btstack/test/gap/hci_test.cpp
2024-12-18 17:47:28 +01:00

701 lines
22 KiB
C++

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CppUTest/TestHarness.h"
#include "CppUTest/CommandLineTestRunner.h"
#include "CppUTestExt/MockSupport.h"
#include "hci_cmd.h"
#include "btstack_memory.h"
#include "hci.h"
#include <bluetooth_company_id.h>
#include "ble/gatt_client.h"
#include "btstack_event.h"
#include "hci_dump.h"
#include "hci_dump_posix_fs.h"
#include "btstack_debug.h"
#include "btstack_util.h"
#include "btstack_run_loop_posix.h"
typedef struct {
uint8_t type;
uint16_t size;
uint8_t buffer[258];
} hci_packet_t;
#define MAX_HCI_PACKETS 10
static uint16_t transport_count_packets;
static hci_packet_t transport_packets[MAX_HCI_PACKETS];
static int can_send_now = 1;
static void (*packet_handler)(uint8_t packet_type, uint8_t *packet, uint16_t size);
#if 0
static btstack_timer_source_t packet_sent_timer;
static const uint8_t packet_sent_event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0};
// sm_trigger_run allows to schedule callback from main run loop // reduces stack depth
static void hci_transport_emit_packet_sent(btstack_timer_source_t * ts){
UNUSED(ts);
// notify upper stack that it can send again
can_send_now = 1;
packet_handler(HCI_EVENT_PACKET, (uint8_t *) &packet_sent_event[0], sizeof(packet_sent_event));
}
static void hci_transport_trigger_packet_sent(void) {
btstack_run_loop_remove_timer(&packet_sent_timer);
btstack_run_loop_set_timer_handler(&packet_sent_timer, &hci_transport_emit_packet_sent);
btstack_run_loop_set_timer(&packet_sent_timer, 0);
btstack_run_loop_add_timer(&packet_sent_timer);
}
static int hci_transport_test_can_send_now(uint8_t packet_type){
return can_send_now;
}
#endif
static int hci_transport_test_set_baudrate(uint32_t baudrate){
return 0;
}
static int hci_transport_test_send_packet(uint8_t packet_type, uint8_t * packet, int size){
btstack_assert(transport_count_packets < MAX_HCI_PACKETS);
memcpy(transport_packets[transport_count_packets].buffer, packet, size);
transport_packets[transport_count_packets].type = packet_type;
transport_packets[transport_count_packets].size = size;
transport_count_packets++;
return 0;
}
static void hci_transport_test_init(const void * transport_config){
}
static int hci_transport_test_open(void){
return 0;
}
static int hci_transport_test_close(void){
return 0;
}
static void hci_transport_test_register_packet_handler(void (*handler)(uint8_t packet_type, uint8_t *packet, uint16_t size)){
packet_handler = handler;
}
static const hci_transport_t hci_transport_test = {
/* const char * name; */ "TEST",
/* void (*init) (const void *transport_config); */ &hci_transport_test_init,
/* int (*open)(void); */ &hci_transport_test_open,
/* int (*close)(void); */ &hci_transport_test_close,
/* void (*register_packet_handler)(void (*handler)(...); */ &hci_transport_test_register_packet_handler,
/* int (*can_send_packet_now)(uint8_t packet_type); */ NULL,
/* int (*send_packet)(...); */ &hci_transport_test_send_packet,
/* int (*set_baudrate)(uint32_t baudrate); */ &hci_transport_test_set_baudrate,
/* void (*reset_link)(void); */ NULL,
/* void (*set_sco_config)(uint16_t voice_setting, int num_connections); */ NULL,
};
static uint16_t next_hci_packet;
void CHECK_EQUAL_ARRAY(const uint8_t * expected, const uint8_t * actual, int size){
for (int i=0; i<size; i++){
BYTES_EQUAL(expected[i], actual[i]);
}
}
void CHECK_HCI_COMMAND(const hci_cmd_t * expected_hci_command){
uint16_t actual_opcode = little_endian_read_16(transport_packets[next_hci_packet].buffer, 0);
next_hci_packet++;
CHECK_EQUAL(expected_hci_command->opcode, actual_opcode);
}
TEST_GROUP(HCI){
hci_stack_t * hci_stack;
void setup(void){
transport_count_packets = 0;
can_send_now = 1;
next_hci_packet = 0;
hci_init(&hci_transport_test, NULL);
hci_stack = hci_get_stack();
hci_simulate_working_fuzz();
hci_setup_test_connections_fuzz();
// register for HCI events
mock().expectOneCall("hci_can_send_packet_now_using_packet_buffer").andReturnValue(1);
}
void teardown(void){
mock().clear();
}
};
TEST(HCI, GetSetConnectionRange){
le_connection_parameter_range_t range;
gap_get_connection_parameter_range(&range);
gap_set_connection_parameter_range(&range);
}
TEST(HCI, ConnectionRangeValid){
le_connection_parameter_range_t range = {
.le_conn_interval_min = 1,
.le_conn_interval_max = 10,
.le_conn_latency_min = 1,
.le_conn_latency_max = 10,
.le_supervision_timeout_min = 1,
.le_supervision_timeout_max = 10
};
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 0, 0, 0, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 11, 0, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 9, 11, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 0, 0, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 9, 0, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 9, 10, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 9, 5, 0));
CHECK_EQUAL( 0, gap_connection_parameter_range_included(&range, 2, 9, 5, 11));
CHECK_EQUAL( 1, gap_connection_parameter_range_included(&range, 2, 9, 5, 5));
}
TEST(HCI, other_functions){
gap_set_scan_phys(1);
gap_set_connection_phys(1);
hci_enable_custom_pre_init();
gap_whitelist_clear();
}
TEST(HCI, gap_whitelist_add_remove){
bd_addr_type_t addr_type = BD_ADDR_TYPE_ACL;
bd_addr_t addr = { 0 };
uint8_t status = gap_whitelist_add(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
status = gap_whitelist_add(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_COMMAND_DISALLOWED, status);
status = gap_whitelist_remove(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
status = gap_whitelist_remove(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER, status);
status = gap_whitelist_remove(BD_ADDR_TYPE_SCO, addr);
CHECK_EQUAL(ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER, status);
}
TEST(HCI, gap_connect_with_whitelist){
uint8_t status = gap_connect_with_whitelist();
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
bd_addr_type_t addr_type = BD_ADDR_TYPE_LE_PUBLIC;
bd_addr_t addr = { 0 };
gap_auto_connection_start(addr_type, addr);
status = gap_connect_with_whitelist();
CHECK_EQUAL(ERROR_CODE_COMMAND_DISALLOWED, status);
}
TEST(HCI, gap_auto_connection_start_stop){
bd_addr_type_t addr_type = BD_ADDR_TYPE_LE_PUBLIC;
bd_addr_t addr = { 0 };
uint8_t status = gap_auto_connection_start(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
status = gap_auto_connection_stop(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
}
TEST(HCI, gap_auto_connection_stop_all){
bd_addr_type_t addr_type = BD_ADDR_TYPE_LE_PUBLIC;
bd_addr_t addr = { 0 };
uint8_t status = gap_auto_connection_start(addr_type, addr);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
status = gap_auto_connection_stop_all();
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
}
TEST(HCI, gap_read_rssi){
int status = gap_read_rssi(HCI_CON_HANDLE_INVALID);
CHECK_EQUAL(0, status);
status = gap_read_rssi(0x01);
CHECK_EQUAL(1, status);
}
TEST(HCI, gap_le_connection_interval){
uint16_t con_interval = gap_le_connection_interval(HCI_CON_HANDLE_INVALID);
CHECK_EQUAL(0, con_interval);
con_interval = gap_le_connection_interval(0x01);
CHECK_EQUAL(0, con_interval);
}
TEST(HCI, gap_get_connection_type){
gap_connection_type_t type = gap_get_connection_type(HCI_CON_HANDLE_INVALID);
CHECK_EQUAL(GAP_CONNECTION_INVALID, type);
type = gap_get_connection_type(0x01);
CHECK_EQUAL(GAP_CONNECTION_ACL, type);
}
TEST(HCI, gap_le_set_phy){
uint8_t status = gap_le_set_phy(HCI_CON_HANDLE_INVALID, 0, 0, 0, 0);
CHECK_EQUAL(ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER, status);
status = gap_le_set_phy(0x01, 0, 0, 0, 0);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
}
TEST(HCI, hci_connection_for_bd_addr_and_type){
bd_addr_type_t addr_type = BD_ADDR_TYPE_ACL;
bd_addr_t addr = { 0 };
hci_connection_t * con = hci_connection_for_bd_addr_and_type(addr , addr_type);
CHECK_EQUAL(NULL, con);
}
TEST(HCI, hci_number_free_acl_slots_for_handle){
int free_acl_slots_num = hci_number_free_acl_slots_for_handle(HCI_CON_HANDLE_INVALID);
CHECK_EQUAL(0, free_acl_slots_num);
}
TEST(HCI, hci_send_acl_packet_buffer_no_connection){
hci_reserve_packet_buffer();
uint8_t status = hci_send_acl_packet_buffer(16);
CHECK_EQUAL(ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER, status);
}
TEST(HCI, hci_send_acl_packet_buffer){
hci_reserve_packet_buffer();
uint8_t * packet = hci_get_outgoing_packet_buffer();
uint8_t flags = 0x02;
// LE Packet
uint16_t acl_len = 50;
hci_stack->le_data_packets_length = acl_len - 10;;
little_endian_store_16(packet, 0, 0x05 | (flags << 12));
uint8_t status = hci_send_acl_packet_buffer(acl_len);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
hci_stack->le_data_packets_length = 0;
}
TEST(HCI, hci_send_cmd_packet){
bd_addr_t addr = { 0 };
uint8_t status = hci_send_cmd(&hci_write_loopback_mode, 1);
CHECK_EQUAL(0, status);
uint8_t i;
for (i = 0; i < 3; i++){
status = hci_send_cmd(&hci_le_create_connection,
1000, // scan interval: 625 ms
1000, // scan interval: 625 ms
i, // don't use whitelist
0, // peer address type: public
addr, // remote bd addr
0, // random or public
80, // conn interval min
80, // conn interval max (3200 * 0.625)
0, // conn latency
2000, // supervision timeout
0, // min ce length
1000 // max ce length
);
CHECK_EQUAL(0, status);
}
}
TEST(HCI, hci_send_cmd_va_arg){
hci_reserve_packet_buffer();
uint8_t status = hci_send_cmd(&hci_write_loopback_mode, 1);
CHECK_EQUAL(ERROR_CODE_COMMAND_DISALLOWED, status);
}
TEST(HCI, hci_power_control){
int status = hci_power_control(HCI_POWER_ON);
CHECK_EQUAL(0, status);
}
TEST(HCI, NumPeripherals){
gap_set_max_number_peripheral_connections(1);
}
TEST(HCI, MaxAclLen){
hci_max_acl_data_packet_length();
}
TEST(HCI, Flushable){
hci_non_flushable_packet_boundary_flag_supported();
}
TEST(HCI, RemovePacketHandler){
hci_remove_event_handler(NULL);
}
static void dummy_fn(const void * config){};
TEST(HCI, SetChipset){
hci_set_chipset(NULL);
btstack_chipset_t chipset_driver = { 0 };
hci_set_chipset(NULL);
chipset_driver.init = dummy_fn;
}
TEST(HCI, SetControl){
btstack_control_t hardware_control = { .init = &dummy_fn};
hci_set_control(&hardware_control);
}
//TEST(HCI, Close){
// hci_close();
//}
TEST(HCI, SetPublicAddress){
bd_addr_t addr = { 0 };
hci_set_bd_addr(addr);
}
TEST(HCI, DisconnectSecurityBlock){
hci_disconnect_security_block(HCI_CON_HANDLE_INVALID);
hci_disconnect_security_block(3);
}
TEST(HCI, SetDuplicateFilter){
gap_set_scan_duplicate_filter(true);
}
TEST(HCI, ConnectCancel){
uint8_t status;
status = gap_connect_with_whitelist();
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
gap_connect_cancel();
bd_addr_type_t addr_type = BD_ADDR_TYPE_LE_PUBLIC;
bd_addr_t addr = { 0 };
gap_connect(addr, addr_type);
gap_connect_cancel();
}
TEST(HCI, SetGapConnParams){
gap_set_connection_parameters(0, 0, 0, 0, 0, 0, 0, 0);
}
TEST(HCI, UpdateConnParams){
gap_update_connection_parameters(HCI_CON_HANDLE_INVALID, 0, 0, 0, 0);
gap_update_connection_parameters(5, 0, 0, 0, 0);
}
TEST(HCI, RequestConnParamUpdate){
gap_request_connection_parameter_update(HCI_CON_HANDLE_INVALID, 0, 0, 0, 0);
gap_request_connection_parameter_update(5, 0, 0, 0, 0);
}
TEST(HCI, SetScanResponse){
gap_scan_response_set_data(0, NULL);
}
TEST(HCI, SetAddrType){
hci_le_set_own_address_type(0);
hci_le_set_own_address_type(1);
}
TEST(HCI, AdvEnable){
gap_advertisements_enable(0);
gap_advertisements_enable(1);
}
TEST(HCI, SetRandomAddr){
bd_addr_t addr = { 0 };
hci_le_random_address_set(addr);
}
TEST(HCI, Disconnect){
gap_disconnect(HCI_CON_HANDLE_INVALID);
gap_disconnect(5);
}
TEST(HCI, GetRole){
gap_get_role(HCI_CON_HANDLE_INVALID);
gap_get_role(5);
}
TEST(HCI, hci_is_le_identity_address_type_other){
hci_is_le_identity_address_type(BD_ADDR_TYPE_LE_PUBLIC_IDENTITY);
hci_is_le_identity_address_type(BD_ADDR_TYPE_LE_RANDOM);
}
TEST(HCI, hci_can_send_command_packet_now){
can_send_now = 0;
hci_can_send_command_packet_now();
can_send_now = 1;
hci_can_send_command_packet_now();
}
TEST(HCI, hci_can_send_prepared_acl_packet_now){
can_send_now = 0;
hci_can_send_prepared_acl_packet_now(0);
can_send_now = 1;
hci_can_send_prepared_acl_packet_now(0);
}
TEST(HCI, hci_can_send_acl_le_packet_now) {
can_send_now = 0;
hci_can_send_acl_le_packet_now();
can_send_now = 1;
hci_can_send_acl_le_packet_now();
}
TEST(HCI, hci_number_free_acl_slots_for_connection_type) {
CHECK_EQUAL(0, hci_number_free_acl_slots_for_connection_type(BD_ADDR_TYPE_UNKNOWN));
CHECK_EQUAL(255, hci_number_free_acl_slots_for_connection_type(BD_ADDR_TYPE_ACL));
CHECK_EQUAL(255, hci_number_free_acl_slots_for_connection_type(BD_ADDR_TYPE_LE_PUBLIC));
// tweak stack
hci_stack_t * hci_stack = hci_get_stack();
hci_stack->le_acl_packets_total_num = 1;
CHECK_EQUAL(1, hci_number_free_acl_slots_for_connection_type(BD_ADDR_TYPE_LE_PUBLIC));
}
// TEST(HCI, hci_close) {
// hci_close();
// }
TEST(HCI, gap_connect) {
bd_addr_type_t addr_type = BD_ADDR_TYPE_LE_PUBLIC;
bd_addr_t addr = { 0 };
uint8_t status;
status = gap_connect(addr, addr_type);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
status = gap_connect(addr, addr_type);
CHECK_EQUAL(ERROR_CODE_COMMAND_DISALLOWED, status);
}
TEST(HCI, hci_emit_state) {
hci_emit_state();
}
TEST(HCI, gap_request_connection_subrating) {
int status = gap_request_connection_subrating(HCI_CON_HANDLE_INVALID, 0, 0, 0, 0, 0);
CHECK_EQUAL(ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER, status);
status = gap_request_connection_subrating(0x01, 0, 0, 0, 0, 0);
CHECK_EQUAL(ERROR_CODE_SUCCESS, status);
}
TEST(HCI, hci_set_hardware_error_callback) {
hci_set_hardware_error_callback(NULL);
}
TEST(HCI, hci_disconnect_all) {
hci_disconnect_all();
}
TEST(HCI, hci_get_manufacturer) {
hci_get_manufacturer();
}
TEST(HCI, gap_authorization_state) {
gap_authorization_state(HCI_CON_HANDLE_INVALID);
}
#ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION
TEST(HCI, hci_load_le_device_db_entry_into_resolving_list) {
hci_load_le_device_db_entry_into_resolving_list(0);
}
TEST(HCI, hci_remove_le_device_db_entry_from_resolving_list) {
hci_remove_le_device_db_entry_from_resolving_list(0);
}
TEST(HCI, gap_load_resolving_list_from_le_device_db) {
gap_load_resolving_list_from_le_device_db();
}
#endif
TEST(HCI, gap_privacy_client) {
gap_privacy_client_t client;
gap_privacy_client_register(&client);
gap_privacy_client_ready(&client);
gap_privacy_client_unregister(&client);
}
TEST(HCI, acl_handling) {
uint16_t con_handle = 1;
uint8_t flags = 0;
uint8_t packet[16];
// no connection for invalid handle
memset(packet, 0xff, sizeof(packet));
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// invalid length
little_endian_store_16(packet, 0, con_handle | (flags << 12));
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// fix length
little_endian_store_16(packet, 2, 12);
little_endian_store_16(packet, 6, 8);
// unexpected acl continuation
flags = 0x01;
little_endian_store_16(packet, 0, con_handle | (flags << 12));
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// invalid packet boundary flags
flags = 0x03;
little_endian_store_16(packet, 0, con_handle | (flags << 12));
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// oversized first fragment
flags = 0x02;
little_endian_store_16(packet, 0, con_handle | (flags << 12));
little_endian_store_16(packet, 2, 1996);
packet_handler(HCI_ACL_DATA_PACKET, packet, 2000);
// 1a store first flushable fragment
flags = 0x02;
little_endian_store_16(packet, 0, con_handle | (flags << 12));
little_endian_store_16(packet, 2, 12);
little_endian_store_16(packet, 4, 20);
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// 1b another first non-flushable
flags = 0x06;
little_endian_store_16(packet, 0, con_handle | (flags << 12));
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// 1c another first
packet_handler(HCI_ACL_DATA_PACKET, packet, sizeof(packet));
// oversized continuation fragment
flags = 0x01;
little_endian_store_16(packet, 0, con_handle | (flags << 12));
little_endian_store_16(packet, 2, 1996);
packet_handler(HCI_ACL_DATA_PACKET, packet, 2000);
}
TEST(HCI, gap_le_get_own_address) {
uint8_t addr_type;
bd_addr_t addr;
hci_stack->le_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
gap_le_get_own_address(&addr_type, addr);
hci_stack->le_own_addr_type = BD_ADDR_TYPE_LE_RANDOM;
gap_le_get_own_address(&addr_type, addr);
}
static void simulate_hci_command_complete(uint16_t opcode, uint8_t status, uint8_t variant) {
uint8_t packet[2 + 255];
packet[0] = HCI_EVENT_COMMAND_COMPLETE;
packet[1] = sizeof(packet) - 2;
packet[2] = 1;
little_endian_store_16(packet, 3, opcode);
packet[5] = status;
switch (opcode) {
case HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE:
little_endian_store_16(packet, 6, 2000);
break;
case HCI_OPCODE_HCI_READ_LOCAL_VERSION_INFORMATION:
switch (variant) {
case 0:
little_endian_store_16(packet, 10, BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION);
break;
case 1:
little_endian_store_16(packet, 10, BLUETOOTH_COMPANY_ID_INFINEON_TECHNOLOGIES_AG);
break;
case 2:
little_endian_store_16(packet, 10, BLUETOOTH_COMPANY_ID_CYPRESS_SEMICONDUCTOR);
break;
}
break;
default:
break;
}
packet_handler(HCI_EVENT_PACKET, packet, sizeof(packet));
}
TEST(HCI, handle_command_complete_event) {
struct {
uint16_t opcode;
uint8_t status;
uint8_t variants;
} variations[] = {
{.opcode = HCI_OPCODE_HCI_READ_LOCAL_NAME, .status = ERROR_CODE_SUCCESS},
{.opcode = HCI_OPCODE_HCI_READ_LOCAL_NAME, .status = ERROR_CODE_UNKNOWN_HCI_COMMAND },
{.opcode = HCI_OPCODE_HCI_READ_BUFFER_SIZE, .status = ERROR_CODE_SUCCESS},
{.opcode = HCI_OPCODE_HCI_READ_RSSI, .status = ERROR_CODE_SUCCESS},
{.opcode = HCI_OPCODE_HCI_READ_RSSI, .status = ERROR_CODE_UNKNOWN_HCI_COMMAND},
{.opcode = HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE },
{.opcode = HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE_V2 },
{.opcode = HCI_OPCODE_HCI_LE_READ_MAXIMUM_DATA_LENGTH },
{.opcode = HCI_OPCODE_HCI_READ_LOCAL_VERSION_INFORMATION, .variants = 3},
};
for (uint8_t i = 0; i < sizeof(variations) / sizeof(variations[0]); i++) {
// extras
uint16_t opcode = variations[i].opcode;
uint8_t status = variations[i].status;
uint8_t variants = btstack_max(1, variations[i].variants);
switch (opcode) {
default:
break;
}
for (uint8_t j=0; j < variants; j++) {
simulate_hci_command_complete(opcode, status, j);
}
switch (opcode) {
default:
break;
}
}
}
static void simulate_hci_command_status(uint16_t opcode, uint8_t status, uint8_t variant) {
uint8_t packet[2 + 255];
packet[0] = HCI_EVENT_COMMAND_STATUS;
packet[1] = sizeof(packet) - 2;
packet[2] = status;
packet[3] = 1;
little_endian_store_16(packet, 4, opcode);
switch (opcode) {
default:
break;
}
packet_handler(HCI_EVENT_PACKET, packet, sizeof(packet));
}
TEST(HCI, handle_command_status_event) {
struct {
uint16_t opcode;
uint8_t status;
uint8_t variants;
} variations[] = {
{.opcode = HCI_OPCODE_HCI_LE_CREATE_CONNECTION, .status = ERROR_CODE_COMMAND_DISALLOWED, .variants = 2},
};
// default address: 66:55:44:33:00:01
bd_addr_t addr = { 0x66, 0x55, 0x44, 0x33, 0x00, 0x00};
for (uint8_t i = 0; i < sizeof(variations) / sizeof(variations[0]); i++) {
// extras
uint16_t opcode = variations[i].opcode;
uint8_t status = variations[i].status;
uint8_t variants = btstack_max(1, variations[i].variants);
for (uint8_t j=0; j < variants; j++) {
switch (opcode) {
case HCI_OPCODE_HCI_LE_CREATE_CONNECTION:
hci_stack->outgoing_addr_type = BD_ADDR_TYPE_LE_PUBLIC;
addr[5] = 0x05 + j;
memcpy(hci_stack->outgoing_addr, &addr, sizeof(addr));
break;
default:
break;
}
simulate_hci_command_status(opcode, status, j);
switch (opcode) {
default:
break;
}
}
}
}
int main (int argc, const char * argv[]){
btstack_run_loop_init(btstack_run_loop_posix_get_instance());
return CommandLineTestRunner::RunAllTests(argc, argv);
}