/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL MATTHIAS * RINGWALD OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define BTSTACK_FILE__ "spp_and_gatt_streamer.c" // ***************************************************************************** /* EXAMPLE_START(spp_and_le_streamer): Dual mode example * * @text The SPP and LE Streamer example combines the Bluetooth Classic SPP Streamer * and the Bluetooth LE Streamer into a single application. * * @text In this Section, we only point out the differences to the individual examples * and how how the stack is configured. * * @text Note: To test, please run the example, and then: * - for SPP pair from a remote device, and open the Virtual Serial Port, * - for LE use some GATT Explorer, e.g. LightBlue, BLExplr, to enable notifications. * */ // ***************************************************************************** #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <inttypes.h> #include "btstack.h" #include "spp_and_gatt_streamer.h" int btstack_main(int argc, const char * argv[]); #define RFCOMM_SERVER_CHANNEL 1 #define HEARTBEAT_PERIOD_MS 1000 #define TEST_COD 0x1234 #define NUM_ROWS 25 #define NUM_COLS 40 #define DATA_VOLUME (10 * 1000 * 1000) /* * @section Advertisements * * @text The Flags attribute in the Advertisement Data indicates if a device is in dual-mode or not. * Flag 0x06 indicates LE General Discoverable, BR/EDR not supported although we're actually using BR/EDR. * In the past, there have been problems with Anrdoid devices when the flag was not set. * Setting it should prevent the remote implementation to try to use GATT over LE/EDR, which is not * implemented by BTstack. So, setting the flag seems like the safer choice (while it's technically incorrect). */ /* LISTING_START(advertisements): Advertisement data: Flag 0x06 indicates LE-only device */ const uint8_t adv_data[] = { // Flags general discoverable, BR/EDR not supported 0x02, 0x01, 0x06, // Name 0x0c, 0x09, 'L', 'E', ' ', 'S', 't', 'r', 'e', 'a', 'm', 'e', 'r', }; static btstack_packet_callback_registration_t hci_event_callback_registration; uint8_t adv_data_len = sizeof(adv_data); static uint8_t test_data[NUM_ROWS * NUM_COLS]; // SPP static uint8_t spp_service_buffer[150]; static uint16_t spp_test_data_len; static uint16_t rfcomm_mtu; static uint16_t rfcomm_cid = 0; // static uint32_t data_to_send = DATA_VOLUME; // LE static uint16_t att_mtu; static int counter = 'A'; static int le_notification_enabled; static uint16_t le_test_data_len; static hci_con_handle_t le_connection_handle; #ifdef ENABLE_GATT_OVER_CLASSIC static uint8_t gatt_service_buffer[70]; #endif /* * @section Track throughput * @text We calculate the throughput by setting a start time and measuring the amount of * data sent. After a configurable REPORT_INTERVAL_MS, we print the throughput in kB/s * and reset the counter and start time. */ /* LISTING_START(tracking): Tracking throughput */ #define REPORT_INTERVAL_MS 3000 static uint32_t test_data_transferred; static uint32_t test_data_start; static void test_reset(void){ test_data_start = btstack_run_loop_get_time_ms(); test_data_transferred = 0; } static void test_track_transferred(int bytes_sent){ test_data_transferred += bytes_sent; // evaluate uint32_t now = btstack_run_loop_get_time_ms(); uint32_t time_passed = now - test_data_start; if (time_passed < REPORT_INTERVAL_MS) return; // print speed int bytes_per_second = test_data_transferred * 1000 / time_passed; printf("%u bytes -> %u.%03u kB/s\n", (int) test_data_transferred, (int) bytes_per_second / 1000, bytes_per_second % 1000); // restart test_data_start = now; test_data_transferred = 0; } /* LISTING_END(tracking): Tracking throughput */ static void spp_create_test_data(void){ int x,y; for (y=0;y<NUM_ROWS;y++){ for (x=0;x<NUM_COLS-2;x++){ test_data[y*NUM_COLS+x] = '0' + (x % 10); } test_data[y*NUM_COLS+NUM_COLS-2] = '\n'; test_data[y*NUM_COLS+NUM_COLS-1] = '\r'; } } static void spp_send_packet(void){ rfcomm_send(rfcomm_cid, (uint8_t*) test_data, spp_test_data_len); test_track_transferred(spp_test_data_len); #if 0 if (data_to_send <= spp_test_data_len){ printf("SPP Streamer: enough data send, closing channel\n"); rfcomm_disconnect(rfcomm_cid); rfcomm_cid = 0; return; } data_to_send -= spp_test_data_len; #endif rfcomm_request_can_send_now_event(rfcomm_cid); } static void le_streamer(void){ // check if we can send if (!le_notification_enabled) return; // create test data counter++; if (counter > 'Z') counter = 'A'; memset(test_data, counter, sizeof(test_data)); // send att_server_notify(le_connection_handle, ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_VALUE_HANDLE, (uint8_t*) test_data, le_test_data_len); // track test_track_transferred(le_test_data_len); // request next send event att_server_request_can_send_now_event(le_connection_handle); } /* * @section HCI Packet Handler * * @text The packet handler of the combined example is just the combination of the individual packet handlers. */ static void hci_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ UNUSED(channel); UNUSED(size); bd_addr_t event_addr; uint16_t conn_interval; hci_con_handle_t con_handle; switch (packet_type) { case HCI_EVENT_PACKET: switch (hci_event_packet_get_type(packet)) { case HCI_EVENT_PIN_CODE_REQUEST: // inform about pin code request printf("Pin code request - using '0000'\n"); hci_event_pin_code_request_get_bd_addr(packet, event_addr); gap_pin_code_response(event_addr, "0000"); break; case HCI_EVENT_USER_CONFIRMATION_REQUEST: // inform about user confirmation request printf("SSP User Confirmation Request with numeric value '%06"PRIu32"'\n", little_endian_read_32(packet, 8)); printf("SSP User Confirmation Auto accept\n"); break; case HCI_EVENT_LE_META: switch (hci_event_le_meta_get_subevent_code(packet)) { case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: // print connection parameters (without using float operations) con_handle = hci_subevent_le_connection_complete_get_connection_handle(packet); conn_interval = hci_subevent_le_connection_complete_get_conn_interval(packet); printf("LE Connection - Connection Interval: %u.%02u ms\n", conn_interval * 125 / 100, 25 * (conn_interval & 3)); printf("LE Connection - Connection Latency: %u\n", hci_subevent_le_connection_complete_get_conn_latency(packet)); // request min con interval 15 ms for iOS 11+ printf("LE Connection - Request 15 ms connection interval\n"); gap_request_connection_parameter_update(con_handle, 12, 12, 0, 0x0048); break; case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE: // print connection parameters (without using float operations) con_handle = hci_subevent_le_connection_update_complete_get_connection_handle(packet); conn_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet); printf("LE Connection - Connection Param update - connection interval %u.%02u ms, latency %u\n", conn_interval * 125 / 100, 25 * (conn_interval & 3), hci_subevent_le_connection_update_complete_get_conn_latency(packet)); break; default: break; } break; case HCI_EVENT_DISCONNECTION_COMPLETE: // re-enable page/inquiry scan again gap_discoverable_control(1); gap_connectable_control(1); // re-enable advertisements gap_advertisements_enable(1); le_notification_enabled = 0; break; default: break; } break; default: break; } } /* * @section RFCOMM Packet Handler * * @text The RFCOMM packet handler accepts incoming connection and triggers sending of RFCOMM data on RFCOMM_EVENT_CAN_SEND_NOW */ static void rfcomm_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ UNUSED(channel); bd_addr_t event_addr; uint8_t rfcomm_channel_nr; switch (packet_type) { case HCI_EVENT_PACKET: switch (hci_event_packet_get_type(packet)) { case RFCOMM_EVENT_INCOMING_CONNECTION: // data: event (8), len(8), address(48), channel (8), rfcomm_cid (16) rfcomm_event_incoming_connection_get_bd_addr(packet, event_addr); rfcomm_channel_nr = rfcomm_event_incoming_connection_get_server_channel(packet); rfcomm_cid = rfcomm_event_incoming_connection_get_rfcomm_cid(packet); printf("RFCOMM channel %u requested for %s\n", rfcomm_channel_nr, bd_addr_to_str(event_addr)); rfcomm_accept_connection(rfcomm_cid); break; case RFCOMM_EVENT_CHANNEL_OPENED: // data: event(8), len(8), status (8), address (48), server channel(8), rfcomm_cid(16), max frame size(16) if (rfcomm_event_channel_opened_get_status(packet)) { printf("RFCOMM channel open failed, status %u\n", rfcomm_event_channel_opened_get_status(packet)); } else { rfcomm_cid = rfcomm_event_channel_opened_get_rfcomm_cid(packet); rfcomm_mtu = rfcomm_event_channel_opened_get_max_frame_size(packet); printf("RFCOMM channel open succeeded. New RFCOMM Channel ID %u, max frame size %u\n", rfcomm_cid, rfcomm_mtu); spp_test_data_len = rfcomm_mtu; if (spp_test_data_len > sizeof(test_data)){ spp_test_data_len = sizeof(test_data); } // disable page/inquiry scan to get max performance gap_discoverable_control(0); gap_connectable_control(0); // disable advertisements gap_advertisements_enable(0); test_reset(); rfcomm_request_can_send_now_event(rfcomm_cid); } break; case RFCOMM_EVENT_CAN_SEND_NOW: spp_send_packet(); break; case RFCOMM_EVENT_CHANNEL_CLOSED: printf("RFCOMM channel closed\n"); rfcomm_cid = 0; break; default: break; } break; case RFCOMM_DATA_PACKET: test_track_transferred(size); #if 0 printf("RCV: '"); for (i=0;i<size;i++){ putchar(packet[i]); } printf("'\n"); #endif break; default: break; } } /* * @section ATT Packet Handler * * @text The packet handler is used to track the ATT MTU Exchange and trigger ATT send */ /* LISTING_START(attPacketHandler): Packet Handler */ static void att_packet_handler (uint8_t packet_type, uint16_t channel, uint8_t *packet, uint16_t size){ UNUSED(channel); UNUSED(size); if (packet_type != HCI_EVENT_PACKET) return; switch (hci_event_packet_get_type(packet)) { case ATT_EVENT_CONNECTED: le_connection_handle = att_event_connected_get_handle(packet); att_mtu = att_server_get_mtu(le_connection_handle); le_test_data_len = btstack_min(att_server_get_mtu(le_connection_handle) - 3, sizeof(test_data)); printf("ATT MTU = %u\n", att_mtu); break; case ATT_EVENT_MTU_EXCHANGE_COMPLETE: att_mtu = att_event_mtu_exchange_complete_get_MTU(packet); le_test_data_len = btstack_min(att_mtu - 3, sizeof(test_data)); printf("ATT MTU = %u\n", att_mtu); break; case ATT_EVENT_CAN_SEND_NOW: le_streamer(); break; case ATT_EVENT_DISCONNECTED: le_notification_enabled = 0; le_connection_handle = HCI_CON_HANDLE_INVALID; break; default: break; } } // ATT Client Read Callback for Dynamic Data // - if buffer == NULL, don't copy data, just return size of value // - if buffer != NULL, copy data and return number bytes copied // @param offset defines start of attribute value static uint16_t att_read_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t offset, uint8_t * buffer, uint16_t buffer_size){ UNUSED(con_handle); UNUSED(att_handle); UNUSED(offset); UNUSED(buffer); UNUSED(buffer_size); return 0; } // write requests static int att_write_callback(hci_con_handle_t con_handle, uint16_t att_handle, uint16_t transaction_mode, uint16_t offset, uint8_t *buffer, uint16_t buffer_size){ UNUSED(con_handle); UNUSED(offset); UNUSED(buffer_size); // printf("att_write_callback att_handle %04x, transaction mode %u\n", att_handle, transaction_mode); if (transaction_mode != ATT_TRANSACTION_MODE_NONE) return 0; switch(att_handle){ case ATT_CHARACTERISTIC_0000FF11_0000_1000_8000_00805F9B34FB_01_CLIENT_CONFIGURATION_HANDLE: le_notification_enabled = little_endian_read_16(buffer, 0) == GATT_CLIENT_CHARACTERISTICS_CONFIGURATION_NOTIFICATION; printf("Notifications enabled %u\n", le_notification_enabled); if (le_notification_enabled){ att_server_request_can_send_now_event(le_connection_handle); } // disable page/inquiry scan to get max performance gap_discoverable_control(0); gap_connectable_control(0); test_reset(); break; default: break; } return 0; } /* * @section Main Application Setup * * @text As with the packet and the heartbeat handlers, the combined app setup contains the code from the individual example setups. */ /* LISTING_START(MainConfiguration): Init L2CAP RFCOMM SDO SM ATT Server and start heartbeat timer */ int btstack_main(int argc, const char * argv[]) { UNUSED(argc); (void)argv; l2cap_init(); rfcomm_init(); rfcomm_register_service(rfcomm_packet_handler, RFCOMM_SERVER_CHANNEL, 0xffff); // init SDP, create record for SPP and register with SDP sdp_init(); memset(spp_service_buffer, 0, sizeof(spp_service_buffer)); spp_create_sdp_record(spp_service_buffer, 0x10001, RFCOMM_SERVER_CHANNEL, "SPP Streamer"); sdp_register_service(spp_service_buffer); #ifdef ENABLE_GATT_OVER_CLASSIC // init SDP, create record for GATT and register with SDP memset(gatt_service_buffer, 0, sizeof(gatt_service_buffer)); gatt_create_sdp_record(gatt_service_buffer, 0x10001, ATT_SERVICE_GATT_SERVICE_START_HANDLE, ATT_SERVICE_GATT_SERVICE_END_HANDLE); sdp_register_service(gatt_service_buffer); #endif gap_set_local_name("SPP and LE Streamer 00:00:00:00:00:00"); gap_ssp_set_io_capability(SSP_IO_CAPABILITY_DISPLAY_YES_NO); // short-cut to find other SPP Streamer gap_set_class_of_device(TEST_COD); gap_discoverable_control(1); // setup le device db le_device_db_init(); // setup SM: Display only sm_init(); // setup ATT server att_server_init(profile_data, att_read_callback, att_write_callback); // register for HCI events hci_event_callback_registration.callback = &hci_packet_handler; hci_add_event_handler(&hci_event_callback_registration); // register for ATT events att_server_register_packet_handler(att_packet_handler); // setup advertisements uint16_t adv_int_min = 0x0030; uint16_t adv_int_max = 0x0030; uint8_t adv_type = 0; bd_addr_t null_addr; memset(null_addr, 0, 6); gap_advertisements_set_params(adv_int_min, adv_int_max, adv_type, 0, null_addr, 0x07, 0x00); gap_advertisements_set_data(adv_data_len, (uint8_t*) adv_data); gap_advertisements_enable(1); spp_create_test_data(); // turn on! hci_power_control(HCI_POWER_ON); return 0; } /* LISTING_END */ /* EXAMPLE_END */