mirror of
https://github.com/bluekitchen/btstack.git
synced 2025-01-06 07:00:59 +00:00
276 lines
9.6 KiB
C
276 lines
9.6 KiB
C
/*
|
|
* Copyright (C) 2014 BlueKitchen GmbH
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the copyright holders nor the names of
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
* 4. Any redistribution, use, or modification is done solely for
|
|
* personal benefit and not for any commercial purpose or for
|
|
* monetary gain.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS
|
|
* RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Please inquire about commercial licensing options at
|
|
* contact@bluekitchen-gmbh.com
|
|
*
|
|
*/
|
|
|
|
// *****************************************************************************
|
|
/* EXAMPLE_START(spp_streamer): Send test data via SPP as fast as possible
|
|
* @text After RFCOMM connections gets open, request a
|
|
* RFCOMM_EVENT_CAN_SEND_NOW via rfcomm_request_can_send_now_event().
|
|
* When we get the RFCOMM_EVENT_CAN_SEND_NOW, send data and request another one.
|
|
*/
|
|
// *****************************************************************************
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "btstack.h"
|
|
|
|
int btstack_main(int argc, const char * argv[]);
|
|
|
|
#define RFCOMM_SERVER_CHANNEL 1
|
|
|
|
#define TEST_COD 0x1234
|
|
#define NUM_ROWS 25
|
|
#define NUM_COLS 40
|
|
#define DATA_VOLUME (10 * 1000 * 1000)
|
|
|
|
static btstack_packet_callback_registration_t hci_event_callback_registration;
|
|
|
|
static uint8_t test_data[NUM_ROWS * NUM_COLS];
|
|
|
|
// SPP
|
|
static uint8_t spp_service_buffer[150];
|
|
|
|
static uint16_t spp_test_data_len;
|
|
static uint16_t rfcomm_mtu;
|
|
static uint16_t rfcomm_cid = 0;
|
|
// static uint32_t data_to_send = DATA_VOLUME;
|
|
|
|
/*
|
|
* @section Track throughput
|
|
* @text We calculate the throughput by setting a start time and measuring the amount of
|
|
* data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s
|
|
* and reset the counter and start time.
|
|
*/
|
|
|
|
/* LISTING_START(tracking): Tracking throughput */
|
|
#define REPORT_INTERVAL_MS 3000
|
|
static uint32_t test_data_transferred;
|
|
static uint32_t test_data_start;
|
|
|
|
static void test_reset(void){
|
|
test_data_start = btstack_run_loop_get_time_ms();
|
|
test_data_transferred = 0;
|
|
}
|
|
|
|
static void test_track_transferred(int bytes_sent){
|
|
test_data_transferred += bytes_sent;
|
|
// evaluate
|
|
uint32_t now = btstack_run_loop_get_time_ms();
|
|
uint32_t time_passed = now - test_data_start;
|
|
if (time_passed < REPORT_INTERVAL_MS) return;
|
|
// print speed
|
|
int bytes_per_second = test_data_transferred * 1000 / time_passed;
|
|
printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000);
|
|
|
|
// restart
|
|
test_data_start = now;
|
|
test_data_transferred = 0;
|
|
}
|
|
/* LISTING_END(tracking): Tracking throughput */
|
|
|
|
|
|
static void spp_create_test_data(void){
|
|
int x,y;
|
|
for (y=0;y<NUM_ROWS;y++){
|
|
for (x=0;x<NUM_COLS-2;x++){
|
|
test_data[y*NUM_COLS+x] = '0' + (x % 10);
|
|
}
|
|
test_data[y*NUM_COLS+NUM_COLS-2] = '\n';
|
|
test_data[y*NUM_COLS+NUM_COLS-1] = '\r';
|
|
}
|
|
}
|
|
|
|
static void spp_send_packet(void){
|
|
rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len);
|
|
|
|
test_track_transferred(spp_test_data_len);
|
|
#if 0
|
|
if (data_to_send <= spp_test_data_len){
|
|
printf("SPP Streamer: enough data send, closing channel\n");
|
|
rfcomm_disconnect(rfcomm_cid);
|
|
rfcomm_cid = 0;
|
|
return;
|
|
}
|
|
data_to_send -= spp_test_data_len;
|
|
#endif
|
|
rfcomm_request_can_send_now_event(rfcomm_cid);
|
|
}
|
|
|
|
/*
|
|
* @section Packet Handler
|
|
*
|
|
* @text The packet handler of the combined example is just the combination of the individual packet handlers.
|
|
*/
|
|
|
|
static void packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){
|
|
UNUSED(channel);
|
|
|
|
bd_addr_t event_addr;
|
|
uint8_t rfcomm_channel_nr;
|
|
|
|
switch (packet_type) {
|
|
case HCI_EVENT_PACKET:
|
|
switch (hci_event_packet_get_type(packet)) {
|
|
|
|
case HCI_EVENT_PIN_CODE_REQUEST:
|
|
// inform about pin code request
|
|
printf("Pin code request - using '0000'\n");
|
|
hci_event_pin_code_request_get_bd_addr(packet, event_addr);
|
|
gap_pin_code_response(event_addr, "0000");
|
|
break;
|
|
|
|
case HCI_EVENT_USER_CONFIRMATION_REQUEST:
|
|
// inform about user confirmation request
|
|
printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8));
|
|
printf("SSP User Confirmation Auto accept\n");
|
|
break;
|
|
|
|
case RFCOMM_EVENT_INCOMING_CONNECTION:
|
|
// data: event (8), len(8), address(48), channel (8), rfcomm_cid (16)
|
|
rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr);
|
|
rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet);
|
|
rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet);
|
|
printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr));
|
|
rfcomm_accept_connection(rfcomm_cid);
|
|
break;
|
|
|
|
case RFCOMM_EVENT_CHANNEL_OPENED:
|
|
// data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16)
|
|
if (rfcomm_event_channel_opened_get_status(packet)) {
|
|
printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet));
|
|
} else {
|
|
rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet);
|
|
rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet);
|
|
printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu);
|
|
|
|
spp_test_data_len = rfcomm_mtu;
|
|
if (spp_test_data_len > sizeof(test_data)){
|
|
spp_test_data_len = sizeof(test_data);
|
|
}
|
|
|
|
// disable page/inquiry scan to get max performance
|
|
gap_discoverable_control(0);
|
|
gap_connectable_control(0);
|
|
|
|
test_reset();
|
|
rfcomm_request_can_send_now_event(rfcomm_cid);
|
|
}
|
|
break;
|
|
|
|
case RFCOMM_EVENT_CAN_SEND_NOW:
|
|
spp_send_packet();
|
|
break;
|
|
|
|
case RFCOMM_EVENT_CHANNEL_CLOSED:
|
|
printf("RFCOMM channel closed\n");
|
|
rfcomm_cid = 0;
|
|
|
|
// re-enable page/inquiry scan again
|
|
gap_discoverable_control(1);
|
|
gap_connectable_control(1);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case RFCOMM_DATA_PACKET:
|
|
test_track_transferred(size);
|
|
#if 0
|
|
printf("RCV: '");
|
|
for (i=0;i<size;i++){
|
|
putchar(packet[i]);
|
|
}
|
|
printf("'\n");
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* @section Main Application Setup
|
|
*
|
|
* @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups.
|
|
*/
|
|
|
|
|
|
/* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDP SPP */
|
|
int btstack_main(int argc, const char * argv[])
|
|
{
|
|
(void)argc;
|
|
(void)argv;
|
|
|
|
// register for HCI events
|
|
hci_event_callback_registration.callback = &packet_handler;
|
|
hci_add_event_handler(&hci_event_callback_registration);
|
|
|
|
l2cap_init();
|
|
|
|
rfcomm_init();
|
|
rfcomm_register_service(packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff);
|
|
|
|
// init SDP, create record for SPP and register with SDP
|
|
sdp_init();
|
|
memset(spp_service_buffer, 0, sizeof(spp_service_buffer));
|
|
spp_create_sdp_record(spp_service_buffer, 0x10001, RFCOMM_SERVER_CHANNEL, "SPP Streamer");
|
|
sdp_register_service(spp_service_buffer);
|
|
// printf("SDP service record size: %u\n", de_get_len(spp_service_buffer));
|
|
|
|
// short-cut to find other SPP Streamer
|
|
gap_set_class_of_device(TEST_COD);
|
|
|
|
gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO);
|
|
gap_set_local_name("SPP Streamer 00:00:00:00:00:00");
|
|
gap_discoverable_control(1);
|
|
|
|
spp_create_test_data();
|
|
|
|
// turn on!
|
|
hci_power_control(HCI_POWER_ON);
|
|
|
|
return 0;
|
|
}
|
|
/* LISTING_END */
|
|
/* EXAMPLE_END */
|