;
|
||
|
||
case SM_CODE_IDENTITY_ADDRESS_INFORMATION:
|
||
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_IDENTITY_ADDRESS_INFORMATION;
|
||
// note: we don't update addr_type and address as higher layer would get confused
|
||
// note: if needed, we could use a different variable pair
|
||
// sm_m_addr_type = packet[1];
|
||
// BD_ADDR_COPY(sm_m_address, &packet[2]);
|
||
break;
|
||
|
||
case SM_CODE_SIGNING_INFORMATION:
|
||
sm_key_distribution_received_set |= SM_KEYDIST_FLAG_SIGNING_IDENTIFICATION;
|
||
swap128(&packet[1], sm_m_csrk);
|
||
|
||
// store, if: it's a public address, or, we got an IRK
|
||
if (sm_m_addr_type == 0 || (sm_key_distribution_received_set & SM_KEYDIST_FLAG_IDENTITY_INFORMATION)) {
|
||
sm_central_device_matched = central_device_db_add(sm_m_addr_type, sm_m_address, sm_m_irk, sm_m_csrk);
|
||
break;
|
||
}
|
||
break;
|
||
default:
|
||
// Unexpected PDU
|
||
printf("Unexpected PDU %u in SM_STATE_DISTRIBUTE_KEYS\n", packet[0]);
|
||
break;
|
||
}
|
||
// done with key distribution?
|
||
if (sm_key_distribution_done()){
|
||
sm_timeout_stop();
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
}
|
||
break;
|
||
default:
|
||
// Unexpected PDU
|
||
printf("Unexpected PDU %u in state %u\n", packet[0], sm_state_responding);
|
||
break;
|
||
}
|
||
|
||
// try to send preparared packet
|
||
sm_run();
|
||
}
|
||
|
||
static void sm_event_packet_handler (void * connection, uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
|
||
sm_run();
|
||
|
||
switch (packet_type) {
|
||
|
||
case HCI_EVENT_PACKET:
|
||
switch (packet[0]) {
|
||
|
||
case BTSTACK_EVENT_STATE:
|
||
// bt stack activated, get started
|
||
if (packet[2] == HCI_STATE_WORKING) {
|
||
printf("HCI Working!\n");
|
||
dkg_state = sm_persistent_irk_ready ? DKG_CALC_DHK : DKG_CALC_IRK;
|
||
|
||
sm_run();
|
||
return; // don't notify app packet handler just yet
|
||
}
|
||
break;
|
||
|
||
case HCI_EVENT_LE_META:
|
||
switch (packet[2]) {
|
||
case HCI_SUBEVENT_LE_CONNECTION_COMPLETE:
|
||
// only single connection for peripheral
|
||
if (sm_response_handle){
|
||
printf("Already connected, ignoring incoming connection\n");
|
||
return;
|
||
}
|
||
|
||
sm_response_handle = READ_BT_16(packet, 4);
|
||
sm_m_addr_type = packet[7];
|
||
bt_flip_addr(sm_m_address, &packet[8]);
|
||
|
||
sm_reset_tk();
|
||
|
||
hci_le_advertisement_address(&sm_s_addr_type, &sm_s_address);
|
||
printf("Incoming connection, own address %s\n", bd_addr_to_str(sm_s_address));
|
||
|
||
// reset security properties
|
||
sm_connection_encrypted = 0;
|
||
sm_connection_authenticated = 0;
|
||
sm_connection_authorization_state = AUTHORIZATION_UNKNOWN;
|
||
|
||
// request security
|
||
if (sm_s_request_security){
|
||
sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST;
|
||
}
|
||
|
||
// try to lookup device
|
||
sm_central_device_test = 0;
|
||
sm_central_device_matched = -1;
|
||
sm_notify_client(SM_IDENTITY_RESOLVING_STARTED, sm_m_addr_type, sm_m_address, 0, 0);
|
||
break;
|
||
|
||
case HCI_SUBEVENT_LE_LONG_TERM_KEY_REQUEST:
|
||
log_info("LTK Request: state %u", sm_state_responding);
|
||
if (sm_state_responding == SM_STATE_PH2_W4_LTK_REQUEST){
|
||
// calculate STK
|
||
log_info("LTK Request: calculating STK");
|
||
sm_aes128_set_key(sm_tk);
|
||
sm_s1_r_prime(sm_s_random, sm_m_random, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH2_CALC_STK;
|
||
break;
|
||
}
|
||
|
||
// re-establish previously used LTK using Rand and EDIV
|
||
swap64(&packet[5], sm_s_rand);
|
||
sm_s_ediv = READ_BT_16(packet, 13);
|
||
|
||
// assume that we don't have a LTK for ediv == 0 and random == null
|
||
if (sm_s_ediv == 0 && sm_is_null_random(sm_s_rand)){
|
||
printf("LTK Request: ediv & random are empty\n");
|
||
sm_state_responding = SM_STATE_SEND_LTK_REQUESTED_NEGATIVE_REPLY;
|
||
break;
|
||
}
|
||
|
||
// re-establish used key encryption size
|
||
// no db for encryption size hack: encryption size is stored in lowest nibble of sm_s_rand
|
||
sm_actual_encryption_key_size = (sm_s_rand[7] & 0x0f) + 1;
|
||
|
||
// no db for authenticated flag hack: flag is stored in bit 4 of LSB
|
||
sm_connection_authenticated = (sm_s_rand[7] & 0x10) >> 4;
|
||
|
||
log_info("LTK Request: recalculating with ediv 0x%04x", sm_s_ediv);
|
||
|
||
// dhk = d1(IR, 3, 0) - enc
|
||
// y = dm(dhk, rand) - enc
|
||
// div = y xor ediv
|
||
// ltk = d1(ER, div, 0) - enc
|
||
|
||
// Y = dm(DHK, Rand)
|
||
sm_aes128_set_key(sm_persistent_dhk);
|
||
sm_dm_r_prime(sm_s_rand, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH4_Y_GET_ENC;
|
||
|
||
// sm_s_div = sm_div(sm_persistent_dhk, sm_s_rand, sm_s_ediv);
|
||
// sm_s_ltk(sm_persistent_er, sm_s_div, sm_s_ltk);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case HCI_EVENT_ENCRYPTION_CHANGE:
|
||
if (sm_response_handle != READ_BT_16(packet, 3)) break;
|
||
sm_connection_encrypted = packet[5];
|
||
log_info("Eencryption state change: %u", sm_connection_encrypted);
|
||
if (!sm_connection_encrypted) break;
|
||
if (sm_state_responding == SM_STATE_PH2_W4_CONNECTION_ENCRYPTED) {
|
||
sm_state_responding = SM_STATE_PH3_GET_RANDOM;
|
||
}
|
||
break;
|
||
|
||
case HCI_EVENT_DISCONNECTION_COMPLETE:
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
sm_response_handle = 0;
|
||
break;
|
||
|
||
case HCI_EVENT_COMMAND_COMPLETE:
|
||
if (COMMAND_COMPLETE_EVENT(packet, hci_le_encrypt)){
|
||
sm_aes128_active = 0;
|
||
if (sm_central_ah_calculation_active){
|
||
sm_central_ah_calculation_active = 0;
|
||
// compare calulated address against connecting device
|
||
uint8_t hash[3];
|
||
swap24(&packet[6], hash);
|
||
if (memcmp(&sm_m_address[3], hash, 3) == 0){
|
||
// found
|
||
sm_central_device_matched = sm_central_device_test;
|
||
sm_central_device_test = -1;
|
||
central_device_db_csrk(sm_central_device_matched, sm_m_csrk);
|
||
sm_notify_client(SM_IDENTITY_RESOLVING_SUCCEEDED, sm_m_addr_type, sm_m_address, 0, sm_central_device_matched);
|
||
log_info("Central Device Lookup: matched resolvable private address");
|
||
break;
|
||
}
|
||
// no match
|
||
sm_central_device_test++;
|
||
break;
|
||
}
|
||
switch (dkg_state){
|
||
case DKG_W4_IRK:
|
||
swap128(&packet[6], sm_persistent_irk);
|
||
print_key("irk", sm_persistent_irk);
|
||
dkg_state++;
|
||
break;
|
||
case DKG_W4_DHK:
|
||
swap128(&packet[6], sm_persistent_dhk);
|
||
print_key("dhk", sm_persistent_dhk);
|
||
dkg_state ++;
|
||
|
||
// SM INIT FINISHED, start application code - TODO untangle that
|
||
if (sm_client_packet_handler)
|
||
{
|
||
uint8_t event[] = { BTSTACK_EVENT_STATE, 0, HCI_STATE_WORKING };
|
||
sm_client_packet_handler(HCI_EVENT_PACKET, 0, (uint8_t*) event, sizeof(event));
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
switch (rau_state){
|
||
case RAU_W4_ENC:
|
||
swap24(&packet[6], &sm_random_address[3]);
|
||
rau_state++;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
switch (sm_cmac_state){
|
||
case CMAC_W4_SUBKEYS:
|
||
case CMAC_W4_MI:
|
||
case CMAC_W4_MLAST:
|
||
{
|
||
sm_key_t t;
|
||
swap128(&packet[6], t);
|
||
sm_cmac_handle_encryption_result(t);
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
switch (sm_state_responding){
|
||
case SM_STATE_PH2_C1_W4_ENC_A:
|
||
case SM_STATE_PH2_C1_W4_ENC_C:
|
||
{
|
||
sm_aes128_set_key(sm_tk);
|
||
sm_key_t t2;
|
||
swap128(&packet[6], t2);
|
||
sm_c1_t3(t2, sm_m_address, sm_s_address, sm_aes128_plaintext);
|
||
}
|
||
sm_state_responding++;
|
||
break;
|
||
case SM_STATE_PH2_C1_W4_ENC_B:
|
||
swap128(&packet[6], sm_s_confirm);
|
||
print_key("c1!", sm_s_confirm);
|
||
sm_state_responding++;
|
||
break;
|
||
case SM_STATE_PH2_C1_W4_ENC_D:
|
||
{
|
||
sm_key_t m_confirm_test;
|
||
swap128(&packet[6], m_confirm_test);
|
||
print_key("c1!", m_confirm_test);
|
||
if (memcmp(sm_m_confirm, m_confirm_test, 16) == 0){
|
||
// send s_random
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_RANDOM;
|
||
break;
|
||
}
|
||
sm_pairing_failed_reason = SM_REASON_CONFIRM_VALUE_FAILED;
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
|
||
}
|
||
break;
|
||
case SM_STATE_PH2_W4_STK:
|
||
swap128(&packet[6], sm_s_ltk);
|
||
sm_truncate_key(sm_s_ltk, sm_actual_encryption_key_size);
|
||
print_key("stk", sm_s_ltk);
|
||
sm_state_responding = SM_STATE_PH2_SEND_STK;
|
||
break;
|
||
case SM_STATE_PH3_Y_W4_ENC:{
|
||
sm_key_t y128;
|
||
swap128(&packet[6], y128);
|
||
sm_s_y = READ_NET_16(y128, 14);
|
||
print_hex16("y", sm_s_y);
|
||
// PH3B3 - calculate EDIV
|
||
sm_s_ediv = sm_s_y ^ sm_s_div;
|
||
print_hex16("ediv", sm_s_ediv);
|
||
// PH3B4 - calculate LTK - enc
|
||
// LTK = d1(ER, DIV, 0))
|
||
sm_aes128_set_key(sm_persistent_er);
|
||
sm_d1_d_prime(sm_s_div, 0, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH3_LTK_GET_ENC;
|
||
break;
|
||
}
|
||
case SM_STATE_PH4_Y_W4_ENC:{
|
||
sm_key_t y128;
|
||
swap128(&packet[6], y128);
|
||
sm_s_y = READ_NET_16(y128, 14);
|
||
print_hex16("y", sm_s_y);
|
||
// PH3B3 - calculate DIV
|
||
sm_s_div = sm_s_y ^ sm_s_ediv;
|
||
print_hex16("ediv", sm_s_ediv);
|
||
// PH3B4 - calculate LTK - enc
|
||
// LTK = d1(ER, DIV, 0))
|
||
sm_aes128_set_key(sm_persistent_er);
|
||
sm_d1_d_prime(sm_s_div, 0, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH4_LTK_GET_ENC;
|
||
break;
|
||
}
|
||
case SM_STATE_PH3_LTK_W4_ENC:
|
||
swap128(&packet[6], sm_s_ltk);
|
||
print_key("ltk", sm_s_ltk);
|
||
// distribute keys
|
||
sm_state_responding = SM_STATE_DISTRIBUTE_KEYS;
|
||
break;
|
||
case SM_STATE_PH4_LTK_W4_ENC:
|
||
swap128(&packet[6], sm_s_ltk);
|
||
sm_truncate_key(sm_s_ltk, sm_actual_encryption_key_size);
|
||
print_key("ltk", sm_s_ltk);
|
||
sm_state_responding = SM_STATE_PH4_SEND_LTK;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
if (COMMAND_COMPLETE_EVENT(packet, hci_le_rand)){
|
||
switch (rau_state){
|
||
case RAU_W4_RANDOM:
|
||
// non-resolvable vs. resolvable
|
||
switch (gap_random_adress_type){
|
||
case GAP_RANDOM_ADDRESS_RESOLVABLE:
|
||
// resolvable: use random as prand and calc address hash
|
||
// "The two most significant bits of prand shall be equal to ‘0’ and ‘1"
|
||
memcpy(sm_random_address, &packet[6], 3);
|
||
sm_random_address[0] &= 0x3f;
|
||
sm_random_address[0] |= 0x40;
|
||
rau_state = RAU_GET_ENC;
|
||
break;
|
||
case GAP_RANDOM_ADDRESS_NON_RESOLVABLE:
|
||
default:
|
||
// "The two most significant bits of the address shall be equal to ‘0’""
|
||
memcpy(sm_random_address, &packet[6], 6);
|
||
sm_random_address[0] &= 0x3f;
|
||
rau_state = RAU_SET_ADDRESS;
|
||
break;
|
||
}
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
switch (sm_state_responding){
|
||
case SM_STATE_PH2_W4_RANDOM_TK:
|
||
{
|
||
// map random to 0-999999 without speding much cycles on a modulus operation
|
||
uint32_t tk = * (uint32_t*) &packet[6]; // random endianess
|
||
tk = tk & 0xfffff; // 1048575
|
||
if (tk >= 999999){
|
||
tk = tk - 999999;
|
||
}
|
||
sm_reset_tk();
|
||
net_store_32(sm_tk, 12, tk);
|
||
// continue with phase 1
|
||
sm_state_responding = SM_STATE_PH1_SEND_PAIRING_RESPONSE;
|
||
break;
|
||
}
|
||
case SM_STATE_PH2_C1_W4_RANDOM_A:
|
||
|
||
memcpy(&sm_s_random[0], &packet[6], 8); // random endinaness
|
||
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_B;
|
||
break;
|
||
case SM_STATE_PH2_C1_W4_RANDOM_B:
|
||
memcpy(&sm_s_random[8], &packet[6], 8); // random endinaness
|
||
|
||
// calculate s_confirm manually
|
||
// sm_c1(sm_tk, sm_s_random, sm_m_preq, sm_s_pres, sm_m_addr_type, sm_s_addr_type, sm_m_address, sm_s_address, sm_s_confirm);
|
||
|
||
// calculate s_confirm using aes128 engine - step 1
|
||
sm_aes128_set_key(sm_tk);
|
||
sm_c1_t1(sm_s_random, sm_m_preq, sm_s_pres, sm_m_addr_type, sm_s_addr_type, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH2_C1_GET_ENC_A;
|
||
break;
|
||
|
||
case SM_STATE_PH3_W4_RANDOM:
|
||
swap64(&packet[6], sm_s_rand);
|
||
// no db for encryption size hack: encryption size is stored in lowest nibble of sm_s_rand
|
||
sm_s_rand[7] = (sm_s_rand[7] & 0xf0) + (sm_actual_encryption_key_size - 1);
|
||
// no db for authenticated flag hack: store flag in bit 4 of LSB
|
||
sm_s_rand[7] = (sm_s_rand[7] & 0xef) + (sm_connection_authenticated << 4);
|
||
sm_state_responding = SM_STATE_PH3_GET_DIV;
|
||
break;
|
||
case SM_STATE_PH3_W4_DIV:
|
||
// use 16 bit from random value as div
|
||
sm_s_div = READ_NET_16(packet, 6);
|
||
print_hex16("div", sm_s_div);
|
||
|
||
// PH3B2 - calculate Y from - enc
|
||
// Y = dm(DHK, Rand)
|
||
sm_aes128_set_key(sm_persistent_dhk);
|
||
sm_dm_r_prime(sm_s_rand, sm_aes128_plaintext);
|
||
sm_state_responding = SM_STATE_PH3_Y_GET_ENC;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
// forward packet to higher layer
|
||
if (sm_client_packet_handler){
|
||
sm_client_packet_handler(packet_type, 0, packet, size);
|
||
}
|
||
}
|
||
|
||
sm_run();
|
||
}
|
||
|
||
|
||
// Security Manager Client API
|
||
void sm_register_oob_data_callback( int (*get_oob_data_callback)(uint8_t addres_type, bd_addr_t * addr, uint8_t * oob_data)){
|
||
sm_get_oob_data = get_oob_data_callback;
|
||
}
|
||
|
||
void sm_register_packet_handler(btstack_packet_handler_t handler){
|
||
sm_client_packet_handler = handler;
|
||
}
|
||
|
||
void sm_set_accepted_stk_generation_methods(uint8_t accepted_stk_generation_methods){
|
||
sm_accepted_stk_generation_methods = accepted_stk_generation_methods;
|
||
}
|
||
|
||
void sm_set_encryption_key_size_range(uint8_t min_size, uint8_t max_size){
|
||
sm_min_encryption_key_size = min_size;
|
||
sm_max_encryption_key_size = max_size;
|
||
}
|
||
|
||
void sm_set_authentication_requirements(uint8_t auth_req){
|
||
sm_s_auth_req = auth_req;
|
||
}
|
||
|
||
void sm_set_io_capabilities(io_capability_t io_capability){
|
||
sm_s_io_capabilities = io_capability;
|
||
}
|
||
|
||
void sm_set_request_security(int enable){
|
||
sm_s_request_security = enable;
|
||
}
|
||
|
||
void sm_set_er(sm_key_t er){
|
||
memcpy(sm_persistent_er, er, 16);
|
||
}
|
||
|
||
void sm_set_ir(sm_key_t ir){
|
||
memcpy(sm_persistent_ir, ir, 16);
|
||
}
|
||
|
||
// Testing support only
|
||
void sm_test_set_irk(sm_key_t irk){
|
||
memcpy(sm_persistent_irk, irk, 16);
|
||
sm_persistent_irk_ready = 1;
|
||
}
|
||
|
||
|
||
/**
|
||
* @brief Trigger Security Request
|
||
* @note Not used normally. Bonding is triggered by access to protected attributes in ATT Server
|
||
*/
|
||
void sm_send_security_request(){
|
||
sm_state_responding = SM_STATE_SEND_SECURITY_REQUEST;
|
||
sm_run();
|
||
}
|
||
|
||
void sm_init(){
|
||
// set some (BTstack default) ER and IR
|
||
int i;
|
||
sm_key_t er;
|
||
sm_key_t ir;
|
||
for (i=0;i<16;i++){
|
||
er[i] = 0x30 + i;
|
||
ir[i] = 0x90 + i;
|
||
}
|
||
sm_set_er(er);
|
||
sm_set_ir(ir);
|
||
sm_state_responding = SM_STATE_IDLE;
|
||
// defaults
|
||
sm_accepted_stk_generation_methods = SM_STK_GENERATION_METHOD_JUST_WORKS
|
||
| SM_STK_GENERATION_METHOD_OOB
|
||
| SM_STK_GENERATION_METHOD_PASSKEY;
|
||
sm_max_encryption_key_size = 16;
|
||
sm_min_encryption_key_size = 7;
|
||
sm_aes128_active = 0;
|
||
|
||
sm_cmac_state = CMAC_IDLE;
|
||
|
||
sm_central_device_test = -1; // no private address to resolve yet
|
||
sm_central_ah_calculation_active = 0;
|
||
|
||
gap_random_adress_update_period = 15 * 60 * 1000;
|
||
|
||
// attach to lower layers
|
||
l2cap_register_fixed_channel(sm_packet_handler, L2CAP_CID_SECURITY_MANAGER_PROTOCOL);
|
||
l2cap_register_packet_handler(sm_event_packet_handler);
|
||
}
|
||
|
||
static int sm_get_connection(uint8_t addr_type, bd_addr_t address){
|
||
// TODO compare to current connection
|
||
return 1;
|
||
}
|
||
|
||
// @returns 0 if not encrypted, 7-16 otherwise
|
||
int sm_encryption_key_size(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return 0; // wrong connection
|
||
if (!sm_connection_encrypted) return 0;
|
||
return sm_actual_encryption_key_size;
|
||
}
|
||
|
||
int sm_authenticated(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return 0; // wrong connection
|
||
if (!sm_connection_encrypted) return 0; // unencrypted connection cannot be authenticated
|
||
return sm_connection_authenticated;
|
||
}
|
||
|
||
authorization_state_t sm_authorization_state(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return 0; // wrong connection
|
||
if (!sm_connection_encrypted) return 0; // unencrypted connection cannot be authorized
|
||
if (!sm_connection_authenticated) return 0; // unauthenticatd connection cannot be authorized
|
||
return sm_connection_authorization_state;
|
||
}
|
||
|
||
// request authorization
|
||
void sm_request_authorization(uint8_t addr_type, bd_addr_t address){
|
||
sm_connection_authorization_state = AUTHORIZATION_PENDING;
|
||
sm_notify_client(SM_AUTHORIZATION_REQUEST, sm_m_addr_type, sm_m_address, 0, 0);
|
||
}
|
||
|
||
// called by client app on authorization request
|
||
void sm_authorization_decline(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return; // wrong connection
|
||
sm_connection_authorization_state = AUTHORIZATION_DECLINED;
|
||
sm_notify_client_authorization(SM_AUTHORIZATION_RESULT, sm_m_addr_type, sm_m_address, 0);
|
||
}
|
||
|
||
void sm_authorization_grant(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return; // wrong connection
|
||
sm_connection_authorization_state = AUTHORIZATION_GRANTED;
|
||
sm_notify_client_authorization(SM_AUTHORIZATION_RESULT, sm_m_addr_type, sm_m_address, 1);
|
||
}
|
||
|
||
// GAP Bonding API
|
||
|
||
void sm_bonding_decline(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return; // wrong connection
|
||
sm_user_response = SM_USER_RESPONSE_DECLINE;
|
||
|
||
if (sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){
|
||
sm_pairing_failed_reason = SM_REASON_PASSKEYT_ENTRY_FAILED;
|
||
sm_state_responding = SM_STATE_SEND_PAIRING_FAILED;
|
||
}
|
||
sm_run();
|
||
}
|
||
|
||
void sm_just_works_confirm(uint8_t addr_type, bd_addr_t address){
|
||
if (!sm_get_connection(addr_type, address)) return; // wrong connection
|
||
sm_user_response = SM_USER_RESPONSE_CONFIRM;
|
||
if (sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){
|
||
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
|
||
}
|
||
sm_run();
|
||
}
|
||
|
||
void sm_passkey_input(uint8_t addr_type, bd_addr_t address, uint32_t passkey){
|
||
if (!sm_get_connection(addr_type, address)) return; // wrong connection
|
||
sm_reset_tk();
|
||
net_store_32(sm_tk, 12, passkey);
|
||
sm_user_response = SM_USER_RESPONSE_PASSKEY;
|
||
if (sm_state_responding == SM_STATE_PH1_W4_USER_RESPONSE){
|
||
sm_state_responding = SM_STATE_PH2_C1_GET_RANDOM_A;
|
||
}
|
||
sm_run();
|
||
}
|
||
|
||
// GAP LE API
|
||
void gap_random_address_set_mode(gap_random_address_type_t random_address_type){
|
||
gap_random_address_update_stop();
|
||
gap_random_adress_type = random_address_type;
|
||
if (random_address_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
|
||
gap_random_address_update_start();
|
||
gap_random_address_trigger();
|
||
}
|
||
|
||
void gap_random_address_set_update_period(int period_ms){
|
||
gap_random_adress_update_period = period_ms;
|
||
if (gap_random_adress_type == GAP_RANDOM_ADDRESS_TYPE_OFF) return;
|
||
gap_random_address_update_stop();
|
||
gap_random_address_update_start();
|
||
} |