/* * Copyright (C) 2014 BlueKitchen GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holders nor the names of * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * 4. Any redistribution, use, or modification is done solely for * personal benefit and not for any commercial purpose or for * monetary gain. * * THIS SOFTWARE IS PROVIDED BY BLUEKITCHEN GMBH AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BLUEKITCHEN * GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Please inquire about commercial licensing options at * contact@bluekitchen-gmbh.com * */ #define BTSTACK_FILE__ "hci.c" /* * hci.c * * Created by Matthias Ringwald on 4/29/09. * */ #include "btstack_config.h" #ifdef ENABLE_CLASSIC #ifdef HAVE_EMBEDDED_TICK #include "btstack_run_loop_embedded.h" #endif #endif #ifdef ENABLE_BLE #include "gap.h" #include "ble/le_device_db.h" #endif #include #include #include #include "btstack_debug.h" #include "btstack_event.h" #include "btstack_linked_list.h" #include "btstack_memory.h" #include "bluetooth_company_id.h" #include "bluetooth_data_types.h" #include "gap.h" #include "hci.h" #include "hci_cmd.h" #include "hci_dump.h" #include "ad_parser.h" #ifdef ENABLE_CONTROLLER_DUMP_PACKETS #include // sprintf #endif #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL #ifndef HCI_HOST_ACL_PACKET_NUM #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_NUM" #endif #ifndef HCI_HOST_ACL_PACKET_LEN #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_ACL_PACKET_LEN" #endif #ifndef HCI_HOST_SCO_PACKET_NUM #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_NUM" #endif #ifndef HCI_HOST_SCO_PACKET_LEN #error "ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL requires to define HCI_HOST_SCO_PACKET_LEN" #endif #endif #ifndef MAX_NR_CONTROLLER_ACL_BUFFERS #define MAX_NR_CONTROLLER_ACL_BUFFERS 255 #endif #ifndef MAX_NR_CONTROLLER_SCO_PACKETS #define MAX_NR_CONTROLLER_SCO_PACKETS 255 #endif #ifndef HCI_ACL_CHUNK_SIZE_ALIGNMENT #define HCI_ACL_CHUNK_SIZE_ALIGNMENT 1 #endif #if defined(ENABLE_SCO_OVER_HCI) && defined(ENABLE_SCO_OVER_PCM) #error "SCO data can either be routed over HCI or over PCM, but not over both. Please only enable ENABLE_SCO_OVER_HCI or ENABLE_SCO_OVER_PCM." #endif #if defined(ENABLE_SCO_OVER_HCI) && defined(HAVE_SCO_TRANSPORT) #error "SCO data can either be routed over HCI or over PCM, but not over both. Please only enable ENABLE_SCO_OVER_HCI or HAVE_SCO_TRANSPORT." #endif #define HCI_CONNECTION_TIMEOUT_MS 10000 #ifndef HCI_RESET_RESEND_TIMEOUT_MS #define HCI_RESET_RESEND_TIMEOUT_MS 200 #endif // Names are arbitrarily shortened to 32 bytes if not requested otherwise #ifndef GAP_INQUIRY_MAX_NAME_LEN #define GAP_INQUIRY_MAX_NAME_LEN 32 #endif // GAP inquiry state: 0 = off, 0x01 - 0x30 = requested duration, 0xfe = active, 0xff = stop requested #define GAP_INQUIRY_DURATION_MIN 0x01 #define GAP_INQUIRY_DURATION_MAX 0x30 #define GAP_INQUIRY_MIN_PERIODIC_LEN_MIN 0x02 #define GAP_INQUIRY_MAX_PERIODIC_LEN_MIN 0x03 #define GAP_INQUIRY_STATE_IDLE 0x00 #define GAP_INQUIRY_STATE_W4_ACTIVE 0x80 #define GAP_INQUIRY_STATE_ACTIVE 0x81 #define GAP_INQUIRY_STATE_W2_CANCEL 0x82 #define GAP_INQUIRY_STATE_W4_CANCELLED 0x83 #define GAP_INQUIRY_STATE_PERIODIC 0x84 #define GAP_INQUIRY_STATE_W2_EXIT_PERIODIC 0x85 // GAP Remote Name Request #define GAP_REMOTE_NAME_STATE_IDLE 0 #define GAP_REMOTE_NAME_STATE_W2_SEND 1 #define GAP_REMOTE_NAME_STATE_W4_COMPLETE 2 // GAP Pairing #define GAP_PAIRING_STATE_IDLE 0 #define GAP_PAIRING_STATE_SEND_PIN 1 #define GAP_PAIRING_STATE_SEND_PIN_NEGATIVE 2 #define GAP_PAIRING_STATE_SEND_PASSKEY 3 #define GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE 4 #define GAP_PAIRING_STATE_SEND_CONFIRMATION 5 #define GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE 6 #define GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE 7 // // compact storage of relevant supported HCI Commands. // X-Macro below provides enumeration and mapping table into the supported // commands bitmap (64 bytes) from HCI Read Local Supported Commands // // format: command name, byte offset, bit nr in 64-byte supported commands // currently stored in 32-bit variable #define SUPPORTED_HCI_COMMANDS \ X( SUPPORTED_HCI_COMMAND_READ_REMOTE_EXTENDED_FEATURES , 2, 5) \ X( SUPPORTED_HCI_COMMAND_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE , 10, 4) \ X( SUPPORTED_HCI_COMMAND_READ_BUFFER_SIZE , 14, 7) \ X( SUPPORTED_HCI_COMMAND_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING, 18, 3) \ X( SUPPORTED_HCI_COMMAND_READ_ENCRYPTION_KEY_SIZE , 20, 4) \ X( SUPPORTED_HCI_COMMAND_SET_EVENT_MASK_PAGE_2 , 22, 2) \ X( SUPPORTED_HCI_COMMAND_WRITE_LE_HOST_SUPPORTED , 24, 6) \ X( SUPPORTED_HCI_COMMAND_REMOTE_OOB_EXTENDED_DATA_REQUEST_REPLY, 32, 1) \ X( SUPPORTED_HCI_COMMAND_WRITE_SECURE_CONNECTIONS_HOST , 32, 3) \ X( SUPPORTED_HCI_COMMAND_READ_LOCAL_OOB_EXTENDED_DATA_COMMAND , 32, 6) \ X( SUPPORTED_HCI_COMMAND_LE_WRITE_SUGGESTED_DEFAULT_DATA_LENGTH, 34, 0) \ X( SUPPORTED_HCI_COMMAND_LE_SET_ADDRESS_RESOLUTION_ENABLE , 35, 1) \ X( SUPPORTED_HCI_COMMAND_LE_READ_MAXIMUM_DATA_LENGTH , 35, 3) \ X( SUPPORTED_HCI_COMMAND_LE_SET_DEFAULT_PHY , 35, 5) \ X( SUPPORTED_HCI_COMMAND_LE_SET_EXTENDED_ADVERTISING_ENABLE , 36, 6) \ X( SUPPORTED_HCI_COMMAND_LE_READ_BUFFER_SIZE_V2 , 41, 5) \ X( SUPPORTED_HCI_COMMAND_SET_MIN_ENCRYPTION_KEY_SIZE , 45, 7) \ // enumerate supported commands #define X(name, offset, bit) name, enum { SUPPORTED_HCI_COMMANDS SUPPORTED_HCI_COMMANDS_COUNT }; #undef X // prototypes #ifdef ENABLE_CLASSIC static void hci_update_scan_enable(void); static void hci_emit_scan_mode_changed(uint8_t discoverable, uint8_t connectable); static int hci_local_ssp_activated(void); static bool hci_remote_ssp_supported(hci_con_handle_t con_handle); static bool hci_ssp_supported(hci_connection_t * connection); static void hci_notify_if_sco_can_send_now(void); static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status); static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection); static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level); static void hci_connection_timeout_handler(btstack_timer_source_t *timer); static void hci_connection_timestamp(hci_connection_t *connection); static void hci_emit_l2cap_check_timeout(hci_connection_t *conn); static void gap_inquiry_explode(uint8_t *packet, uint16_t size); #endif static int hci_power_control_on(void); static void hci_power_control_off(void); static void hci_state_reset(void); static void hci_halting_timeout_handler(btstack_timer_source_t * ds); static void hci_emit_transport_packet_sent(void); static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason); static void hci_emit_nr_connections_changed(void); static void hci_emit_hci_open_failed(void); static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status); static void hci_emit_event(uint8_t * event, uint16_t size, int dump); static void hci_emit_acl_packet(uint8_t * packet, uint16_t size); static void hci_run(void); static bool hci_is_le_connection(hci_connection_t * connection); static uint8_t hci_send_prepared_cmd_packet(); #ifdef ENABLE_CLASSIC static int hci_have_usb_transport(void); static void hci_trigger_remote_features_for_connection(hci_connection_t * connection); #endif #ifdef ENABLE_BLE static bool hci_run_general_gap_le(void); static void gap_privacy_clients_handle_ready(void); static void gap_privacy_clients_notify(bd_addr_t new_random_address); #ifdef ENABLE_LE_CENTRAL // called from test/ble_client/advertising_data_parser.c void le_handle_advertisement_report(uint8_t *packet, uint16_t size); static uint8_t hci_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address); static hci_connection_t * gap_get_outgoing_le_connection(void); static void hci_le_scan_stop(void); #endif #ifdef ENABLE_LE_PERIPHERAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING static le_advertising_set_t * hci_advertising_set_for_handle(uint8_t advertising_handle); #endif /* ENABLE_LE_EXTENDED_ADVERTISING */ #endif /* ENABLE_LE_PERIPHERAL */ #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS static hci_iso_stream_t * hci_iso_stream_create(hci_iso_type_t iso_type, hci_iso_stream_state_t state, uint8_t group_id, uint8_t stream_id); static void hci_iso_stream_finalize(hci_iso_stream_t * iso_stream); static void hci_iso_stream_finalize_by_type_and_group_id(hci_iso_type_t iso_type, uint8_t group_id); static hci_iso_stream_t * hci_iso_stream_for_con_handle(hci_con_handle_t con_handle); static void hci_iso_stream_requested_finalize(uint8_t big_handle); static void hci_iso_stream_requested_confirm(uint8_t big_handle); static void hci_iso_packet_handler(hci_iso_stream_t *iso_stream, uint8_t *packet, uint16_t size); static le_audio_big_t * hci_big_for_handle(uint8_t big_handle); static le_audio_cig_t * hci_cig_for_id(uint8_t cig_id); static void hci_iso_notify_can_send_now(void); static void hci_emit_big_created(const le_audio_big_t * big, uint8_t status); static void hci_emit_big_terminated(const le_audio_big_t * big); static void hci_emit_big_sync_created(const le_audio_big_sync_t * big_sync, uint8_t status); static void hci_emit_big_sync_stopped(uint8_t big_handle); static void hci_emit_cig_created(const le_audio_cig_t * cig, uint8_t status); static void hci_cis_handle_created(hci_iso_stream_t * iso_stream, uint8_t status); static le_audio_big_sync_t * hci_big_sync_for_handle(uint8_t big_handle); #endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */ #endif /* ENABLE_BLE */ // the STACK is here #ifndef HAVE_MALLOC static hci_stack_t hci_stack_static; #endif static hci_stack_t * hci_stack = NULL; #ifdef ENABLE_CLASSIC // default name static const char * default_classic_name = "BTstack 00:00:00:00:00:00"; // test helper static uint8_t disable_l2cap_timeouts = 0; #endif // reset connection state on create and on reconnect // don't overwrite addr, con handle, role static void hci_connection_init(hci_connection_t * conn){ conn->authentication_flags = AUTH_FLAG_NONE; conn->bonding_flags = 0; conn->requested_security_level = LEVEL_0; conn->link_key_type = INVALID_LINK_KEY; #ifdef ENABLE_CLASSIC conn->request_role = HCI_ROLE_INVALID; conn->sniff_subrating_max_latency = 0xffff; conn->qos_service_type = HCI_SERVICE_TYPE_INVALID; btstack_run_loop_set_timer_handler(&conn->timeout, hci_connection_timeout_handler); btstack_run_loop_set_timer_context(&conn->timeout, conn); hci_connection_timestamp(conn); #endif conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; conn->num_packets_sent = 0; conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; #ifdef ENABLE_BLE conn->le_phy_update_all_phys = 0xff; #endif #ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS conn->le_max_tx_octets = 27; #endif #ifdef ENABLE_CLASSIC_PAIRING_OOB conn->classic_oob_c_192 = NULL; conn->classic_oob_r_192 = NULL; conn->classic_oob_c_256 = NULL; conn->classic_oob_r_256 = NULL; #endif #ifdef ENABLE_LE_PERIODIC_ADVERTISING conn->le_past_sync_handle = HCI_CON_HANDLE_INVALID; conn->le_past_advertising_handle = 0xff; #endif } /** * create connection for given address * * @return connection OR NULL, if no memory left */ static hci_connection_t * create_connection_for_bd_addr_and_type(const bd_addr_t addr, bd_addr_type_t addr_type, hci_role_t role) { log_info("create_connection_for_addr %s, type %x", bd_addr_to_str(addr), addr_type); hci_connection_t * conn = btstack_memory_hci_connection_get(); if (!conn) return NULL; hci_connection_init(conn); bd_addr_copy(conn->address, addr); conn->address_type = addr_type; conn->con_handle = HCI_CON_HANDLE_INVALID; conn->role = role; btstack_linked_list_add(&hci_stack->connections, (btstack_linked_item_t *) conn); return conn; } /** * get le connection parameter range * * @return le connection parameter range struct */ void gap_get_connection_parameter_range(le_connection_parameter_range_t * range){ *range = hci_stack->le_connection_parameter_range; } /** * set le connection parameter range * */ void gap_set_connection_parameter_range(le_connection_parameter_range_t *range){ hci_stack->le_connection_parameter_range = *range; } /** * @brief Test if connection parameters are inside in existing rage * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @return 1 if included */ int gap_connection_parameter_range_included(le_connection_parameter_range_t * existing_range, uint16_t le_conn_interval_min, uint16_t le_conn_interval_max, uint16_t le_conn_latency, uint16_t le_supervision_timeout){ if (le_conn_interval_min < existing_range->le_conn_interval_min) return 0; if (le_conn_interval_max > existing_range->le_conn_interval_max) return 0; if (le_conn_latency < existing_range->le_conn_latency_min) return 0; if (le_conn_latency > existing_range->le_conn_latency_max) return 0; if (le_supervision_timeout < existing_range->le_supervision_timeout_min) return 0; if (le_supervision_timeout > existing_range->le_supervision_timeout_max) return 0; return 1; } /** * @brief Set max number of connections in LE Peripheral role (if Bluetooth Controller supports it) * @note: default: 1 * @param max_peripheral_connections */ #ifdef ENABLE_LE_PERIPHERAL void gap_set_max_number_peripheral_connections(int max_peripheral_connections){ hci_stack->le_max_number_peripheral_connections = max_peripheral_connections; } #endif /** * get hci connections iterator * * @return hci connections iterator */ void hci_connections_get_iterator(btstack_linked_list_iterator_t *it){ btstack_linked_list_iterator_init(it, &hci_stack->connections); } /** * get connection for a given handle * * @return connection OR NULL, if not found */ hci_connection_t * hci_connection_for_handle(hci_con_handle_t con_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * item = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if ( item->con_handle == con_handle ) { return item; } } return NULL; } /** * get connection for given address * * @return connection OR NULL, if not found */ hci_connection_t * hci_connection_for_bd_addr_and_type(const bd_addr_t addr, bd_addr_type_t addr_type){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if (connection->address_type != addr_type) continue; if (memcmp(addr, connection->address, 6) != 0) continue; return connection; } return NULL; } #ifdef ENABLE_CLASSIC inline static void connectionClearAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags & ~flags); } inline static void connectionSetAuthenticationFlags(hci_connection_t * conn, hci_authentication_flags_t flags){ conn->authentication_flags = (hci_authentication_flags_t)(conn->authentication_flags | flags); } #ifdef ENABLE_SCO_OVER_HCI static int hci_number_sco_connections(void){ int connections = 0; btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if (connection->address_type != BD_ADDR_TYPE_SCO) continue; connections++; } return connections; } #endif static void hci_connection_timeout_handler(btstack_timer_source_t *timer){ hci_connection_t * connection = (hci_connection_t *) btstack_run_loop_get_timer_context(timer); #ifdef HAVE_EMBEDDED_TICK if (btstack_run_loop_embedded_get_ticks() > connection->timestamp + btstack_run_loop_embedded_ticks_for_ms(HCI_CONNECTION_TIMEOUT_MS)){ // connections might be timed out hci_emit_l2cap_check_timeout(connection); } #else if (btstack_run_loop_get_time_ms() > (connection->timestamp + HCI_CONNECTION_TIMEOUT_MS)){ // connections might be timed out hci_emit_l2cap_check_timeout(connection); } #endif } static void hci_connection_timestamp(hci_connection_t *connection){ #ifdef HAVE_EMBEDDED_TICK connection->timestamp = btstack_run_loop_embedded_get_ticks(); #else connection->timestamp = btstack_run_loop_get_time_ms(); #endif } /** * add authentication flags and reset timer * @note: assumes classic connection * @note: bd_addr is passed in as litle endian uint8_t * as it is called from parsing packets */ static void hci_add_connection_flags_for_flipped_bd_addr(uint8_t *bd_addr, hci_authentication_flags_t flags){ bd_addr_t addr; reverse_bd_addr(bd_addr, addr); hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (conn) { connectionSetAuthenticationFlags(conn, flags); hci_connection_timestamp(conn); } } static bool hci_pairing_active(hci_connection_t * hci_connection){ return (hci_connection->authentication_flags & AUTH_FLAG_PAIRING_ACTIVE_MASK) != 0; } static void hci_pairing_started(hci_connection_t * hci_connection, bool ssp){ if (hci_pairing_active(hci_connection)) return; if (ssp){ hci_connection->authentication_flags |= AUTH_FLAG_SSP_PAIRING_ACTIVE; } else { hci_connection->authentication_flags |= AUTH_FLAG_LEGACY_PAIRING_ACTIVE; } // if we are initiator, we have sent an HCI Authenticate Request bool initiator = (hci_connection->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) != 0; // if we are responder, use minimal service security level as required level if (!initiator){ hci_connection->requested_security_level = (gap_security_level_t) btstack_max((uint32_t) hci_connection->requested_security_level, (uint32_t) hci_stack->gap_minimal_service_security_level); } log_info("pairing started, ssp %u, initiator %u, requested level %u", (int) ssp, (int) initiator, hci_connection->requested_security_level); uint8_t event[12]; event[0] = GAP_EVENT_PAIRING_STARTED; event[1] = 10; little_endian_store_16(event, 2, (uint16_t) hci_connection->con_handle); reverse_bd_addr(hci_connection->address, &event[4]); event[10] = (uint8_t) ssp; event[11] = (uint8_t) initiator; hci_emit_event(event, sizeof(event), 1); } static void hci_pairing_complete(hci_connection_t * hci_connection, uint8_t status){ hci_connection->requested_security_level = LEVEL_0; if (!hci_pairing_active(hci_connection)) return; hci_connection->authentication_flags &= ~AUTH_FLAG_PAIRING_ACTIVE_MASK; #ifdef ENABLE_CLASSIC_PAIRING_OOB hci_connection->classic_oob_c_192 = NULL; hci_connection->classic_oob_r_192 = NULL; hci_connection->classic_oob_c_256 = NULL; hci_connection->classic_oob_r_256 = NULL; #endif log_info("pairing complete, status %02x", status); uint8_t event[11]; event[0] = GAP_EVENT_PAIRING_COMPLETE; event[1] = 9; little_endian_store_16(event, 2, (uint16_t) hci_connection->con_handle); reverse_bd_addr(hci_connection->address, &event[4]); event[10] = status; hci_emit_event(event, sizeof(event), 1); // emit dedicated bonding done on failure, otherwise verify that connection can be encrypted if ((status != ERROR_CODE_SUCCESS) && ((hci_connection->bonding_flags & BONDING_DEDICATED) != 0)){ hci_connection->bonding_flags &= ~BONDING_DEDICATED; hci_connection->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; hci_connection->bonding_status = status; } } bool hci_authentication_active_for_handle(hci_con_handle_t handle){ hci_connection_t * conn = hci_connection_for_handle(handle); if (!conn) return false; return hci_pairing_active(conn); } void gap_drop_link_key_for_bd_addr(bd_addr_t addr){ if (!hci_stack->link_key_db) return; log_info("gap_drop_link_key_for_bd_addr: %s", bd_addr_to_str(addr)); hci_stack->link_key_db->delete_link_key(addr); } void gap_store_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t type){ if (!hci_stack->link_key_db) return; log_info("gap_store_link_key_for_bd_addr: %s, type %u", bd_addr_to_str(addr), type); hci_stack->link_key_db->put_link_key(addr, link_key, type); } bool gap_get_link_key_for_bd_addr(bd_addr_t addr, link_key_t link_key, link_key_type_t * type){ if (!hci_stack->link_key_db) return false; int result = hci_stack->link_key_db->get_link_key(addr, link_key, type) != 0; log_info("link key for %s available %u, type %u", bd_addr_to_str(addr), result, (int) *type); return result; } void gap_delete_all_link_keys(void){ bd_addr_t addr; link_key_t link_key; link_key_type_t type; btstack_link_key_iterator_t it; int ok = gap_link_key_iterator_init(&it); if (!ok) { log_error("could not initialize iterator"); return; } while (gap_link_key_iterator_get_next(&it, addr, link_key, &type)){ gap_drop_link_key_for_bd_addr(addr); } gap_link_key_iterator_done(&it); } int gap_link_key_iterator_init(btstack_link_key_iterator_t * it){ if (!hci_stack->link_key_db) return 0; if (!hci_stack->link_key_db->iterator_init) return 0; return hci_stack->link_key_db->iterator_init(it); } int gap_link_key_iterator_get_next(btstack_link_key_iterator_t * it, bd_addr_t bd_addr, link_key_t link_key, link_key_type_t * type){ if (!hci_stack->link_key_db) return 0; return hci_stack->link_key_db->iterator_get_next(it, bd_addr, link_key, type); } void gap_link_key_iterator_done(btstack_link_key_iterator_t * it){ if (!hci_stack->link_key_db) return; hci_stack->link_key_db->iterator_done(it); } #endif bool hci_is_le_connection_type(bd_addr_type_t address_type){ switch (address_type){ case BD_ADDR_TYPE_LE_PUBLIC: case BD_ADDR_TYPE_LE_RANDOM: case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: return true; default: return false; } } bool hci_is_le_identity_address_type(bd_addr_type_t address_type){ switch (address_type){ case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: return true; default: return false; } } static bool hci_is_le_connection(hci_connection_t * connection){ return hci_is_le_connection_type(connection->address_type); } /** * count connections */ static int nr_hci_connections(void){ int count = 0; btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL ; it = it->next){ count++; } return count; } uint16_t hci_number_free_acl_slots_for_connection_type(bd_addr_type_t address_type){ unsigned int num_packets_sent_classic = 0; unsigned int num_packets_sent_le = 0; btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (hci_is_le_connection(connection)){ num_packets_sent_le += connection->num_packets_sent; } if (connection->address_type == BD_ADDR_TYPE_ACL){ num_packets_sent_classic += connection->num_packets_sent; } } log_debug("ACL classic buffers: %u used of %u", num_packets_sent_classic, hci_stack->acl_packets_total_num); int free_slots_classic = hci_stack->acl_packets_total_num - num_packets_sent_classic; int free_slots_le = 0; if (free_slots_classic < 0){ log_error("hci_number_free_acl_slots: outgoing classic packets (%u) > total classic packets (%u)", num_packets_sent_classic, hci_stack->acl_packets_total_num); return 0; } if (hci_stack->le_acl_packets_total_num){ // if we have LE slots, they are used free_slots_le = hci_stack->le_acl_packets_total_num - num_packets_sent_le; if (free_slots_le < 0){ log_error("hci_number_free_acl_slots: outgoing le packets (%u) > total le packets (%u)", num_packets_sent_le, hci_stack->le_acl_packets_total_num); return 0; } } else { // otherwise, classic slots are used for LE, too free_slots_classic -= num_packets_sent_le; if (free_slots_classic < 0){ log_error("hci_number_free_acl_slots: outgoing classic + le packets (%u + %u) > total packets (%u)", num_packets_sent_classic, num_packets_sent_le, hci_stack->acl_packets_total_num); return 0; } } switch (address_type){ case BD_ADDR_TYPE_UNKNOWN: log_error("hci_number_free_acl_slots: unknown address type"); return 0; case BD_ADDR_TYPE_ACL: return (uint16_t) free_slots_classic; default: if (hci_stack->le_acl_packets_total_num > 0){ return (uint16_t) free_slots_le; } return (uint16_t) free_slots_classic; } } int hci_number_free_acl_slots_for_handle(hci_con_handle_t con_handle){ // get connection type hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection){ log_error("hci_number_free_acl_slots: handle 0x%04x not in connection list", con_handle); return 0; } return hci_number_free_acl_slots_for_connection_type(connection->address_type); } #ifdef ENABLE_CLASSIC static int hci_number_free_sco_slots(void){ unsigned int num_sco_packets_sent = 0; btstack_linked_item_t *it; if (hci_stack->synchronous_flow_control_enabled){ // explicit flow control for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (connection->address_type != BD_ADDR_TYPE_SCO) continue; num_sco_packets_sent += connection->num_packets_sent; } if (num_sco_packets_sent > hci_stack->sco_packets_total_num){ log_info("hci_number_free_sco_slots:packets (%u) > total packets (%u)", num_sco_packets_sent, hci_stack->sco_packets_total_num); return 0; } return hci_stack->sco_packets_total_num - num_sco_packets_sent; } else { // implicit flow control int num_ready = 0; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (connection->address_type != BD_ADDR_TYPE_SCO) continue; if (connection->sco_tx_ready == 0) continue; num_ready++; } return num_ready; } } #endif // only used to send HCI Host Number Completed Packets static int hci_can_send_comand_packet_transport(void){ if (hci_stack->hci_packet_buffer_reserved) return 0; // check for async hci transport implementations if (hci_stack->hci_transport->can_send_packet_now){ if (!hci_stack->hci_transport->can_send_packet_now(HCI_COMMAND_DATA_PACKET)){ return 0; } } return 1; } // new functions replacing hci_can_send_packet_now[_using_packet_buffer] bool hci_can_send_command_packet_now(void){ if (hci_can_send_comand_packet_transport() == 0) return false; return hci_stack->num_cmd_packets > 0u; } static int hci_transport_can_send_prepared_packet_now(uint8_t packet_type){ // check for async hci transport implementations if (!hci_stack->hci_transport->can_send_packet_now) return true; return hci_stack->hci_transport->can_send_packet_now(packet_type); } static bool hci_can_send_prepared_acl_packet_for_address_type(bd_addr_type_t address_type){ if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return false; return hci_number_free_acl_slots_for_connection_type(address_type) > 0; } bool hci_can_send_acl_le_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return false; return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_LE_PUBLIC); } bool hci_can_send_prepared_acl_packet_now(hci_con_handle_t con_handle) { if (!hci_transport_can_send_prepared_packet_now(HCI_ACL_DATA_PACKET)) return false; return hci_number_free_acl_slots_for_handle(con_handle) > 0; } bool hci_can_send_acl_packet_now(hci_con_handle_t con_handle){ if (hci_stack->hci_packet_buffer_reserved) return false; return hci_can_send_prepared_acl_packet_now(con_handle); } #ifdef ENABLE_CLASSIC bool hci_can_send_acl_classic_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return false; return hci_can_send_prepared_acl_packet_for_address_type(BD_ADDR_TYPE_ACL); } bool hci_can_send_prepared_sco_packet_now(void){ if (!hci_transport_can_send_prepared_packet_now(HCI_SCO_DATA_PACKET)) return false; if (hci_have_usb_transport()){ return hci_stack->sco_can_send_now; } else { return hci_number_free_sco_slots() > 0; } } bool hci_can_send_sco_packet_now(void){ if (hci_stack->hci_packet_buffer_reserved) return false; return hci_can_send_prepared_sco_packet_now(); } void hci_request_sco_can_send_now_event(void){ hci_stack->sco_waiting_for_can_send_now = 1; hci_notify_if_sco_can_send_now(); } #endif // used for internal checks in l2cap.c bool hci_is_packet_buffer_reserved(void){ return hci_stack->hci_packet_buffer_reserved; } void hci_reserve_packet_buffer(void){ btstack_assert(hci_stack->hci_packet_buffer_reserved == false); hci_stack->hci_packet_buffer_reserved = true; } void hci_release_packet_buffer(void){ btstack_assert(hci_stack->hci_packet_buffer_reserved); hci_stack->hci_packet_buffer_reserved = false; hci_emit_transport_packet_sent(); } // assumption: synchronous implementations don't provide can_send_packet_now as they don't keep the buffer after the call static int hci_transport_synchronous(void){ return hci_stack->hci_transport->can_send_packet_now == NULL; } // used for debugging #ifdef ENABLE_CONTROLLER_DUMP_PACKETS static void hci_controller_dump_packets(void){ // format: "{handle:04x}:{count:02d} " char summaries[3][7 * 8 + 1]; uint16_t totals[3]; uint8_t index; for (index = 0 ; index < 3 ; index++){ summaries[index][0] = 0; totals[index] = 0; } btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; switch (connection->address_type){ case BD_ADDR_TYPE_ACL: index = 0; break; case BD_ADDR_TYPE_SCO: index = 2; break; default: index = 1; break; } totals[index] += connection->num_packets_sent; char item_text[10]; sprintf(item_text, "%04x:%02d ", connection->con_handle,connection->num_packets_sent); btstack_strcat(summaries[index], sizeof(summaries[0]), item_text); } for (index = 0 ; index < 3 ; index++){ if (summaries[index][0] == 0){ summaries[index][0] = '-'; summaries[index][1] = 0; } } log_info("Controller ACL BR/EDR: %s total %u / LE: %s total %u / SCO: %s total %u", summaries[0], totals[0], summaries[1], totals[1], summaries[2], totals[2]); } #endif static uint8_t hci_send_acl_packet_fragments(hci_connection_t *connection){ // log_info("hci_send_acl_packet_fragments %u/%u (con 0x%04x)", hci_stack->acl_fragmentation_pos, hci_stack->acl_fragmentation_total_size, connection->con_handle); // max ACL data packet length depends on connection type (LE vs. Classic) and available buffers uint16_t max_acl_data_packet_length = hci_stack->acl_data_packet_length; if (hci_is_le_connection(connection) && (hci_stack->le_data_packets_length > 0u)){ max_acl_data_packet_length = hci_stack->le_data_packets_length; } #ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS if (hci_is_le_connection(connection) && (connection->le_max_tx_octets < max_acl_data_packet_length)){ max_acl_data_packet_length = connection->le_max_tx_octets; } #endif log_debug("hci_send_acl_packet_fragments entered"); uint8_t status = ERROR_CODE_SUCCESS; // multiple packets could be send on a synchronous HCI transport while (true){ log_debug("hci_send_acl_packet_fragments loop entered"); // get current data const uint16_t acl_header_pos = hci_stack->acl_fragmentation_pos - 4u; int current_acl_data_packet_length = hci_stack->acl_fragmentation_total_size - hci_stack->acl_fragmentation_pos; bool more_fragments = false; // if ACL packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length if (current_acl_data_packet_length > max_acl_data_packet_length){ more_fragments = true; current_acl_data_packet_length = max_acl_data_packet_length & (~(HCI_ACL_CHUNK_SIZE_ALIGNMENT-1)); } // copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent) if (acl_header_pos > 0u){ uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0); handle_and_flags = (handle_and_flags & 0xcfffu) | (1u << 12u); little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos, handle_and_flags); } // update header len little_endian_store_16(hci_stack->hci_packet_buffer, acl_header_pos + 2u, current_acl_data_packet_length); // count packet connection->num_packets_sent++; log_debug("hci_send_acl_packet_fragments loop before send (more fragments %d)", (int) more_fragments); // update state for next fragment (if any) as "transport done" might be sent during send_packet already if (more_fragments){ // update start of next fragment to send hci_stack->acl_fragmentation_pos += current_acl_data_packet_length; } else { // done hci_stack->acl_fragmentation_pos = 0; hci_stack->acl_fragmentation_total_size = 0; } // send packet uint8_t * packet = &hci_stack->hci_packet_buffer[acl_header_pos]; const int size = current_acl_data_packet_length + 4; hci_dump_packet(HCI_ACL_DATA_PACKET, 0, packet, size); hci_stack->acl_fragmentation_tx_active = 1; int err = hci_stack->hci_transport->send_packet(HCI_ACL_DATA_PACKET, packet, size); if (err != 0){ // no error from HCI Transport expected status = ERROR_CODE_HARDWARE_FAILURE; } #ifdef ENABLE_CONTROLLER_DUMP_PACKETS hci_controller_dump_packets(); #endif log_debug("hci_send_acl_packet_fragments loop after send (more fragments %d)", (int) more_fragments); // done yet? if (!more_fragments) break; // can send more? if (!hci_can_send_prepared_acl_packet_now(connection->con_handle)) return status; } log_debug("hci_send_acl_packet_fragments loop over"); // release buffer now for synchronous transport if (hci_transport_synchronous()){ hci_stack->acl_fragmentation_tx_active = 0; hci_release_packet_buffer(); } return status; } // pre: caller has reserved the packet buffer uint8_t hci_send_acl_packet_buffer(int size){ btstack_assert(hci_stack->hci_packet_buffer_reserved); uint8_t * packet = hci_stack->hci_packet_buffer; hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); hci_connection_t *connection = hci_connection_for_handle( con_handle); if (!connection) { log_error("hci_send_acl_packet_buffer called but no connection for handle 0x%04x", con_handle); hci_release_packet_buffer(); return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } // check for free places on Bluetooth module if (!hci_can_send_prepared_acl_packet_now(con_handle)) { log_error("hci_send_acl_packet_buffer called but no free ACL buffers on controller"); hci_release_packet_buffer(); return BTSTACK_ACL_BUFFERS_FULL; } #ifdef ENABLE_CLASSIC hci_connection_timestamp(connection); #endif // hci_dump_packet( HCI_ACL_DATA_PACKET, 0, packet, size); // setup data hci_stack->acl_fragmentation_total_size = size; hci_stack->acl_fragmentation_pos = 4; // start of L2CAP packet return hci_send_acl_packet_fragments(connection); } #ifdef ENABLE_CLASSIC // pre: caller has reserved the packet buffer uint8_t hci_send_sco_packet_buffer(int size){ btstack_assert(hci_stack->hci_packet_buffer_reserved); uint8_t * packet = hci_stack->hci_packet_buffer; // skip checks in loopback mode if (!hci_stack->loopback_mode){ hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); // same for ACL and SCO // check for free places on Bluetooth module if (!hci_can_send_prepared_sco_packet_now()) { log_error("hci_send_sco_packet_buffer called but no free SCO buffers on controller"); hci_release_packet_buffer(); return BTSTACK_ACL_BUFFERS_FULL; } // track send packet in connection struct hci_connection_t *connection = hci_connection_for_handle( con_handle); if (!connection) { log_error("hci_send_sco_packet_buffer called but no connection for handle 0x%04x", con_handle); hci_release_packet_buffer(); return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } if (hci_have_usb_transport()){ // token used hci_stack->sco_can_send_now = false; } else { if (hci_stack->synchronous_flow_control_enabled){ connection->num_packets_sent++; } else { connection->sco_tx_ready--; } } } hci_dump_packet( HCI_SCO_DATA_PACKET, 0, packet, size); #ifdef HAVE_SCO_TRANSPORT hci_stack->sco_transport->send_packet(packet, size); hci_release_packet_buffer(); hci_emit_transport_packet_sent(); return 0; #else int err = hci_stack->hci_transport->send_packet(HCI_SCO_DATA_PACKET, packet, size); if (hci_transport_synchronous()){ hci_release_packet_buffer(); } if (err != 0){ return ERROR_CODE_HARDWARE_FAILURE; } return ERROR_CODE_SUCCESS; #endif } #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS static uint8_t hci_send_iso_packet_fragments(void){ uint16_t max_iso_data_packet_length = hci_stack->le_iso_packets_length; uint8_t status = ERROR_CODE_SUCCESS; // multiple packets could be send on a synchronous HCI transport while (true){ // get current data const uint16_t iso_header_pos = hci_stack->iso_fragmentation_pos - 4u; int current_iso_data_packet_length = hci_stack->iso_fragmentation_total_size - hci_stack->iso_fragmentation_pos; bool more_fragments = false; // if ISO packet is larger than Bluetooth packet buffer, only send max_acl_data_packet_length if (current_iso_data_packet_length > max_iso_data_packet_length){ more_fragments = true; current_iso_data_packet_length = max_iso_data_packet_length; } // copy handle_and_flags if not first fragment and update packet boundary flags to be 01 (continuing fragmnent) uint16_t handle_and_flags = little_endian_read_16(hci_stack->hci_packet_buffer, 0); uint8_t pb_flags; if (iso_header_pos == 0u){ // first fragment, keep TS field pb_flags = more_fragments ? 0x00 : 0x02; handle_and_flags = (handle_and_flags & 0x4fffu) | (pb_flags << 12u); } else { // later fragment, drop TS field pb_flags = more_fragments ? 0x01 : 0x03; handle_and_flags = (handle_and_flags & 0x0fffu) | (pb_flags << 12u); } little_endian_store_16(hci_stack->hci_packet_buffer, iso_header_pos, handle_and_flags); // update header len little_endian_store_16(hci_stack->hci_packet_buffer, iso_header_pos + 2u, current_iso_data_packet_length); // update state for next fragment (if any) as "transport done" might be sent during send_packet already if (more_fragments){ // update start of next fragment to send hci_stack->iso_fragmentation_pos += current_iso_data_packet_length; } else { // done hci_stack->iso_fragmentation_pos = 0; hci_stack->iso_fragmentation_total_size = 0; } // send packet uint8_t * packet = &hci_stack->hci_packet_buffer[iso_header_pos]; const int size = current_iso_data_packet_length + 4; hci_dump_packet(HCI_ISO_DATA_PACKET, 0, packet, size); hci_stack->iso_fragmentation_tx_active = true; int err = hci_stack->hci_transport->send_packet(HCI_ISO_DATA_PACKET, packet, size); if (err != 0){ // no error from HCI Transport expected status = ERROR_CODE_HARDWARE_FAILURE; } // done yet? if (!more_fragments) break; // can send more? if (!hci_transport_can_send_prepared_packet_now(HCI_ISO_DATA_PACKET)) return false; } // release buffer now for synchronous transport if (hci_transport_synchronous()){ hci_stack->iso_fragmentation_tx_active = false; hci_release_packet_buffer(); hci_emit_transport_packet_sent(); } return status; } uint8_t hci_send_iso_packet_buffer(uint16_t size){ btstack_assert(hci_stack->hci_packet_buffer_reserved); hci_con_handle_t con_handle = (hci_con_handle_t) little_endian_read_16(hci_stack->hci_packet_buffer, 0) & 0xfff; hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(con_handle); if (iso_stream == NULL){ hci_release_packet_buffer(); hci_iso_notify_can_send_now(); return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } // TODO: check for space on controller // skip iso packets if needed if (iso_stream->num_packets_to_skip > 0){ iso_stream->num_packets_to_skip--; // pretend it was processed and trigger next one hci_release_packet_buffer(); hci_iso_notify_can_send_now(); return ERROR_CODE_SUCCESS; } // track outgoing packet sent log_info("Outgoing ISO packet for con handle 0x%04x", con_handle); iso_stream->num_packets_sent++; // setup data hci_stack->iso_fragmentation_total_size = size; hci_stack->iso_fragmentation_pos = 4; // start of L2CAP packet return hci_send_iso_packet_fragments(); } #endif static void acl_handler(uint8_t *packet, uint16_t size){ // get info hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); hci_connection_t *conn = hci_connection_for_handle(con_handle); uint8_t acl_flags = READ_ACL_FLAGS(packet); uint16_t acl_length = READ_ACL_LENGTH(packet); // ignore non-registered handle if (!conn){ log_error("acl_handler called with non-registered handle %u!" , con_handle); return; } // assert packet is complete if ((acl_length + 4u) != size){ log_error("acl_handler called with ACL packet of wrong size %d, expected %u => dropping packet", size, acl_length + 4); return; } #ifdef ENABLE_CLASSIC // update idle timestamp hci_connection_timestamp(conn); #endif #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL hci_stack->host_completed_packets = 1; conn->num_packets_completed++; #endif // handle different packet types switch (acl_flags & 0x03u) { case 0x01: // continuation fragment // sanity checks if (conn->acl_recombination_pos == 0u) { log_error( "ACL Cont Fragment but no first fragment for handle 0x%02x", con_handle); return; } if ((conn->acl_recombination_pos + acl_length) > (4u + HCI_ACL_BUFFER_SIZE)){ log_error( "ACL Cont Fragment to large: combined packet %u > buffer size %u for handle 0x%02x", conn->acl_recombination_pos + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); conn->acl_recombination_pos = 0; return; } // append fragment payload (header already stored) (void)memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE + conn->acl_recombination_pos], &packet[4], acl_length); conn->acl_recombination_pos += acl_length; // forward complete L2CAP packet if complete. if (conn->acl_recombination_pos >= (conn->acl_recombination_length + 4u + 4u)){ // pos already incl. ACL header hci_emit_acl_packet(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], conn->acl_recombination_pos); // reset recombination buffer conn->acl_recombination_length = 0; conn->acl_recombination_pos = 0; } break; case 0x02: { // first fragment // sanity check if (conn->acl_recombination_pos) { // we just received the first fragment, but still have data. Only warn if the packet wasn't a flushable packet if ((conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE+1] >> 4) != 0x02){ log_error( "ACL First Fragment but %u bytes in buffer for handle 0x%02x, dropping stale fragments", conn->acl_recombination_pos, con_handle); } conn->acl_recombination_pos = 0; } // peek into L2CAP packet! uint16_t l2cap_length = READ_L2CAP_LENGTH( packet ); // compare fragment size to L2CAP packet size if (acl_length >= (l2cap_length + 4u)){ // forward fragment as L2CAP packet hci_emit_acl_packet(packet, acl_length + 4u); } else { if (acl_length > HCI_ACL_BUFFER_SIZE){ log_error( "ACL First Fragment to large: fragment %u > buffer size %u for handle 0x%02x", 4 + acl_length, 4 + HCI_ACL_BUFFER_SIZE, con_handle); return; } // store first fragment and tweak acl length for complete package (void)memcpy(&conn->acl_recombination_buffer[HCI_INCOMING_PRE_BUFFER_SIZE], packet, acl_length + 4u); conn->acl_recombination_pos = acl_length + 4u; conn->acl_recombination_length = l2cap_length; little_endian_store_16(conn->acl_recombination_buffer, HCI_INCOMING_PRE_BUFFER_SIZE + 2u, l2cap_length +4u); } break; } default: log_error( "acl_handler called with invalid packet boundary flags %u", acl_flags & 0x03); return; } // execute main loop hci_run(); } static void hci_connection_stop_timer(hci_connection_t * conn){ btstack_run_loop_remove_timer(&conn->timeout); #ifdef ENABLE_CLASSIC btstack_run_loop_remove_timer(&conn->timeout_sco); #endif } static void hci_shutdown_connection(hci_connection_t *conn){ log_info("Connection closed: handle 0x%x, %s", conn->con_handle, bd_addr_to_str(conn->address)); #ifdef ENABLE_CLASSIC #if defined(ENABLE_SCO_OVER_HCI) || defined(HAVE_SCO_TRANSPORT) bd_addr_type_t addr_type = conn->address_type; #endif #ifdef HAVE_SCO_TRANSPORT hci_con_handle_t con_handle = conn->con_handle; #endif #endif hci_connection_stop_timer(conn); btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); // now it's gone hci_emit_nr_connections_changed(); #ifdef ENABLE_CLASSIC #ifdef ENABLE_SCO_OVER_HCI // update SCO if ((addr_type == BD_ADDR_TYPE_SCO) && (hci_stack->hci_transport != NULL) && (hci_stack->hci_transport->set_sco_config != NULL)){ hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections()); } #endif #ifdef HAVE_SCO_TRANSPORT if ((addr_type == BD_ADDR_TYPE_SCO) && (hci_stack->sco_transport != NULL)){ hci_stack->sco_transport->close(con_handle); } #endif #endif } #ifdef ENABLE_CLASSIC static const uint16_t hci_acl_packet_type_sizes[] = { 0, HCI_ACL_2DH1_SIZE, HCI_ACL_3DH1_SIZE, HCI_ACL_DM1_SIZE, HCI_ACL_DH1_SIZE, 0, 0, 0, HCI_ACL_2DH3_SIZE, HCI_ACL_3DH3_SIZE, HCI_ACL_DM3_SIZE, HCI_ACL_DH3_SIZE, HCI_ACL_2DH5_SIZE, HCI_ACL_3DH5_SIZE, HCI_ACL_DM5_SIZE, HCI_ACL_DH5_SIZE }; static const uint8_t hci_acl_packet_type_feature_requirement_bit[] = { 0, // 3 slot packets 1, // 5 slot packets 25, // EDR 2 mpbs 26, // EDR 3 mbps 39, // 3 slot EDR packts 40, // 5 slot EDR packet }; static const uint16_t hci_acl_packet_type_feature_packet_mask[] = { 0x0f00, // 3 slot packets 0xf000, // 5 slot packets 0x1102, // EDR 2 mpbs 0x2204, // EDR 3 mbps 0x0300, // 3 slot EDR packts 0x3000, // 5 slot EDR packet }; static uint16_t hci_acl_packet_types_for_buffer_size_and_local_features(uint16_t buffer_size, uint8_t * local_supported_features){ // enable packet types based on size uint16_t packet_types = 0; unsigned int i; for (i=0;i<16;i++){ if (hci_acl_packet_type_sizes[i] == 0) continue; if (hci_acl_packet_type_sizes[i] <= buffer_size){ packet_types |= 1 << i; } } // disable packet types due to missing local supported features for (i=0;i> 3] & (1<<(bit_idx & 7))) != 0; if (feature_set) continue; log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, hci_acl_packet_type_feature_packet_mask[i]); packet_types &= ~hci_acl_packet_type_feature_packet_mask[i]; } return packet_types; } uint16_t hci_usable_acl_packet_types(void){ uint16_t active_packet_types = (hci_stack->usable_packet_types_acl & hci_stack->enabled_packet_types_acl); // flip bits for "may not be used" return active_packet_types ^ 0x3306; } void hci_enable_acl_packet_types(uint16_t packet_types){ hci_stack->enabled_packet_types_acl = packet_types; } static const struct { uint8_t feature_index; uint16_t feature_packet_mask; } hci_sco_packet_type_feature_requirements[] = { { 12, SCO_PACKET_TYPES_HV2 }, // HV2 packets { 13, SCO_PACKET_TYPES_HV3 }, // HV3 packets { 31, SCO_PACKET_TYPES_ESCO }, // eSCO links (EV3 packets) { 32, SCO_PACKET_TYPES_EV4 }, // EV4 packets { 45, SCO_PACKET_TYPES_2EV3 | SCO_PACKET_TYPES_2EV5 }, // EDR eSCO 2 Mb/s { 46, SCO_PACKET_TYPES_3EV3 | SCO_PACKET_TYPES_3EV5 }, // EDR eSCO 3 Mb/s { 47, SCO_PACKET_TYPES_2EV5 | SCO_PACKET_TYPES_3EV5 }, // 3-slot EDR eSCO packets, 2-EV3/3-EV3 use single slot }; // map packet types to payload length, prefer eSCO over SCO and large over small packets static const struct { uint16_t type; uint16_t payload_length; } hci_sco_packet_type_to_payload_length[] = { {SCO_PACKET_TYPES_3EV5, HCI_SCO_3EV5_SIZE}, // 540 {SCO_PACKET_TYPES_2EV5, HCI_SCO_2EV5_SIZE}, // 360 {SCO_PACKET_TYPES_EV5, HCI_SCO_EV5_SIZE}, // 180 {SCO_PACKET_TYPES_EV4, HCI_SCO_EV4_SIZE}, // 120 {SCO_PACKET_TYPES_3EV3, HCI_SCO_3EV3_SIZE}, // 90 {SCO_PACKET_TYPES_2EV3, HCI_SCO_2EV3_SIZE}, // 60 {SCO_PACKET_TYPES_EV3, HCI_SCO_EV3_SIZE}, // 30 {SCO_PACKET_TYPES_HV3, HCI_SCO_HV3_SIZE}, // 30 {SCO_PACKET_TYPES_HV2, HCI_SCO_HV2_SIZE}, // 20 {SCO_PACKET_TYPES_HV1, HCI_SCO_HV1_SIZE} // 10 }; static uint16_t hci_sco_packet_types_for_features(const uint8_t * local_supported_features){ uint16_t packet_types = SCO_PACKET_TYPES_ALL; unsigned int i; // disable packet types due to missing local supported features for (i=0;i<(sizeof(hci_sco_packet_type_feature_requirements)/sizeof(hci_sco_packet_type_feature_requirements[0])); i++){ unsigned int bit_idx = hci_sco_packet_type_feature_requirements[i].feature_index; bool feature_set = (local_supported_features[bit_idx >> 3] & (1<<(bit_idx & 7))) != 0; if (feature_set) continue; log_info("Features bit %02u is not set, removing packet types 0x%04x", bit_idx, hci_sco_packet_type_feature_requirements[i].feature_packet_mask); packet_types &= ~hci_sco_packet_type_feature_requirements[i].feature_packet_mask; } return packet_types; } uint16_t hci_usable_sco_packet_types(void){ return hci_stack->usable_packet_types_sco; } static uint16_t hci_sco_payload_length_for_packet_types(uint16_t packet_types){ uint8_t i; for (i=0;i= acl data packet length return hci_stack->hci_packet_buffer; } uint16_t hci_max_acl_data_packet_length(void){ return hci_stack->acl_data_packet_length; } #ifdef ENABLE_CLASSIC bool hci_extended_sco_link_supported(void){ // No. 31, byte 3, bit 7 return (hci_stack->local_supported_features[3] & (1 << 7)) != 0; } #endif bool hci_non_flushable_packet_boundary_flag_supported(void){ // No. 54, byte 6, bit 6 return (hci_stack->local_supported_features[6u] & (1u << 6u)) != 0u; } #ifdef ENABLE_CLASSIC static bool gap_ssp_supported(void){ // No. 51, byte 6, bit 3 return (hci_stack->local_supported_features[6u] & (1u << 3u)) != 0u; } #endif bool hci_classic_supported(void){ #ifdef ENABLE_CLASSIC // No. 37, byte 4, bit 5, = No BR/EDR Support return (hci_stack->local_supported_features[4] & (1 << 5)) == 0; #else return false; #endif } bool hci_le_supported(void){ #ifdef ENABLE_BLE // No. 37, byte 4, bit 6 = LE Supported (Controller) return (hci_stack->local_supported_features[4u] & (1u << 6u)) != 0u; #else return false; #endif } static bool hci_command_supported(uint8_t command_index){ return (hci_stack->local_supported_commands & (1LU << command_index)) != 0; } #ifdef ENABLE_BLE #ifdef ENABLE_LE_EXTENDED_ADVERTISING bool hci_le_extended_advertising_supported(void){ return hci_command_supported(SUPPORTED_HCI_COMMAND_LE_SET_EXTENDED_ADVERTISING_ENABLE); } #endif static void hci_get_own_address_for_addr_type(uint8_t own_addr_type, bd_addr_t own_addr){ if (own_addr_type == BD_ADDR_TYPE_LE_PUBLIC){ (void)memcpy(own_addr, hci_stack->local_bd_addr, 6); } else { (void)memcpy(own_addr, hci_stack->le_random_address, 6); } } void gap_le_get_own_address(uint8_t * addr_type, bd_addr_t addr){ *addr_type = hci_stack->le_own_addr_type; hci_get_own_address_for_addr_type(hci_stack->le_own_addr_type, addr); } #ifdef ENABLE_LE_PERIPHERAL void gap_le_get_own_advertisements_address(uint8_t * addr_type, bd_addr_t addr){ *addr_type = hci_stack->le_advertisements_own_addr_type; hci_get_own_address_for_addr_type(hci_stack->le_advertisements_own_addr_type, addr); }; #ifdef ENABLE_LE_EXTENDED_ADVERTISING void gap_le_get_own_advertising_set_address(uint8_t * addr_type, bd_addr_t addr, uint8_t advertising_handle){ if (advertising_handle == 0){ gap_le_get_own_advertisements_address(addr_type, addr); } else { le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set != NULL){ switch (advertising_set->extended_params.own_address_type){ case BD_ADDR_TYPE_LE_PUBLIC: *addr_type = BD_ADDR_TYPE_LE_PUBLIC; memcpy(addr, hci_stack->local_bd_addr, 6); break; case BD_ADDR_TYPE_LE_RANDOM: *addr_type = BD_ADDR_TYPE_LE_RANDOM; memcpy(addr, advertising_set->random_address, 6); break; case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: // do nothing as random address was already set from enhanced connection complete break; default: break; } } } }; #endif #endif #ifdef ENABLE_LE_CENTRAL /** * @brief Get own addr type and address used for LE connections (Central) */ void gap_le_get_own_connection_address(uint8_t * addr_type, bd_addr_t addr){ *addr_type = hci_stack->le_connection_own_addr_type; hci_get_own_address_for_addr_type(hci_stack->le_connection_own_addr_type, addr); } void le_handle_advertisement_report(uint8_t *packet, uint16_t size){ uint16_t offset = 3; uint8_t num_reports = packet[offset]; offset += 1; uint16_t i; uint8_t event[12 + LE_ADVERTISING_DATA_SIZE]; // use upper bound to avoid var size automatic var for (i=0; (i LE_ADVERTISING_DATA_SIZE) return; if ((offset + 9u + data_length + 1u) > size) return; // setup event uint8_t event_size = 10u + data_length; uint16_t pos = 0; event[pos++] = GAP_EVENT_ADVERTISING_REPORT; event[pos++] = event_size; (void)memcpy(&event[pos], &packet[offset], 1 + 1 + 6); // event type + address type + address offset += 8; pos += 8; event[pos++] = packet[offset + 1 + data_length]; // rssi event[pos++] = data_length; offset++; (void)memcpy(&event[pos], &packet[offset], data_length); pos += data_length; offset += data_length + 1u; // rssi hci_emit_event(event, pos, 1); } } #ifdef ENABLE_LE_EXTENDED_ADVERTISING void le_handle_extended_advertisement_report(uint8_t *packet, uint16_t size) { uint16_t offset = 3; uint8_t num_reports = packet[offset++]; uint8_t event[2 + 255]; // use upper bound to avoid var size automatic var uint8_t i; for (i=0; (i LE_EXTENDED_ADVERTISING_DATA_SIZE) return; if ((offset + 24u + data_length) > size) return; uint16_t event_type = little_endian_read_16(packet, offset); offset += 2; if ((event_type & 0x10) != 0) { // setup legacy event uint8_t legacy_event_type; switch (event_type){ case 0b0010011: // ADV_IND legacy_event_type = 0; break; case 0b0010101: // ADV_DIRECT_IND legacy_event_type = 1; break; case 0b0010010: // ADV_SCAN_IND legacy_event_type = 2; break; case 0b0010000: // ADV_NONCONN_IND legacy_event_type = 3; break; case 0b0011011: case 0b0011010: // SCAN_RSP legacy_event_type = 4; break; default: legacy_event_type = 0; break; } uint16_t pos = 0; event[pos++] = GAP_EVENT_ADVERTISING_REPORT; event[pos++] = 10u + data_length; event[pos++] = legacy_event_type; // copy address type + address (void) memcpy(&event[pos], &packet[offset], 1 + 6); offset += 7; pos += 7; // skip primary_phy, secondary_phy, advertising_sid, tx_power offset += 4; // copy rssi event[pos++] = packet[offset++]; // skip periodic advertising interval and direct address offset += 9; // copy data len + data; (void) memcpy(&event[pos], &packet[offset], 1 + data_length); pos += 1 +data_length; offset += 1+ data_length; hci_emit_event(event, pos, 1); } else { event[0] = GAP_EVENT_EXTENDED_ADVERTISING_REPORT; uint8_t report_len = 24 + data_length; event[1] = report_len; little_endian_store_16(event, 2, event_type); memcpy(&event[4], &packet[offset], report_len); offset += report_len; hci_emit_event(event, 2 + report_len, 1); } } } #endif #endif #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_PERIPHERAL static void hci_update_advertisements_enabled_for_current_roles(void){ if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ENABLED) != 0){ // get number of active le slave connections int num_slave_connections = 0; btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it); log_info("state %u, role %u, le_con %u", con->state, con->role, hci_is_le_connection(con)); if (con->state != OPEN) continue; if (con->role != HCI_ROLE_SLAVE) continue; if (!hci_is_le_connection(con)) continue; num_slave_connections++; } log_info("Num LE Peripheral roles: %u of %u", num_slave_connections, hci_stack->le_max_number_peripheral_connections); hci_stack->le_advertisements_enabled_for_current_roles = num_slave_connections < hci_stack->le_max_number_peripheral_connections; } else { hci_stack->le_advertisements_enabled_for_current_roles = false; } } #endif #endif #ifdef ENABLE_CLASSIC static void gap_run_set_local_name(void){ hci_reserve_packet_buffer(); uint8_t * packet = hci_stack->hci_packet_buffer; // construct HCI Command and send uint16_t opcode = hci_write_local_name.opcode; packet[0] = opcode & 0xff; packet[1] = opcode >> 8; packet[2] = DEVICE_NAME_LEN; memset(&packet[3], 0, DEVICE_NAME_LEN); uint16_t name_len = (uint16_t) strlen(hci_stack->local_name); uint16_t bytes_to_copy = btstack_min(name_len, DEVICE_NAME_LEN); // if shorter than DEVICE_NAME_LEN, it's implicitly NULL-terminated by memset call (void)memcpy(&packet[3], hci_stack->local_name, bytes_to_copy); // expand '00:00:00:00:00:00' in name with bd_addr btstack_replace_bd_addr_placeholder(&packet[3], bytes_to_copy, hci_stack->local_bd_addr); hci_stack->last_cmd_opcode = opcode; hci_send_prepared_cmd_packet(); } static void gap_run_set_eir_data(void){ hci_reserve_packet_buffer(); uint8_t * packet = hci_stack->hci_packet_buffer; // construct HCI Command in-place and send uint16_t opcode = hci_write_extended_inquiry_response.opcode; uint16_t offset = 0; packet[offset++] = opcode & 0xff; packet[offset++] = opcode >> 8; packet[offset++] = 1 + EXTENDED_INQUIRY_RESPONSE_DATA_LEN; packet[offset++] = 0; // FEC not required memset(&packet[offset], 0, EXTENDED_INQUIRY_RESPONSE_DATA_LEN); if (hci_stack->eir_data){ // copy items and expand '00:00:00:00:00:00' in name with bd_addr ad_context_t context; for (ad_iterator_init(&context, EXTENDED_INQUIRY_RESPONSE_DATA_LEN, hci_stack->eir_data) ; ad_iterator_has_more(&context) ; ad_iterator_next(&context)) { uint8_t data_type = ad_iterator_get_data_type(&context); uint8_t size = ad_iterator_get_data_len(&context); const uint8_t *data = ad_iterator_get_data(&context); // copy item packet[offset++] = size + 1; packet[offset++] = data_type; memcpy(&packet[offset], data, size); // update name item if ((data_type == BLUETOOTH_DATA_TYPE_SHORTENED_LOCAL_NAME) || (data_type == BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME)){ btstack_replace_bd_addr_placeholder(&packet[offset], size, hci_stack->local_bd_addr); } offset += size; } } else { uint16_t name_len = (uint16_t) strlen(hci_stack->local_name); uint16_t bytes_to_copy = btstack_min(name_len, EXTENDED_INQUIRY_RESPONSE_DATA_LEN - 2); packet[offset++] = bytes_to_copy + 1; packet[offset++] = BLUETOOTH_DATA_TYPE_COMPLETE_LOCAL_NAME; (void)memcpy(&packet[6], hci_stack->local_name, bytes_to_copy); // expand '00:00:00:00:00:00' in name with bd_addr btstack_replace_bd_addr_placeholder(&packet[offset], bytes_to_copy, hci_stack->local_bd_addr); } hci_stack->last_cmd_opcode = opcode; hci_send_prepared_cmd_packet(); } static void hci_run_gap_tasks_classic(void){ if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_CLASS_OF_DEVICE) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_CLASS_OF_DEVICE; hci_send_cmd(&hci_write_class_of_device, hci_stack->class_of_device); return; } if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_LOCAL_NAME) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_LOCAL_NAME; gap_run_set_local_name(); return; } if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_EIR_DATA) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_EIR_DATA; gap_run_set_eir_data(); return; } if ((hci_stack->gap_tasks_classic & GAP_TASK_SET_DEFAULT_LINK_POLICY) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_SET_DEFAULT_LINK_POLICY; hci_send_cmd(&hci_write_default_link_policy_setting, hci_stack->default_link_policy_settings); return; } // write page scan activity if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_PAGE_SCAN_ACTIVITY) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_PAGE_SCAN_ACTIVITY; hci_send_cmd(&hci_write_page_scan_activity, hci_stack->new_page_scan_interval, hci_stack->new_page_scan_window); return; } // write page scan type if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_PAGE_SCAN_TYPE) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_PAGE_SCAN_TYPE; hci_send_cmd(&hci_write_page_scan_type, hci_stack->new_page_scan_type); return; } // write page timeout if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_PAGE_TIMEOUT) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_PAGE_TIMEOUT; hci_send_cmd(&hci_write_page_timeout, hci_stack->page_timeout); return; } // send scan enable if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_SCAN_ENABLE) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_SCAN_ENABLE; hci_send_cmd(&hci_write_scan_enable, hci_stack->new_scan_enable_value); return; } // send write scan activity if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_INQUIRY_SCAN_ACTIVITY) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_INQUIRY_SCAN_ACTIVITY; hci_send_cmd(&hci_write_inquiry_scan_activity, hci_stack->inquiry_scan_interval, hci_stack->inquiry_scan_window); return; } // send write inquiry transmit power level if ((hci_stack->gap_tasks_classic & GAP_TASK_WRITE_INQUIRY_TX_POWER_LEVEL) != 0) { hci_stack->gap_tasks_classic &= ~GAP_TASK_WRITE_INQUIRY_TX_POWER_LEVEL; hci_send_cmd(&hci_write_inquiry_transmit_power_level, hci_stack->inquiry_tx_power_level); return; } } #endif #ifndef HAVE_HOST_CONTROLLER_API static uint32_t hci_transport_uart_get_main_baud_rate(void){ if (!hci_stack->config) return 0; uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; // Limit baud rate for Broadcom chipsets to 3 mbps if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) && (baud_rate > 3000000)){ baud_rate = 3000000; } return baud_rate; } static void hci_initialization_timeout_handler(btstack_timer_source_t * ds){ UNUSED(ds); switch (hci_stack->substate){ case HCI_INIT_W4_SEND_RESET: log_info("Resend HCI Reset"); hci_stack->substate = HCI_INIT_SEND_RESET; hci_stack->num_cmd_packets = 1; hci_run(); break; case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET: log_info("Resend HCI Reset - CSR Warm Boot with Link Reset"); if (hci_stack->hci_transport->reset_link){ hci_stack->hci_transport->reset_link(); } /* fall through */ case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT: log_info("Resend HCI Reset - CSR Warm Boot"); hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT; hci_stack->num_cmd_packets = 1; hci_run(); break; case HCI_INIT_W4_SEND_BAUD_CHANGE: if (hci_stack->hci_transport->set_baudrate){ uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); log_info("Local baud rate change to %" PRIu32 "(timeout handler)", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } // For CSR, HCI Reset is sent on new baud rate. Don't forget to reset link for H5/BCSP if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){ if (hci_stack->hci_transport->reset_link){ log_info("Link Reset"); hci_stack->hci_transport->reset_link(); } hci_stack->substate = HCI_INIT_SEND_RESET_CSR_WARM_BOOT; hci_run(); } break; case HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY: // otherwise continue hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS; hci_send_cmd(&hci_read_local_supported_commands); break; default: break; } } #endif static void hci_initializing_next_state(void){ hci_stack->substate = (hci_substate_t )( ((int) hci_stack->substate) + 1); } static void hci_init_done(void){ // done. tell the app log_info("hci_init_done -> HCI_STATE_WORKING"); hci_stack->state = HCI_STATE_WORKING; hci_emit_state(); } // assumption: hci_can_send_command_packet_now() == true static void hci_initializing_run(void){ log_debug("hci_initializing_run: substate %u, can send %u", hci_stack->substate, hci_can_send_command_packet_now()); if (!hci_can_send_command_packet_now()) return; #ifndef HAVE_HOST_CONTROLLER_API bool need_baud_change = hci_stack->config && hci_stack->chipset && hci_stack->chipset->set_baudrate_command && hci_stack->hci_transport->set_baudrate && ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; #endif switch (hci_stack->substate){ case HCI_INIT_SEND_RESET: hci_state_reset(); #ifndef HAVE_HOST_CONTROLLER_API // prepare reset if command complete not received in 100ms btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); #endif // send command hci_stack->substate = HCI_INIT_W4_SEND_RESET; hci_send_cmd(&hci_reset); break; case HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION: hci_send_cmd(&hci_read_local_version_information); hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION; break; #ifndef HAVE_HOST_CONTROLLER_API case HCI_INIT_SEND_RESET_CSR_WARM_BOOT: hci_state_reset(); // prepare reset if command complete not received in 100ms btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); // send command hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT; hci_send_cmd(&hci_reset); break; case HCI_INIT_SEND_RESET_ST_WARM_BOOT: hci_state_reset(); hci_stack->substate = HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT; hci_send_cmd(&hci_reset); break; case HCI_INIT_SEND_BAUD_CHANGE_BCM: { uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer); hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE_BCM; hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_send_prepared_cmd_packet(); break; } case HCI_INIT_SET_BD_ADDR: log_info("Set Public BD ADDR to %s", bd_addr_to_str(hci_stack->custom_bd_addr)); hci_stack->chipset->set_bd_addr_command(hci_stack->custom_bd_addr, hci_stack->hci_packet_buffer); hci_stack->substate = HCI_INIT_W4_SET_BD_ADDR; hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_send_prepared_cmd_packet(); break; case HCI_INIT_SEND_READ_LOCAL_NAME: #ifdef ENABLE_CLASSIC hci_send_cmd(&hci_read_local_name); hci_stack->substate = HCI_INIT_W4_SEND_READ_LOCAL_NAME; break; #endif /* fall through */ case HCI_INIT_SEND_BAUD_CHANGE: if (need_baud_change) { uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); hci_stack->chipset->set_baudrate_command(baud_rate, hci_stack->hci_packet_buffer); hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE; hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_send_prepared_cmd_packet(); // STLC25000D: baudrate change happens within 0.5 s after command was send, // use timer to update baud rate after 100 ms (knowing exactly, when command was sent is non-trivial) if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS){ btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_add_timer(&hci_stack->timeout); } break; } hci_stack->substate = HCI_INIT_CUSTOM_INIT; /* fall through */ case HCI_INIT_CUSTOM_INIT: case HCI_INIT_CUSTOM_PRE_INIT: // Custom initialization if (hci_stack->chipset && hci_stack->chipset->next_command){ hci_reserve_packet_buffer(); hci_stack->chipset_result = (*hci_stack->chipset->next_command)(hci_stack->hci_packet_buffer); bool send_cmd = false; switch (hci_stack->chipset_result){ case BTSTACK_CHIPSET_VALID_COMMAND: send_cmd = true; switch (hci_stack->substate){ case HCI_INIT_CUSTOM_INIT: hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT; break; case HCI_INIT_CUSTOM_PRE_INIT: hci_stack->substate = HCI_INIT_W4_CUSTOM_PRE_INIT; break; default: btstack_assert(false); break; } break; case BTSTACK_CHIPSET_WARMSTART_REQUIRED: send_cmd = true; // CSR Warm Boot: Wait a bit, then send HCI Reset until HCI Command Complete log_info("CSR Warm Boot"); btstack_run_loop_set_timer(&hci_stack->timeout, HCI_RESET_RESEND_TIMEOUT_MS); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO) && hci_stack->config && hci_stack->chipset // && hci_stack->chipset->set_baudrate_command -- there's no such command && hci_stack->hci_transport->set_baudrate && hci_transport_uart_get_main_baud_rate()){ hci_stack->substate = HCI_INIT_W4_SEND_BAUD_CHANGE; } else { hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT_LINK_RESET; } break; default: break; } if (send_cmd){ hci_stack->last_cmd_opcode = little_endian_read_16(hci_stack->hci_packet_buffer, 0); hci_send_prepared_cmd_packet(); break; } else { hci_release_packet_buffer(); } log_info("Init script done"); // Custom Pre-Init complete, start regular init with HCI Reset if (hci_stack->substate == HCI_INIT_CUSTOM_PRE_INIT){ hci_stack->substate = HCI_INIT_W4_SEND_RESET; hci_send_cmd(&hci_reset); break; } // Init script download on Broadcom chipsets causes: if ( (hci_stack->chipset_result != BTSTACK_CHIPSET_NO_INIT_SCRIPT) && ( (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) || (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA)) ){ // - baud rate to reset, restore UART baud rate if needed if (need_baud_change) { uint32_t baud_rate = ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_init; log_info("Local baud rate change to %" PRIu32 " after init script (bcm)", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } uint16_t bcm_delay_ms = 300; // - UART may or may not be disabled during update and Controller RTS may or may not be high during this time // -> Work around: wait here. log_info("BCM delay (%u ms) after init script", bcm_delay_ms); hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_BCM_DELAY; btstack_run_loop_set_timer(&hci_stack->timeout, bcm_delay_ms); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_initialization_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); break; } } #endif /* fall through */ case HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS: hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS; hci_send_cmd(&hci_read_local_supported_commands); break; case HCI_INIT_READ_BD_ADDR: hci_stack->substate = HCI_INIT_W4_READ_BD_ADDR; hci_send_cmd(&hci_read_bd_addr); break; case HCI_INIT_READ_BUFFER_SIZE: // only read buffer size if supported if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_BUFFER_SIZE)){ hci_stack->substate = HCI_INIT_W4_READ_BUFFER_SIZE; hci_send_cmd(&hci_read_buffer_size); break; } /* fall through */ case HCI_INIT_READ_LOCAL_SUPPORTED_FEATURES: hci_stack->substate = HCI_INIT_W4_READ_LOCAL_SUPPORTED_FEATURES; hci_send_cmd(&hci_read_local_supported_features); break; #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL case HCI_INIT_SET_CONTROLLER_TO_HOST_FLOW_CONTROL: hci_stack->substate = HCI_INIT_W4_SET_CONTROLLER_TO_HOST_FLOW_CONTROL; hci_send_cmd(&hci_set_controller_to_host_flow_control, 3); // ACL + SCO Flow Control break; case HCI_INIT_HOST_BUFFER_SIZE: hci_stack->substate = HCI_INIT_W4_HOST_BUFFER_SIZE; hci_send_cmd(&hci_host_buffer_size, HCI_HOST_ACL_PACKET_LEN, HCI_HOST_SCO_PACKET_LEN, HCI_HOST_ACL_PACKET_NUM, HCI_HOST_SCO_PACKET_NUM); break; #endif case HCI_INIT_SET_EVENT_MASK: hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK; if (hci_le_supported()){ hci_send_cmd(&hci_set_event_mask,0xFFFFFFFFU, 0x3FFFFFFFU); } else { // Kensington Bluetooth 2.1 USB Dongle (CSR Chipset) returns an error for 0xffff... hci_send_cmd(&hci_set_event_mask,0xFFFFFFFFU, 0x1FFFFFFFU); } break; case HCI_INIT_SET_EVENT_MASK_2: // On Bluettooth PTS dongle (BL 654) with PacketCraft HCI Firmware (LMP subversion) 0x5244, // setting Event Mask 2 causes Controller to drop Encryption Change events. if (hci_command_supported(SUPPORTED_HCI_COMMAND_SET_EVENT_MASK_PAGE_2) && (hci_stack->manufacturer != BLUETOOTH_COMPANY_ID_PACKETCRAFT_INC)){ hci_stack->substate = HCI_INIT_W4_SET_EVENT_MASK_2; // Encryption Change Event v2 - bit 25 hci_send_cmd(&hci_set_event_mask_2,0x02000000U, 0x0); break; } #ifdef ENABLE_CLASSIC /* fall through */ case HCI_INIT_WRITE_SIMPLE_PAIRING_MODE: if (hci_classic_supported() && gap_ssp_supported()){ hci_stack->substate = HCI_INIT_W4_WRITE_SIMPLE_PAIRING_MODE; hci_send_cmd(&hci_write_simple_pairing_mode, hci_stack->ssp_enable); break; } /* fall through */ case HCI_INIT_WRITE_INQUIRY_MODE: if (hci_classic_supported()){ hci_stack->substate = HCI_INIT_W4_WRITE_INQUIRY_MODE; hci_send_cmd(&hci_write_inquiry_mode, (int) hci_stack->inquiry_mode); break; } /* fall through */ case HCI_INIT_WRITE_SECURE_CONNECTIONS_HOST_ENABLE: // skip write secure connections host support if not supported or disabled if (hci_classic_supported() && hci_stack->secure_connections_enable && hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_SECURE_CONNECTIONS_HOST)) { hci_stack->secure_connections_active = true; hci_stack->substate = HCI_INIT_W4_WRITE_SECURE_CONNECTIONS_HOST_ENABLE; hci_send_cmd(&hci_write_secure_connections_host_support, 1); break; } /* fall through */ case HCI_INIT_SET_MIN_ENCRYPTION_KEY_SIZE: // skip set min encryption key size if (hci_classic_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_SET_MIN_ENCRYPTION_KEY_SIZE)) { hci_stack->substate = HCI_INIT_W4_SET_MIN_ENCRYPTION_KEY_SIZE; hci_send_cmd(&hci_set_min_encryption_key_size, hci_stack->gap_required_encyrption_key_size); break; } #ifdef ENABLE_SCO_OVER_HCI /* fall through */ // only sent if ENABLE_SCO_OVER_HCI is defined case HCI_INIT_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE: // skip write synchronous flow control if not supported if (hci_classic_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE)) { hci_stack->substate = HCI_INIT_W4_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE; hci_send_cmd(&hci_write_synchronous_flow_control_enable, 1); // SCO tracking enabled break; } /* fall through */ case HCI_INIT_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING: // skip write default erroneous data reporting if not supported if (hci_classic_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING)) { hci_stack->substate = HCI_INIT_W4_WRITE_DEFAULT_ERRONEOUS_DATA_REPORTING; hci_send_cmd(&hci_write_default_erroneous_data_reporting, 1); break; } #endif #if defined(ENABLE_SCO_OVER_HCI) || defined(ENABLE_SCO_OVER_PCM) /* fall through */ // only sent if manufacturer is Broadcom and ENABLE_SCO_OVER_HCI or ENABLE_SCO_OVER_PCM is defined case HCI_INIT_BCM_WRITE_SCO_PCM_INT: if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)){ hci_stack->substate = HCI_INIT_W4_BCM_WRITE_SCO_PCM_INT; #ifdef ENABLE_SCO_OVER_HCI log_info("BCM: Route SCO data via HCI transport"); hci_send_cmd(&hci_bcm_write_sco_pcm_int, 1, 0, 0, 0, 0); #endif #ifdef ENABLE_SCO_OVER_PCM log_info("BCM: Route SCO data via PCM interface"); #ifdef ENABLE_BCM_PCM_WBS // 512 kHz bit clock for 2 channels x 16 bit x 16 kHz hci_send_cmd(&hci_bcm_write_sco_pcm_int, 0, 2, 0, 1, 1); #else // 256 kHz bit clock for 2 channels x 16 bit x 8 kHz hci_send_cmd(&hci_bcm_write_sco_pcm_int, 0, 1, 0, 1, 1); #endif #endif break; } #endif #ifdef ENABLE_SCO_OVER_PCM /* fall through */ case HCI_INIT_BCM_WRITE_I2SPCM_INTERFACE_PARAM: if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)){ hci_stack->substate = HCI_INIT_W4_BCM_WRITE_I2SPCM_INTERFACE_PARAM; log_info("BCM: Config PCM interface for I2S"); #ifdef ENABLE_BCM_PCM_WBS // 512 kHz bit clock for 2 channels x 16 bit x 8 kHz hci_send_cmd(&hci_bcm_write_i2spcm_interface_param, 1, 1, 0, 2); #else // 256 kHz bit clock for 2 channels x 16 bit x 8 kHz hci_send_cmd(&hci_bcm_write_i2spcm_interface_param, 1, 1, 0, 1); #endif break; } case HCI_INIT_BCM_WRITE_PCM_DATA_FORMAT_PARAM: if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)){ hci_stack->substate = HCI_INIT_W4_BCM_WRITE_PCM_DATA_FORMAT_PARAM; log_info("BCM: Config PCM Data format"); // msb first, fill bits 0, left justified hci_send_cmd(&hci_bcm_write_pcm_data_format_param, 0, 0, 3, 3, 0); break; } #ifdef HAVE_BCM_PCM2 case HCI_INIT_BCM_PCM2_SETUP: if (hci_classic_supported() && (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION)) { hci_stack->substate = HCI_INIT_W4_BCM_PCM2_SETUP; uint8_t op_mode = 0; // Op_Mode = 0 = PCM, 1 = I2S uint32_t pcm_clock_freq; uint8_t ch_0_period; #ifdef ENABLE_BCM_PCM_WBS // 512 kHz, resample 8 kHz to 16 khz pcm_clock_freq = 512000; ch_0_period = 1; #else // 256 khz, 8 khz output pcm_clock_freq = 256000; ch_0_period = 0; #endif log_info("BCM: Config PCM2 - op mode %u, pcm clock %" PRIu32 ", ch0_period %u", op_mode, pcm_clock_freq, ch_0_period); hci_send_cmd(&hci_bcm_pcm2_setup, 0x00, // Action = Write 0x00, // Test_Options = None op_mode, // Op_Mode 0x1D, // Sync_and_Clock_Options Sync = Signal | Sync Output Enable | Generate PCM_CLK | Tristate When Idle pcm_clock_freq, // PCM_Clock_Freq 0x01, // Sync_Signal_Width 0x0F, // Slot_Width 0x01, // NumberOfSlots 0x00, // Bank_0_Fill_Mode = 0s 0x00, // Bank_0_Number_of_Fill_Bits 0x00, // Bank_0_Programmable_Fill_Data 0x00, // Bank_1_Fill_Mode = 0s 0x00, // Bank_1_Number_of_Fill_Bits 0x00, // Bank_1_Programmable_Fill_Data 0x00, // Data_Justify_And_Bit_Order_Options = Left Justify 0x00, // Ch_0_Slot_Number 0x01, // Ch_1_Slot_Number 0x02, // Ch_2_Slot_Number 0x03, // Ch_3_Slot_Number 0x04, // Ch_4_Slot_Number ch_0_period, // Ch_0_Period 0x00, // Ch_1_Period 0x00 // Ch_2_Period ); break; } #endif #endif /* ENABLE_SCO_OVER_PCM */ #endif /* ENABLE_CLASSIC */ #ifdef ENABLE_BLE /* fall through */ // LE INIT case HCI_INIT_LE_READ_BUFFER_SIZE: if (hci_le_supported()){ hci_stack->substate = HCI_INIT_W4_LE_READ_BUFFER_SIZE; if (hci_command_supported(SUPPORTED_HCI_COMMAND_LE_READ_BUFFER_SIZE_V2)){ hci_send_cmd(&hci_le_read_buffer_size_v2); } else { hci_send_cmd(&hci_le_read_buffer_size); } break; } /* fall through */ case HCI_INIT_WRITE_LE_HOST_SUPPORTED: // skip write le host if not supported (e.g. on LE only EM9301) if (hci_le_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_WRITE_LE_HOST_SUPPORTED)) { // LE Supported Host = 1, Simultaneous Host = 0 hci_stack->substate = HCI_INIT_W4_WRITE_LE_HOST_SUPPORTED; hci_send_cmd(&hci_write_le_host_supported, 1, 0); break; } /* fall through */ case HCI_INIT_LE_SET_EVENT_MASK: if (hci_le_supported()){ hci_stack->substate = HCI_INIT_W4_LE_SET_EVENT_MASK; #ifdef ENABLE_LE_ENHANCED_CONNECTION_COMPLETE_EVENT hci_send_cmd(&hci_le_set_event_mask, 0xffffffff, 0x0107); // all events from core v5.3 #else hci_send_cmd(&hci_le_set_event_mask, 0xfffffdff, 0x0007); // all events from core v5.3 without LE Enhanced Connection Complete #endif break; } #endif #ifdef ENABLE_LE_DATA_LENGTH_EXTENSION /* fall through */ case HCI_INIT_LE_READ_MAX_DATA_LENGTH: if (hci_le_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_LE_READ_MAXIMUM_DATA_LENGTH)) { hci_stack->substate = HCI_INIT_W4_LE_READ_MAX_DATA_LENGTH; hci_send_cmd(&hci_le_read_maximum_data_length); break; } /* fall through */ case HCI_INIT_LE_WRITE_SUGGESTED_DATA_LENGTH: if (hci_le_supported() && hci_command_supported(SUPPORTED_HCI_COMMAND_LE_WRITE_SUGGESTED_DEFAULT_DATA_LENGTH)) { hci_stack->substate = HCI_INIT_W4_LE_WRITE_SUGGESTED_DATA_LENGTH; hci_send_cmd(&hci_le_write_suggested_default_data_length, hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time); break; } #endif #ifdef ENABLE_LE_CENTRAL /* fall through */ case HCI_INIT_READ_WHITE_LIST_SIZE: if (hci_le_supported()){ hci_stack->substate = HCI_INIT_W4_READ_WHITE_LIST_SIZE; hci_send_cmd(&hci_le_read_white_list_size); break; } #endif #ifdef ENABLE_LE_PERIPHERAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING /* fall through */ case HCI_INIT_LE_READ_MAX_ADV_DATA_LEN: if (hci_le_extended_advertising_supported()){ hci_stack->substate = HCI_INIT_W4_LE_READ_MAX_ADV_DATA_LEN; hci_send_cmd(&hci_le_read_maximum_advertising_data_length); break; } #endif #endif /* fall through */ #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS case HCI_INIT_LE_SET_HOST_FEATURE_CONNECTED_ISO_STREAMS: if (hci_le_supported()) { hci_stack->substate = HCI_INIT_W4_LE_SET_HOST_FEATURE_CONNECTED_ISO_STREAMS; hci_send_cmd(&hci_le_set_host_feature, 32, 1); break; } #endif /* fall through */ case HCI_INIT_DONE: hci_stack->substate = HCI_INIT_DONE; // main init sequence complete #ifdef ENABLE_CLASSIC // check if initial Classic GAP Tasks are completed if (hci_classic_supported() && (hci_stack->gap_tasks_classic != 0)) { hci_run_gap_tasks_classic(); break; } #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL // check if initial LE GAP Tasks are completed if (hci_le_supported() && hci_stack->le_scanning_param_update) { hci_run_general_gap_le(); break; } #endif #endif hci_init_done(); break; default: return; } } static bool hci_initializing_event_handler_command_completed(const uint8_t * packet){ bool command_completed = false; if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE){ uint16_t opcode = little_endian_read_16(packet,3); if (opcode == hci_stack->last_cmd_opcode){ command_completed = true; log_debug("Command complete for expected opcode %04x at substate %u", opcode, hci_stack->substate); } else { log_info("Command complete for different opcode %04x, expected %04x, at substate %u", opcode, hci_stack->last_cmd_opcode, hci_stack->substate); } } if (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_STATUS){ uint8_t status = packet[2]; uint16_t opcode = little_endian_read_16(packet,4); if (opcode == hci_stack->last_cmd_opcode){ if (status){ command_completed = true; log_debug("Command status error 0x%02x for expected opcode %04x at substate %u", status, opcode, hci_stack->substate); } else { log_info("Command status OK for expected opcode %04x, waiting for command complete", opcode); } } else { log_debug("Command status for opcode %04x, expected %04x", opcode, hci_stack->last_cmd_opcode); } } #ifndef HAVE_HOST_CONTROLLER_API // Vendor == CSR if ((hci_stack->substate == HCI_INIT_W4_CUSTOM_INIT) && (hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC)){ // TODO: track actual command command_completed = true; } // Vendor == Toshiba if ((hci_stack->substate == HCI_INIT_W4_SEND_BAUD_CHANGE) && (hci_event_packet_get_type(packet) == HCI_EVENT_VENDOR_SPECIFIC)){ // TODO: track actual command command_completed = true; // Fix: no HCI Command Complete received, so num_cmd_packets not reset hci_stack->num_cmd_packets = 1; } #endif return command_completed; } static void hci_initializing_event_handler(const uint8_t * packet, uint16_t size){ UNUSED(size); // ok: less than 6 bytes are read from our buffer bool command_completed = hci_initializing_event_handler_command_completed(packet); #ifndef HAVE_HOST_CONTROLLER_API // Late response (> 100 ms) for HCI Reset e.g. on Toshiba TC35661: // Command complete for HCI Reset arrives after we've resent the HCI Reset command // // HCI Reset // Timeout 100 ms // HCI Reset // Command Complete Reset // HCI Read Local Version Information // Command Complete Reset - but we expected Command Complete Read Local Version Information // hang... // // Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend if (!command_completed && (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE) && (hci_stack->substate == HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION)){ uint16_t opcode = little_endian_read_16(packet,3); if (opcode == hci_reset.opcode){ hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION; return; } } // CSR & H5 // Fix: Command Complete for HCI Reset in HCI_INIT_W4_SEND_READ_LOCAL_VERSION_INFORMATION trigger resend if (!command_completed && (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE) && (hci_stack->substate == HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS)){ uint16_t opcode = little_endian_read_16(packet,3); if (opcode == hci_reset.opcode){ hci_stack->substate = HCI_INIT_READ_LOCAL_SUPPORTED_COMMANDS; return; } } // on CSR with BCSP/H5, the reset resend timeout leads to substate == HCI_INIT_SEND_RESET or HCI_INIT_SEND_RESET_CSR_WARM_BOOT // fix: Correct substate and behave as command below if (command_completed){ switch (hci_stack->substate){ case HCI_INIT_SEND_RESET: hci_stack->substate = HCI_INIT_W4_SEND_RESET; break; case HCI_INIT_SEND_RESET_CSR_WARM_BOOT: hci_stack->substate = HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT; break; default: break; } } #endif if (!command_completed) return; bool need_baud_change = false; bool need_addr_change = false; #ifndef HAVE_HOST_CONTROLLER_API need_baud_change = hci_stack->config && hci_stack->chipset && hci_stack->chipset->set_baudrate_command && hci_stack->hci_transport->set_baudrate && ((hci_transport_config_uart_t *)hci_stack->config)->baudrate_main; need_addr_change = hci_stack->custom_bd_addr_set && hci_stack->chipset && hci_stack->chipset->set_bd_addr_command; #endif switch(hci_stack->substate){ #ifndef HAVE_HOST_CONTROLLER_API case HCI_INIT_SEND_RESET: // on CSR with BCSP/H5, resend triggers resend of HCI Reset and leads to substate == HCI_INIT_SEND_RESET // fix: just correct substate and behave as command below /* fall through */ #endif case HCI_INIT_W4_SEND_RESET: btstack_run_loop_remove_timer(&hci_stack->timeout); hci_stack->substate = HCI_INIT_SEND_READ_LOCAL_VERSION_INFORMATION; return; #ifndef HAVE_HOST_CONTROLLER_API case HCI_INIT_W4_SEND_BAUD_CHANGE: // for STLC2500D, baud rate change already happened. // for others, baud rate gets changed now if ((hci_stack->manufacturer != BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS) && need_baud_change){ uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); log_info("Local baud rate change to %" PRIu32 "(w4_send_baud_change)", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; case HCI_INIT_W4_CUSTOM_INIT_CSR_WARM_BOOT: btstack_run_loop_remove_timer(&hci_stack->timeout); hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; case HCI_INIT_W4_CUSTOM_INIT: // repeat custom init hci_stack->substate = HCI_INIT_CUSTOM_INIT; return; case HCI_INIT_W4_CUSTOM_PRE_INIT: // repeat custom init hci_stack->substate = HCI_INIT_CUSTOM_PRE_INIT; return; #endif case HCI_INIT_W4_READ_LOCAL_SUPPORTED_COMMANDS: if (need_baud_change && (hci_stack->chipset_result != BTSTACK_CHIPSET_NO_INIT_SCRIPT) && ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION) || (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_EM_MICROELECTRONIC_MARIN_SA))) { hci_stack->substate = HCI_INIT_SEND_BAUD_CHANGE_BCM; return; } if (need_addr_change){ hci_stack->substate = HCI_INIT_SET_BD_ADDR; return; } hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; #ifndef HAVE_HOST_CONTROLLER_API case HCI_INIT_W4_SEND_BAUD_CHANGE_BCM: if (need_baud_change){ uint32_t baud_rate = hci_transport_uart_get_main_baud_rate(); log_info("Local baud rate change to %" PRIu32 "(w4_send_baud_change_bcm))", baud_rate); hci_stack->hci_transport->set_baudrate(baud_rate); } if (need_addr_change){ hci_stack->substate = HCI_INIT_SET_BD_ADDR; return; } hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; case HCI_INIT_W4_SET_BD_ADDR: // for STLC2500D + ATWILC3000, bd addr change only gets active after sending reset command if ((hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ST_MICROELECTRONICS) || (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_ATMEL_CORPORATION)){ hci_stack->substate = HCI_INIT_SEND_RESET_ST_WARM_BOOT; return; } // skipping st warm boot hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; case HCI_INIT_W4_SEND_RESET_ST_WARM_BOOT: hci_stack->substate = HCI_INIT_READ_BD_ADDR; return; #endif case HCI_INIT_DONE: // set state if we came here by fall through hci_stack->substate = HCI_INIT_DONE; return; default: break; } hci_initializing_next_state(); } static void hci_handle_connection_failed(hci_connection_t * conn, uint8_t status){ // CC2564C might emit Connection Complete for rejected incoming SCO connection // To prevent accidentally free'ing the HCI connection for the ACL connection, // check if we have been aware of the HCI connection switch (conn->state){ case SENT_CREATE_CONNECTION: case RECEIVED_CONNECTION_REQUEST: case ACCEPTED_CONNECTION_REQUEST: break; default: return; } log_info("Outgoing connection to %s failed", bd_addr_to_str(conn->address)); bd_addr_t bd_address; (void)memcpy(&bd_address, conn->address, 6); #ifdef ENABLE_CLASSIC // cache needed data int notify_dedicated_bonding_failed = conn->bonding_flags & BONDING_DEDICATED; #endif // connection failed, remove entry btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); #ifdef ENABLE_CLASSIC // notify client if dedicated bonding if (notify_dedicated_bonding_failed){ log_info("hci notify_dedicated_bonding_failed"); hci_emit_dedicated_bonding_result(bd_address, status); } // if authentication error, also delete link key if (status == ERROR_CODE_AUTHENTICATION_FAILURE) { gap_drop_link_key_for_bd_addr(bd_address); } #else UNUSED(status); #endif } #ifdef ENABLE_CLASSIC static void hci_handle_remote_features_page_0(hci_connection_t * conn, const uint8_t * features){ // SSP Controller if (features[6] & (1 << 3)){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP_CONTROLLER; } // eSCO if (features[3] & (1<<7)){ conn->remote_supported_features[0] |= 1; } // Extended features if (features[7] & (1<<7)){ conn->remote_supported_features[0] |= 2; } // SCO packet types conn->remote_supported_sco_packets = hci_sco_packet_types_for_features(features); } static void hci_handle_remote_features_page_1(hci_connection_t * conn, const uint8_t * features){ // SSP Host if (features[0] & (1 << 0)){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SSP_HOST; } // SC Host if (features[0] & (1 << 3)){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_HOST; } } static void hci_handle_remote_features_page_2(hci_connection_t * conn, const uint8_t * features){ // SC Controller if (features[1] & (1 << 0)){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_CONTROLLER; } } static void hci_handle_remote_features_received(hci_connection_t * conn){ conn->bonding_flags &= ~BONDING_REMOTE_FEATURES_QUERY_ACTIVE; conn->bonding_flags |= BONDING_RECEIVED_REMOTE_FEATURES; log_info("Remote features %02x, bonding flags %" PRIx32, conn->remote_supported_features[0], conn->bonding_flags); if (conn->bonding_flags & BONDING_DEDICATED){ conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; } } static bool hci_remote_sc_enabled(hci_connection_t * connection){ const uint16_t sc_enabled_mask = BONDING_REMOTE_SUPPORTS_SC_HOST | BONDING_REMOTE_SUPPORTS_SC_CONTROLLER; return (connection->bonding_flags & sc_enabled_mask) == sc_enabled_mask; } #endif static void handle_event_for_current_stack_state(const uint8_t * packet, uint16_t size) { // handle BT initialization if (hci_stack->state == HCI_STATE_INITIALIZING) { hci_initializing_event_handler(packet, size); } // help with BT sleep if ((hci_stack->state == HCI_STATE_FALLING_ASLEEP) && (hci_stack->substate == HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE) && (hci_event_packet_get_type(packet) == HCI_EVENT_COMMAND_COMPLETE) && (hci_event_command_complete_get_command_opcode(packet) == HCI_OPCODE_HCI_WRITE_SCAN_ENABLE)){ hci_initializing_next_state(); } } #ifdef ENABLE_CLASSIC static void hci_handle_mutual_authentication_completed(hci_connection_t * conn){ // bonding complete if connection is authenticated (either initiated or BR/EDR SC) conn->requested_security_level = LEVEL_0; gap_security_level_t security_level = gap_security_level_for_connection(conn); hci_emit_security_level(conn->con_handle, security_level); // dedicated bonding if ((conn->bonding_flags & BONDING_DEDICATED) != 0){ conn->bonding_flags &= ~BONDING_DEDICATED; conn->bonding_status = security_level == 0 ? ERROR_CODE_INSUFFICIENT_SECURITY : ERROR_CODE_SUCCESS; #ifdef ENABLE_EXPLICIT_DEDICATED_BONDING_DISCONNECT // emit dedicated bonding complete, don't disconnect hci_emit_dedicated_bonding_result(conn->address, conn->bonding_status); #else // request disconnect, event is emitted after disconnect conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; #endif } } static void hci_handle_read_encryption_key_size_complete(hci_connection_t * conn, uint8_t encryption_key_size) { conn->authentication_flags |= AUTH_FLAG_CONNECTION_ENCRYPTED; conn->encryption_key_size = encryption_key_size; // mutual authentication complete if authenticated and we have retrieved the encryption key size if ((conn->authentication_flags & AUTH_FLAG_CONNECTION_AUTHENTICATED) != 0) { hci_handle_mutual_authentication_completed(conn); } else { // otherwise trigger remote feature request and send authentication request hci_trigger_remote_features_for_connection(conn); if ((conn->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) == 0) { conn->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; } } } #endif static void hci_store_local_supported_commands(const uint8_t * packet){ // create mapping table #define X(name, offset, bit) { offset, bit }, static struct { uint8_t byte_offset; uint8_t bit_position; } supported_hci_commands_map [] = { SUPPORTED_HCI_COMMANDS }; #undef X // create names for debug purposes #ifdef ENABLE_LOG_DEBUG #define X(name, offset, bit) #name, static const char * command_names[] = { SUPPORTED_HCI_COMMANDS }; #undef X #endif hci_stack->local_supported_commands = 0; const uint8_t * commands_map = &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1]; uint16_t i; for (i = 0 ; i < SUPPORTED_HCI_COMMANDS_COUNT ; i++){ if ((commands_map[supported_hci_commands_map[i].byte_offset] & (1 << supported_hci_commands_map[i].bit_position)) != 0){ #ifdef ENABLE_LOG_DEBUG log_info("Command %s (%u) supported %u/%u", command_names[i], i, supported_hci_commands_map[i].byte_offset, supported_hci_commands_map[i].bit_position); #else log_info("Command 0x%02x supported %u/%u", i, supported_hci_commands_map[i].byte_offset, supported_hci_commands_map[i].bit_position); #endif hci_stack->local_supported_commands |= (1LU << i); } } log_info("Local supported commands summary %08" PRIx32, hci_stack->local_supported_commands); } static void handle_command_complete_event(uint8_t * packet, uint16_t size){ UNUSED(size); uint8_t status = 0; if( size > OFFSET_OF_DATA_IN_COMMAND_COMPLETE ) { status = hci_event_command_complete_get_return_parameters(packet)[0]; } uint16_t manufacturer; #ifdef ENABLE_CLASSIC hci_connection_t * conn; #endif #if defined(ENABLE_CLASSIC) || (defined(ENABLE_BLE) && defined(ENABLE_LE_ISOCHRONOUS_STREAMS)) hci_con_handle_t handle; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS le_audio_cig_t * cig; #endif #if defined(ENABLE_BLE) && defined(ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND) hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID; #endif // get num cmd packets - limit to 1 to reduce complexity hci_stack->num_cmd_packets = packet[2] ? 1 : 0; uint16_t opcode = hci_event_command_complete_get_command_opcode(packet); switch (opcode){ case HCI_OPCODE_HCI_READ_LOCAL_NAME: if (status) break; // terminate, name 248 chars packet[6+248] = 0; log_info("local name: %s", &packet[6]); break; case HCI_OPCODE_HCI_READ_BUFFER_SIZE: // "The HC_ACL_Data_Packet_Length return parameter will be used to determine the size of the L2CAP segments contained in ACL Data Packets" if (hci_stack->state == HCI_STATE_INITIALIZING) { uint16_t acl_len = little_endian_read_16(packet, 6); uint16_t sco_len = packet[8]; // determine usable ACL/SCO payload size hci_stack->acl_data_packet_length = btstack_min(acl_len, HCI_ACL_PAYLOAD_SIZE); hci_stack->sco_data_packet_length = btstack_min(sco_len, HCI_ACL_PAYLOAD_SIZE); hci_stack->acl_packets_total_num = (uint8_t) btstack_min(little_endian_read_16(packet, 9), MAX_NR_CONTROLLER_ACL_BUFFERS); hci_stack->sco_packets_total_num = (uint8_t) btstack_min(little_endian_read_16(packet, 11), MAX_NR_CONTROLLER_SCO_PACKETS); log_info("hci_read_buffer_size: ACL size module %u -> used %u, count %u / SCO size %u, count %u", acl_len, hci_stack->acl_data_packet_length, hci_stack->acl_packets_total_num, hci_stack->sco_data_packet_length, hci_stack->sco_packets_total_num); } break; case HCI_OPCODE_HCI_READ_RSSI: if (status == ERROR_CODE_SUCCESS){ uint8_t event[5]; event[0] = GAP_EVENT_RSSI_MEASUREMENT; event[1] = 3; (void)memcpy(&event[2], &packet[6], 3); hci_emit_event(event, sizeof(event), 1); } break; #ifdef ENABLE_BLE case HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE_V2: hci_stack->le_iso_packets_length = little_endian_read_16(packet, 9); hci_stack->le_iso_packets_total_num = packet[11]; log_info("hci_le_read_buffer_size_v2: iso size %u, iso count %u", hci_stack->le_iso_packets_length, hci_stack->le_iso_packets_total_num); /* fall through */ case HCI_OPCODE_HCI_LE_READ_BUFFER_SIZE: hci_stack->le_data_packets_length = little_endian_read_16(packet, 6); hci_stack->le_acl_packets_total_num = packet[8]; // determine usable ACL payload size if (HCI_ACL_PAYLOAD_SIZE < hci_stack->le_data_packets_length){ hci_stack->le_data_packets_length = HCI_ACL_PAYLOAD_SIZE; } log_info("hci_le_read_buffer_size: acl size %u, acl count %u", hci_stack->le_data_packets_length, hci_stack->le_acl_packets_total_num); break; #endif #ifdef ENABLE_LE_DATA_LENGTH_EXTENSION case HCI_OPCODE_HCI_LE_READ_MAXIMUM_DATA_LENGTH: hci_stack->le_supported_max_tx_octets = little_endian_read_16(packet, 6); hci_stack->le_supported_max_tx_time = little_endian_read_16(packet, 8); log_info("hci_le_read_maximum_data_length: tx octets %u, tx time %u us", hci_stack->le_supported_max_tx_octets, hci_stack->le_supported_max_tx_time); break; #endif #ifdef ENABLE_LE_CENTRAL case HCI_OPCODE_HCI_LE_READ_WHITE_LIST_SIZE: hci_stack->le_whitelist_capacity = packet[6]; log_info("hci_le_read_white_list_size: size %u", hci_stack->le_whitelist_capacity); break; #endif #ifdef ENABLE_LE_PERIPHERAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING case HCI_OPCODE_HCI_LE_READ_MAXIMUM_ADVERTISING_DATA_LENGTH: hci_stack->le_maximum_advertising_data_length = little_endian_read_16(packet, 6); break; case HCI_OPCODE_HCI_LE_SET_EXTENDED_ADVERTISING_PARAMETERS: if (hci_stack->le_advertising_set_in_current_command != 0) { le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(hci_stack->le_advertising_set_in_current_command); hci_stack->le_advertising_set_in_current_command = 0; if (advertising_set == NULL) break; uint8_t adv_status = packet[6]; uint8_t tx_power = packet[7]; uint8_t event[] = { HCI_EVENT_META_GAP, 4, GAP_SUBEVENT_ADVERTISING_SET_INSTALLED, hci_stack->le_advertising_set_in_current_command, adv_status, tx_power }; if (adv_status == 0){ advertising_set->state |= LE_ADVERTISEMENT_STATE_PARAMS_SET; } hci_emit_event(event, sizeof(event), 1); } break; case HCI_OPCODE_HCI_LE_REMOVE_ADVERTISING_SET: if (hci_stack->le_advertising_set_in_current_command != 0) { le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(hci_stack->le_advertising_set_in_current_command); hci_stack->le_advertising_set_in_current_command = 0; if (advertising_set == NULL) break; uint8_t event[] = { HCI_EVENT_META_GAP, 3, GAP_SUBEVENT_ADVERTISING_SET_REMOVED, hci_stack->le_advertising_set_in_current_command, status }; if (status == 0){ btstack_linked_list_remove(&hci_stack->le_advertising_sets, (btstack_linked_item_t *) advertising_set); } hci_emit_event(event, sizeof(event), 1); } break; #endif #endif case HCI_OPCODE_HCI_READ_BD_ADDR: reverse_bd_addr(&packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], hci_stack->local_bd_addr); log_info("Local Address, Status: 0x%02x: Addr: %s", status, bd_addr_to_str(hci_stack->local_bd_addr)); #ifdef ENABLE_CLASSIC if (hci_stack->link_key_db){ hci_stack->link_key_db->set_local_bd_addr(hci_stack->local_bd_addr); } #endif break; #ifdef ENABLE_CLASSIC case HCI_OPCODE_HCI_WRITE_SCAN_ENABLE: hci_emit_scan_mode_changed(hci_stack->discoverable, hci_stack->connectable); break; case HCI_OPCODE_HCI_PERIODIC_INQUIRY_MODE: if (status == ERROR_CODE_SUCCESS) { hci_stack->inquiry_state = GAP_INQUIRY_STATE_PERIODIC; } else { hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE; } break; case HCI_OPCODE_HCI_INQUIRY_CANCEL: case HCI_OPCODE_HCI_EXIT_PERIODIC_INQUIRY_MODE: if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W4_CANCELLED){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE; uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0}; hci_emit_event(event, sizeof(event), 1); } break; #endif case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_FEATURES: (void)memcpy(hci_stack->local_supported_features, &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE + 1], 8); #ifdef ENABLE_CLASSIC // determine usable ACL packet types based on host buffer size and supported features hci_stack->usable_packet_types_acl = hci_acl_packet_types_for_buffer_size_and_local_features(HCI_ACL_PAYLOAD_SIZE, &hci_stack->local_supported_features[0]); log_info("ACL Packet types %04x", hci_stack->usable_packet_types_acl); // determine usable SCO packet types based on supported features hci_stack->usable_packet_types_sco = hci_sco_packet_types_for_features( &hci_stack->local_supported_features[0]); log_info("SCO Packet types %04x - eSCO %u", hci_stack->usable_packet_types_sco, hci_extended_sco_link_supported()); #endif // Classic/LE log_info("BR/EDR support %u, LE support %u", hci_classic_supported(), hci_le_supported()); break; case HCI_OPCODE_HCI_READ_LOCAL_VERSION_INFORMATION: manufacturer = little_endian_read_16(packet, 10); // map Cypress & Infineon to Broadcom switch (manufacturer){ case BLUETOOTH_COMPANY_ID_CYPRESS_SEMICONDUCTOR: case BLUETOOTH_COMPANY_ID_INFINEON_TECHNOLOGIES_AG: log_info("Treat Cypress/Infineon as Broadcom"); manufacturer = BLUETOOTH_COMPANY_ID_BROADCOM_CORPORATION; little_endian_store_16(packet, 10, manufacturer); break; default: break; } hci_stack->manufacturer = manufacturer; log_info("Manufacturer: 0x%04x", hci_stack->manufacturer); break; case HCI_OPCODE_HCI_READ_LOCAL_SUPPORTED_COMMANDS: hci_store_local_supported_commands(packet); break; #ifdef ENABLE_CLASSIC case HCI_OPCODE_HCI_WRITE_SYNCHRONOUS_FLOW_CONTROL_ENABLE: if (status) return; hci_stack->synchronous_flow_control_enabled = 1; break; case HCI_OPCODE_HCI_READ_ENCRYPTION_KEY_SIZE: handle = little_endian_read_16(packet, OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1); conn = hci_connection_for_handle(handle); if (conn != NULL) { uint8_t key_size = 0; if (status == 0){ key_size = packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+3]; log_info("Handle %04x key Size: %u", handle, key_size); } else { key_size = 1; log_info("Read Encryption Key Size failed 0x%02x-> assuming insecure connection with key size of 1", status); } hci_handle_read_encryption_key_size_complete(conn, key_size); } break; // assert pairing complete event is emitted. // note: for SSP, Simple Pairing Complete Event is sufficient, but we want to be more robust case HCI_OPCODE_HCI_PIN_CODE_REQUEST_NEGATIVE_REPLY: case HCI_OPCODE_HCI_USER_PASSKEY_REQUEST_NEGATIVE_REPLY: case HCI_OPCODE_HCI_USER_CONFIRMATION_REQUEST_NEGATIVE_REPLY: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE; // lookup connection by gap pairing addr conn = hci_connection_for_bd_addr_and_type(hci_stack->gap_pairing_addr, BD_ADDR_TYPE_ACL); if (conn == NULL) break; hci_pairing_complete(conn, ERROR_CODE_AUTHENTICATION_FAILURE); break; #ifdef ENABLE_CLASSIC_PAIRING_OOB case HCI_OPCODE_HCI_READ_LOCAL_OOB_DATA: case HCI_OPCODE_HCI_READ_LOCAL_EXTENDED_OOB_DATA:{ uint8_t event[67]; event[0] = GAP_EVENT_LOCAL_OOB_DATA; event[1] = 65; (void)memset(&event[2], 0, 65); if (status == ERROR_CODE_SUCCESS){ (void)memcpy(&event[3], &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+1], 32); if (opcode == HCI_OPCODE_HCI_READ_LOCAL_EXTENDED_OOB_DATA){ event[2] = 3; (void)memcpy(&event[35], &packet[OFFSET_OF_DATA_IN_COMMAND_COMPLETE+33], 32); } else { event[2] = 1; } } hci_emit_event(event, sizeof(event), 0); break; } // note: only needed if user does not provide OOB data case HCI_OPCODE_HCI_REMOTE_OOB_DATA_REQUEST_NEGATIVE_REPLY: conn = hci_connection_for_handle(hci_stack->classic_oob_con_handle); hci_stack->classic_oob_con_handle = HCI_CON_HANDLE_INVALID; if (conn == NULL) break; hci_pairing_complete(conn, ERROR_CODE_AUTHENTICATION_FAILURE); break; #endif #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS case HCI_OPCODE_HCI_LE_SET_CIG_PARAMETERS: // lookup CIG cig = hci_cig_for_id(hci_stack->iso_active_operation_group_id); if (cig != NULL){ uint8_t i = 0; if (status == ERROR_CODE_SUCCESS){ // assign CIS handles to pre-allocated CIS btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it) && (i < cig->num_cis)) { hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->group_id == hci_stack->iso_active_operation_group_id) && (iso_stream->iso_type == HCI_ISO_TYPE_CIS)){ hci_con_handle_t cis_handle = little_endian_read_16(packet, OFFSET_OF_DATA_IN_COMMAND_COMPLETE+3+(2*i)); iso_stream->cis_handle = cis_handle; cig->cis_con_handles[i] = cis_handle; i++; } } cig->state = LE_AUDIO_CIG_STATE_W4_CIS_REQUEST; hci_emit_cig_created(cig, status); } else { hci_emit_cig_created(cig, status); btstack_linked_list_remove(&hci_stack->le_audio_cigs, (btstack_linked_item_t *) cig); } } hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; break; case HCI_OPCODE_HCI_LE_CREATE_CIS: if (status != ERROR_CODE_SUCCESS){ hci_iso_stream_requested_finalize(HCI_ISO_GROUP_ID_INVALID); } break; case HCI_OPCODE_HCI_LE_ACCEPT_CIS_REQUEST: if (status != ERROR_CODE_SUCCESS){ hci_iso_stream_requested_finalize(HCI_ISO_GROUP_ID_INVALID); } break; case HCI_OPCODE_HCI_LE_SETUP_ISO_DATA_PATH: { // lookup BIG by state btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs); while (btstack_linked_list_iterator_has_next(&it)) { le_audio_big_t *big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it); if (big->state == LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH){ if (status == ERROR_CODE_SUCCESS){ big->state_vars.next_bis++; if (big->state_vars.next_bis == big->num_bis){ big->state = LE_AUDIO_BIG_STATE_ACTIVE; hci_emit_big_created(big, ERROR_CODE_SUCCESS); } else { big->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH; } } else { big->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED; big->state_vars.status = status; } return; } } btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs); while (btstack_linked_list_iterator_has_next(&it)) { le_audio_big_sync_t *big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it); if (big_sync->state == LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH){ if (status == ERROR_CODE_SUCCESS){ big_sync->state_vars.next_bis++; if (big_sync->state_vars.next_bis == big_sync->num_bis){ big_sync->state = LE_AUDIO_BIG_STATE_ACTIVE; hci_emit_big_sync_created(big_sync, ERROR_CODE_SUCCESS); } else { big_sync->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH; } } else { big_sync->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED; big_sync->state_vars.status = status; } return; } } // Lookup CIS via active group operation if (hci_stack->iso_active_operation_type == HCI_ISO_TYPE_CIS){ if (hci_stack->iso_active_operation_group_id == HCI_ISO_GROUP_ID_SINGLE_CIS){ hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; // lookup CIS by state btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); handle = iso_stream->cis_handle; bool emit_cis_created = false; switch (iso_stream->state){ case HCI_ISO_STREAM_STATE_W4_ISO_SETUP_INPUT: if (status != ERROR_CODE_SUCCESS){ emit_cis_created = true; break; } if (iso_stream->max_sdu_c_to_p > 0){ iso_stream->state = HCI_ISO_STREAM_STATE_W2_SETUP_ISO_OUTPUT; } else { emit_cis_created = true; } break; case HCI_ISO_STREAM_STATE_W4_ISO_SETUP_OUTPUT: emit_cis_created = true; break; default: break; } if (emit_cis_created){ hci_cis_handle_created(iso_stream, status); } } } else { cig = hci_cig_for_id(hci_stack->iso_active_operation_group_id); hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; if (cig != NULL) { // emit cis created if all ISO Paths have been created // assume we are central uint8_t cis_index = cig->state_vars.next_cis >> 1; uint8_t cis_direction = cig->state_vars.next_cis & 1; bool outgoing_needed = cig->params->cis_params[cis_index].max_sdu_p_to_c > 0; // if outgoing has been setup, or incoming was setup but outgoing not required if ((cis_direction == 1) || (outgoing_needed == false)){ // lookup iso stream by cig/cis btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)) { hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->group_id == cig->cig_id) && (iso_stream->stream_id == cis_index)){ hci_cis_handle_created(iso_stream, status); } } } // next state cig->state_vars.next_cis++; cig->state = LE_AUDIO_CIG_STATE_SETUP_ISO_PATH; } } } break; } case HCI_OPCODE_HCI_LE_BIG_TERMINATE_SYNC: { // lookup BIG by state btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs); while (btstack_linked_list_iterator_has_next(&it)) { le_audio_big_sync_t *big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it); uint8_t big_handle = big_sync->big_handle; switch (big_sync->state){ case LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED: btstack_linked_list_iterator_remove(&it); hci_emit_big_sync_created(big_sync, big_sync->state_vars.status); return; default: btstack_linked_list_iterator_remove(&it); hci_emit_big_sync_stopped(big_handle); return; } } break; } #endif #endif default: break; } } static void handle_command_status_event(uint8_t * packet, uint16_t size) { UNUSED(size); // get num cmd packets - limit to 1 to reduce complexity hci_stack->num_cmd_packets = packet[3] ? 1 : 0; // get opcode and command status uint16_t opcode = hci_event_command_status_get_command_opcode(packet); #if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_CENTRAL) || defined(ENABLE_LE_ISOCHRONOUS_STREAMS) uint8_t status = hci_event_command_status_get_status(packet); #endif #if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_CENTRAL) bd_addr_type_t addr_type; bd_addr_t addr; #endif #if defined(ENABLE_BLE) && defined (ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND) hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID; #endif switch (opcode){ #ifdef ENABLE_CLASSIC case HCI_OPCODE_HCI_CREATE_CONNECTION: case HCI_OPCODE_HCI_SETUP_SYNCHRONOUS_CONNECTION: case HCI_OPCODE_HCI_ACCEPT_SYNCHRONOUS_CONNECTION: #endif #ifdef ENABLE_LE_CENTRAL case HCI_OPCODE_HCI_LE_CREATE_CONNECTION: #endif #if defined(ENABLE_CLASSIC) || defined(ENABLE_LE_CENTRAL) addr_type = hci_stack->outgoing_addr_type; memcpy(addr, hci_stack->outgoing_addr, 6); // reset outgoing address info memset(hci_stack->outgoing_addr, 0, 6); hci_stack->outgoing_addr_type = BD_ADDR_TYPE_UNKNOWN; // on error if (status != ERROR_CODE_SUCCESS){ #ifdef ENABLE_LE_CENTRAL if (hci_is_le_connection_type(addr_type)){ hci_stack->le_connecting_state = LE_CONNECTING_IDLE; hci_stack->le_connecting_request = LE_CONNECTING_IDLE; } #endif // error => outgoing connection failed hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (conn != NULL){ hci_handle_connection_failed(conn, status); } } break; #endif #ifdef ENABLE_CLASSIC case HCI_OPCODE_HCI_INQUIRY: if (status == ERROR_CODE_SUCCESS) { hci_stack->inquiry_state = GAP_INQUIRY_STATE_ACTIVE; } else { hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE; } break; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS case HCI_OPCODE_HCI_LE_CREATE_CIS: case HCI_OPCODE_HCI_LE_ACCEPT_CIS_REQUEST: if (status == ERROR_CODE_SUCCESS){ hci_iso_stream_requested_confirm(HCI_ISO_GROUP_ID_INVALID); } else { hci_iso_stream_requested_finalize(HCI_ISO_GROUP_ID_INVALID); } break; #endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */ default: break; } } #ifdef ENABLE_BLE static void hci_create_gap_connection_complete_event(const uint8_t * hci_event, uint8_t * gap_event) { gap_event[0] = HCI_EVENT_META_GAP; gap_event[1] = 36 - 2; gap_event[2] = GAP_SUBEVENT_LE_CONNECTION_COMPLETE; switch (hci_event_le_meta_get_subevent_code(hci_event)){ case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: memcpy(&gap_event[3], &hci_event[3], 11); memset(&gap_event[14], 0, 12); memcpy(&gap_event[26], &hci_event[14], 7); memset(&gap_event[33], 0xff, 3); break; case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V1: memcpy(&gap_event[3], &hci_event[3], 30); memset(&gap_event[33], 0xff, 3); break; case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V2: memcpy(&gap_event[3], &hci_event[3], 33); break; default: btstack_unreachable(); break; } } static void hci_handle_le_connection_complete_event(const uint8_t * hci_event){ bd_addr_t addr; bd_addr_type_t addr_type; hci_connection_t * conn; // create GAP_SUBEVENT_LE_CONNECTION_COMPLETE uint8_t gap_event[36]; hci_create_gap_connection_complete_event(hci_event, gap_event); // read fields uint8_t status = gap_subevent_le_connection_complete_get_status(gap_event); hci_role_t role = (hci_role_t) gap_subevent_le_connection_complete_get_role(gap_event); uint16_t conn_interval = gap_subevent_le_connection_complete_get_conn_interval(gap_event); // Connection management gap_subevent_le_connection_complete_get_peer_address(gap_event, addr); addr_type = (bd_addr_type_t) gap_subevent_le_connection_complete_get_peer_address_type(gap_event); log_info("LE Connection_complete (status=%u) type %u, %s", status, addr_type, bd_addr_to_str(addr)); conn = hci_connection_for_bd_addr_and_type(addr, addr_type); #ifdef ENABLE_LE_CENTRAL // handle error: error is reported only to the initiator -> outgoing connection if (status){ // handle cancelled outgoing connection // "If the cancellation was successful then, after the Command Complete event for the LE_Create_Connection_Cancel command, // either an LE Connection Complete or an LE Enhanced Connection Complete event shall be generated. // In either case, the event shall be sent with the error code Unknown Connection Identifier (0x02)." if (status == ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER){ // reset state hci_stack->le_connecting_state = LE_CONNECTING_IDLE; // get outgoing connection conn struct for direct connect if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){ conn = gap_get_outgoing_le_connection(); conn->state = SEND_CREATE_CONNECTION; } } // free connection if cancelled by user (request == IDLE) if ((conn != NULL) && (hci_stack->le_connecting_request == LE_CONNECTING_IDLE)){ // remove entry btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); } return; } #endif // on success, both hosts receive connection complete event if (role == HCI_ROLE_MASTER){ #ifdef ENABLE_LE_CENTRAL // if we're master, it was an outgoing connection // note: no hci_connection_t object exists yet for connect with whitelist // if a identity addresses was used without enhanced connection complete event, // the connection complete event contains the current random address of the peer device. // This random address is needed in the case of a re-pairing if (hci_event_le_meta_get_subevent_code(hci_event) == HCI_SUBEVENT_LE_CONNECTION_COMPLETE){ conn = gap_get_outgoing_le_connection(); // if outgoing connection object is available, check if identity address was used. // if yes, track resolved random address and provide rpa // note: we don't update hci le subevent connection complete if (conn != NULL){ if (hci_is_le_identity_address_type(conn->address_type)){ memcpy(&gap_event[20], &gap_event[8], 6); gap_event[7] = conn->address_type; reverse_bd_addr(conn->address, &gap_event[8]); } } } // we're done with it hci_stack->le_connecting_state = LE_CONNECTING_IDLE; hci_stack->le_connecting_request = LE_CONNECTING_IDLE; #endif } else { #ifdef ENABLE_LE_PERIPHERAL // if we're slave, it was an incoming connection, advertisements have stopped hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; #endif } // LE connections are auto-accepted, so just create a connection if there isn't one already if (!conn){ conn = create_connection_for_bd_addr_and_type(addr, addr_type, role); } // no memory, sorry. if (!conn){ return; } conn->state = OPEN; conn->con_handle = gap_subevent_le_connection_complete_get_connection_handle(gap_event); conn->le_connection_interval = conn_interval; // workaround: PAST doesn't work without LE Read Remote Features on PacketCraft Controller with LMP 568B conn->gap_connection_tasks = GAP_CONNECTION_TASK_LE_READ_REMOTE_FEATURES; #ifdef ENABLE_LE_PERIPHERAL if (role == HCI_ROLE_SLAVE){ hci_update_advertisements_enabled_for_current_roles(); } #endif // init unenhanced att bearer mtu conn->att_connection.mtu = ATT_DEFAULT_MTU; conn->att_connection.mtu_exchanged = false; // TODO: store - role, peer address type, conn_interval, conn_latency, supervision timeout, master clock // restart timer // btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); // btstack_run_loop_add_timer(&conn->timeout); log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); // emit GAP_SUBEVENT_LE_CONNECTION_COMPLETE hci_emit_event(gap_event, sizeof(gap_event), 1); // emit BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; hci_emit_nr_connections_changed(); } #endif #ifdef ENABLE_CLASSIC static bool hci_ssp_security_level_possible_for_io_cap(gap_security_level_t level, uint8_t io_cap_local, uint8_t io_cap_remote){ if (io_cap_local == SSP_IO_CAPABILITY_UNKNOWN) return false; // LEVEL_4 is tested by l2cap // LEVEL 3 requires MITM protection -> check io capabilities if Authenticated is possible // @see: Core Spec v5.3, Vol 3, Part C, Table 5.7 if (level >= LEVEL_3){ // MITM not possible without keyboard or display if (io_cap_remote >= SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT) return false; if (io_cap_local >= SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT) return false; // MITM possible if one side has keyboard and the other has keyboard or display if (io_cap_remote == SSP_IO_CAPABILITY_KEYBOARD_ONLY) return true; if (io_cap_local == SSP_IO_CAPABILITY_KEYBOARD_ONLY) return true; // MITM not possible if one side has only display and other side has no keyboard if (io_cap_remote == SSP_IO_CAPABILITY_DISPLAY_ONLY) return false; if (io_cap_local == SSP_IO_CAPABILITY_DISPLAY_ONLY) return false; } // LEVEL 2 requires SSP, which is a given return true; } static void hci_ssp_assess_security_on_io_cap_request(hci_connection_t * conn){ // get requested security level gap_security_level_t requested_security_level = conn->requested_security_level; if (hci_stack->gap_secure_connections_only_mode){ requested_security_level = LEVEL_4; } // assess security: LEVEL 4 requires SC // skip this preliminary test if remote features are not available yet to work around potential issue in ESP32 controller if ((requested_security_level == LEVEL_4) && ((conn->bonding_flags & BONDING_RECEIVED_REMOTE_FEATURES) != 0) && !hci_remote_sc_enabled(conn)){ log_info("Level 4 required, but SC not supported -> abort"); hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY); connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); return; } // assess bonding requirements: abort if remote in dedicated bonding mode but we are non-bonding // - GAP/MOD/NBON/BV-02-C // - GAP/DM/NBON/BV-01-C if (conn->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE){ switch (conn->io_cap_response_auth_req){ case SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING: case SSP_IO_AUTHREQ_MITM_PROTECTION_REQUIRED_DEDICATED_BONDING: if (hci_stack->bondable == false){ log_info("Dedicated vs. non-bondable -> abort"); hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY); connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); return; } default: break; } } // assess security based on io capabilities if (conn->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE){ // responder: fully validate io caps of both sides as well as OOB data bool security_possible = false; security_possible = hci_ssp_security_level_possible_for_io_cap(requested_security_level, hci_stack->ssp_io_capability, conn->io_cap_response_io); #ifdef ENABLE_CLASSIC_PAIRING_OOB // We assume that both Controller can reach LEVEL 4, if one side has received P-192 and the other has received P-256, // so we merge the OOB data availability uint8_t have_oob_data = conn->io_cap_response_oob_data; if (conn->classic_oob_c_192 != NULL){ have_oob_data |= 1; } if (conn->classic_oob_c_256 != NULL){ have_oob_data |= 2; } // for up to Level 3, either P-192 as well as P-256 will do // if we don't support SC, then a) conn->classic_oob_c_256 will be NULL and b) remote should not report P-256 available // if remote does not SC, we should not receive P-256 data either if ((requested_security_level <= LEVEL_3) && (have_oob_data != 0)){ security_possible = true; } // for Level 4, P-256 is needed if ((requested_security_level == LEVEL_4 && ((have_oob_data & 2) != 0))){ security_possible = true; } #endif if (security_possible == false){ log_info("IOCap/OOB insufficient for level %u -> abort", requested_security_level); hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY); connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); return; } } else { // initiator: remote io cap not yet, only check if we have ability for MITM protection if requested and OOB is not supported #ifndef ENABLE_CLASSIC_PAIRING_OOB #ifndef ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY if ((conn->requested_security_level >= LEVEL_3) && (hci_stack->ssp_io_capability >= SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT)){ log_info("Level 3+ required, but no input/output -> abort"); hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY); connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); return; } #endif #endif } #ifndef ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY if (hci_stack->ssp_io_capability != SSP_IO_CAPABILITY_UNKNOWN){ connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY); } else { connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); } #endif } #endif static void event_handler(uint8_t *packet, uint16_t size){ uint16_t event_length = packet[1]; // assert packet is complete if (size != (event_length + 2u)){ log_error("event_handler called with packet of wrong size %d, expected %u => dropping packet", size, event_length + 2); return; } hci_con_handle_t handle; hci_connection_t * conn; int i; #ifdef ENABLE_CLASSIC hci_link_type_t link_type; bd_addr_t addr; bd_addr_type_t addr_type; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS hci_iso_stream_t * iso_stream; le_audio_big_t * big; le_audio_big_sync_t * big_sync; #endif #if defined(ENABLE_LE_ISOCHRONOUS_STREAMS) || defined(ENABLE_LE_EXTENDED_ADVERTISING) btstack_linked_list_iterator_t it; #endif #ifdef ENABLE_LE_EXTENDED_ADVERTISING uint8_t advertising_handle; #endif // log_info("HCI:EVENT:%02x", hci_event_packet_get_type(packet)); switch (hci_event_packet_get_type(packet)) { case HCI_EVENT_COMMAND_COMPLETE: handle_command_complete_event(packet, size); break; case HCI_EVENT_COMMAND_STATUS: handle_command_status_event(packet, size); break; case HCI_EVENT_NUMBER_OF_COMPLETED_PACKETS:{ if (size < 3) return; uint16_t num_handles = packet[2]; if (size != (3u + num_handles * 4u)) return; #ifdef ENABLE_CLASSIC bool notify_sco = false; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS bool notify_iso = false; #endif uint16_t offset = 3; for (i=0; inum_packets_sent >= num_packets) { conn->num_packets_sent -= num_packets; } else { log_error("hci_number_completed_packets, more packet slots freed then sent."); conn->num_packets_sent = 0; } // log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, conn->num_packets_sent); #ifdef ENABLE_CLASSIC if (conn->address_type == BD_ADDR_TYPE_SCO){ notify_sco = true; } #endif } #ifdef ENABLE_CONTROLLER_DUMP_PACKETS hci_controller_dump_packets(); #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS if (conn == NULL){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(handle); if (iso_stream != NULL){ if (iso_stream->num_packets_sent >= num_packets) { iso_stream->num_packets_sent -= num_packets; } else { log_error("hci_number_completed_packets, more packet slots freed then sent."); iso_stream->num_packets_sent = 0; } if (iso_stream->iso_type == HCI_ISO_TYPE_BIS){ le_audio_big_t * big = hci_big_for_handle(iso_stream->group_id); if (big != NULL){ big->num_completed_timestamp_current_valid = true; big->num_completed_timestamp_current_ms = btstack_run_loop_get_time_ms(); } } log_info("hci_number_completed_packet %u processed for handle %u, outstanding %u", num_packets, handle, iso_stream->num_packets_sent); notify_iso = true; } } #endif } #ifdef ENABLE_CLASSIC if (notify_sco){ hci_notify_if_sco_can_send_now(); } #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS if (notify_iso){ hci_iso_notify_can_send_now(); } #endif break; } #ifdef ENABLE_CLASSIC case HCI_EVENT_FLUSH_OCCURRED: // flush occurs only if automatic flush has been enabled by gap_enable_link_watchdog() handle = hci_event_flush_occurred_get_handle(packet); conn = hci_connection_for_handle(handle); if (conn) { log_info("Flush occurred, disconnect 0x%04x", handle); conn->state = SEND_DISCONNECT; } break; case HCI_EVENT_INQUIRY_COMPLETE: if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_ACTIVE){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_IDLE; uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0}; hci_emit_event(event, sizeof(event), 1); } break; case HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE: if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W4_COMPLETE){ hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_IDLE; } break; case HCI_EVENT_CONNECTION_REQUEST: reverse_bd_addr(&packet[2], addr); link_type = (hci_link_type_t) packet[11]; // CVE-2020-26555: reject incoming connection from device with same BD ADDR if (memcmp(hci_stack->local_bd_addr, addr, 6) == 0){ hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR; bd_addr_copy(hci_stack->decline_addr, addr); break; } if (hci_stack->gap_classic_accept_callback != NULL){ if ((*hci_stack->gap_classic_accept_callback)(addr, link_type) == 0){ hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_SECURITY_REASONS; bd_addr_copy(hci_stack->decline_addr, addr); break; } } // TODO: eval COD 8-10 log_info("Connection_incoming: %s, type %u", bd_addr_to_str(addr), (unsigned int) link_type); addr_type = (link_type == HCI_LINK_TYPE_ACL) ? BD_ADDR_TYPE_ACL : BD_ADDR_TYPE_SCO; conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (!conn) { conn = create_connection_for_bd_addr_and_type(addr, addr_type, HCI_ROLE_SLAVE); } if (!conn) { // CONNECTION REJECTED DUE TO LIMITED RESOURCES (0X0D) hci_stack->decline_reason = ERROR_CODE_CONNECTION_REJECTED_DUE_TO_LIMITED_RESOURCES; bd_addr_copy(hci_stack->decline_addr, addr); hci_run(); // avoid event to higher layer return; } conn->state = RECEIVED_CONNECTION_REQUEST; // store info about eSCO if (link_type == HCI_LINK_TYPE_ESCO){ conn->remote_supported_features[0] |= 1; } // propagate remote supported sco packet packets from existing ACL to new SCO connection if (addr_type == BD_ADDR_TYPE_SCO){ const hci_connection_t * acl_conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); // ACL exists unless fuzzing if (acl_conn != NULL) { conn->remote_supported_sco_packets = acl_conn->remote_supported_sco_packets; } } hci_run(); break; case HCI_EVENT_CONNECTION_COMPLETE: // Connection management reverse_bd_addr(&packet[5], addr); log_info("Connection_complete (status=%u) %s", packet[2], bd_addr_to_str(addr)); addr_type = BD_ADDR_TYPE_ACL; conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (conn) { switch (conn->state){ // expected states case ACCEPTED_CONNECTION_REQUEST: case SENT_CREATE_CONNECTION: break; // unexpected state -> ignore default: // don't forward event to app return; } if (!packet[2]){ conn->state = OPEN; conn->con_handle = little_endian_read_16(packet, 3); // trigger write supervision timeout if we're master if ((hci_stack->link_supervision_timeout != HCI_LINK_SUPERVISION_TIMEOUT_DEFAULT) && (conn->role == HCI_ROLE_MASTER)){ conn->gap_connection_tasks |= GAP_CONNECTION_TASK_WRITE_SUPERVISION_TIMEOUT; } // trigger write automatic flush timeout if (hci_stack->automatic_flush_timeout != 0){ conn->gap_connection_tasks |= GAP_CONNECTION_TASK_WRITE_AUTOMATIC_FLUSH_TIMEOUT; } // restart timer btstack_run_loop_set_timer(&conn->timeout, HCI_CONNECTION_TIMEOUT_MS); btstack_run_loop_add_timer(&conn->timeout); // trigger remote features for dedicated bonding if ((conn->bonding_flags & BONDING_DEDICATED) != 0){ hci_trigger_remote_features_for_connection(conn); } log_info("New connection: handle %u, %s", conn->con_handle, bd_addr_to_str(conn->address)); hci_emit_nr_connections_changed(); } else { // connection failed hci_handle_connection_failed(conn, packet[2]); } } break; case HCI_EVENT_SYNCHRONOUS_CONNECTION_COMPLETE: reverse_bd_addr(&packet[5], addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO); log_info("Synchronous Connection Complete for %p (status=%u) %s", conn, packet[2], bd_addr_to_str(addr)); // SCO exists unless fuzzer if (conn == NULL) break; if (packet[2] != ERROR_CODE_SUCCESS){ // connection failed, remove entry hci_handle_connection_failed(conn, packet[2]); break; } conn->state = OPEN; conn->con_handle = little_endian_read_16(packet, 3); // update sco payload length for eSCO connections if (hci_event_synchronous_connection_complete_get_tx_packet_length(packet) > 0){ conn->sco_payload_length = hci_event_synchronous_connection_complete_get_tx_packet_length(packet); log_info("eSCO Complete, set payload len %u", conn->sco_payload_length); } #ifdef ENABLE_SCO_OVER_HCI // update SCO if (conn->address_type == BD_ADDR_TYPE_SCO && hci_stack->hci_transport && hci_stack->hci_transport->set_sco_config){ hci_stack->hci_transport->set_sco_config(hci_stack->sco_voice_setting_active, hci_number_sco_connections()); } // trigger can send now if (hci_have_usb_transport()){ hci_stack->sco_can_send_now = true; } // setup implict sco flow control conn->sco_tx_ready = 0; conn->sco_tx_active = 0; conn->sco_established_ms = btstack_run_loop_get_time_ms(); #endif #ifdef HAVE_SCO_TRANSPORT // configure sco transport if (hci_stack->sco_transport != NULL){ sco_format_t sco_format = ((hci_stack->sco_voice_setting_active & 0x03) == 0x03) ? SCO_FORMAT_8_BIT : SCO_FORMAT_16_BIT; hci_stack->sco_transport->open(conn->con_handle, sco_format); } #endif break; case HCI_EVENT_READ_REMOTE_SUPPORTED_FEATURES_COMPLETE: handle = little_endian_read_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; if (!packet[2]){ const uint8_t * features = &packet[5]; hci_handle_remote_features_page_0(conn, features); // read extended features if possible if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_REMOTE_EXTENDED_FEATURES) && ((conn->remote_supported_features[0] & 2) != 0)) { conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_1; break; } } hci_handle_remote_features_received(conn); break; case HCI_EVENT_READ_REMOTE_EXTENDED_FEATURES_COMPLETE: handle = little_endian_read_16(packet, 3); conn = hci_connection_for_handle(handle); if (!conn) break; // status = ok, page = 1 if (!packet[2]) { uint8_t page_number = packet[5]; uint8_t maximum_page_number = packet[6]; const uint8_t * features = &packet[7]; bool done = false; switch (page_number){ case 1: hci_handle_remote_features_page_1(conn, features); if (maximum_page_number >= 2){ // get Secure Connections (Controller) from Page 2 if available conn->bonding_flags |= BONDING_REQUEST_REMOTE_FEATURES_PAGE_2; } else { // otherwise, assume SC (Controller) == SC (Host) if ((conn->bonding_flags & BONDING_REMOTE_SUPPORTS_SC_HOST) != 0){ conn->bonding_flags |= BONDING_REMOTE_SUPPORTS_SC_CONTROLLER; } done = true; } break; case 2: hci_handle_remote_features_page_2(conn, features); done = true; break; default: break; } if (!done) break; } hci_handle_remote_features_received(conn); break; case HCI_EVENT_LINK_KEY_REQUEST: #ifndef ENABLE_EXPLICIT_LINK_KEY_REPLY hci_event_link_key_request_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; // lookup link key in db if not cached if ((conn->link_key_type == INVALID_LINK_KEY) && (hci_stack->link_key_db != NULL)){ hci_stack->link_key_db->get_link_key(conn->address, conn->link_key, &conn->link_key_type); } // response sent by hci_run() conn->authentication_flags |= AUTH_FLAG_HANDLE_LINK_KEY_REQUEST; #endif break; case HCI_EVENT_LINK_KEY_NOTIFICATION: { hci_event_link_key_request_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; hci_pairing_complete(conn, ERROR_CODE_SUCCESS); // CVE-2020-26555: ignore NULL link key // default link_key_type = INVALID_LINK_KEY asserts that NULL key won't be used for encryption if (btstack_is_null(&packet[8], 16)) break; link_key_type_t link_key_type = (link_key_type_t)packet[24]; // Change Connection Encryption keeps link key type if (link_key_type != CHANGED_COMBINATION_KEY){ conn->link_key_type = link_key_type; } // cache link key. link keys stored in little-endian format for legacy reasons memcpy(&conn->link_key, &packet[8], 16); // only store link key: // - if bondable enabled if (hci_stack->bondable == false) break; // - if security level sufficient if (gap_security_level_for_link_key_type(link_key_type) < conn->requested_security_level) break; gap_store_link_key_for_bd_addr(addr, &packet[8], conn->link_key_type); break; } case HCI_EVENT_PIN_CODE_REQUEST: hci_event_pin_code_request_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; hci_pairing_started(conn, false); // abort pairing if: non-bondable mode (pin code request is not forwarded to app) if (!hci_stack->bondable ){ conn->authentication_flags |= AUTH_FLAG_DENY_PIN_CODE_REQUEST; hci_pairing_complete(conn, ERROR_CODE_PAIRING_NOT_ALLOWED); hci_run(); return; } // abort pairing if: LEVEL_4 required (pin code request is not forwarded to app) if ((hci_stack->gap_secure_connections_only_mode) || (conn->requested_security_level == LEVEL_4)){ log_info("Level 4 required, but SC not supported -> abort"); conn->authentication_flags |= AUTH_FLAG_DENY_PIN_CODE_REQUEST; hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY); hci_run(); return; } break; case HCI_EVENT_IO_CAPABILITY_RESPONSE: hci_event_io_capability_response_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE); hci_pairing_started(conn, true); conn->io_cap_response_auth_req = hci_event_io_capability_response_get_authentication_requirements(packet); conn->io_cap_response_io = hci_event_io_capability_response_get_io_capability(packet); #ifdef ENABLE_CLASSIC_PAIRING_OOB conn->io_cap_response_oob_data = hci_event_io_capability_response_get_oob_data_present(packet); #endif break; case HCI_EVENT_IO_CAPABILITY_REQUEST: hci_event_io_capability_response_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_RECV_IO_CAPABILITIES_REQUEST); hci_connection_timestamp(conn); hci_pairing_started(conn, true); break; #ifdef ENABLE_CLASSIC_PAIRING_OOB case HCI_EVENT_REMOTE_OOB_DATA_REQUEST: hci_event_remote_oob_data_request_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; hci_connection_timestamp(conn); hci_pairing_started(conn, true); connectionSetAuthenticationFlags(conn, AUTH_FLAG_SEND_REMOTE_OOB_DATA_REPLY); break; #endif case HCI_EVENT_USER_CONFIRMATION_REQUEST: hci_event_user_confirmation_request_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; if (hci_ssp_security_level_possible_for_io_cap(conn->requested_security_level, hci_stack->ssp_io_capability, conn->io_cap_response_io)) { if (hci_stack->ssp_auto_accept){ hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_SEND_USER_CONFIRM_REPLY); }; } else { hci_pairing_complete(conn, ERROR_CODE_INSUFFICIENT_SECURITY); hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_SEND_USER_CONFIRM_NEGATIVE_REPLY); // don't forward event to app hci_run(); return; } break; case HCI_EVENT_USER_PASSKEY_REQUEST: // Pairing using Passkey results in MITM protection. If Level 4 is required, support for SC is validated on IO Cap Request if (hci_stack->ssp_auto_accept){ hci_add_connection_flags_for_flipped_bd_addr(&packet[2], AUTH_FLAG_SEND_USER_PASSKEY_REPLY); }; break; case HCI_EVENT_MODE_CHANGE: handle = hci_event_mode_change_get_handle(packet); conn = hci_connection_for_handle(handle); if (!conn) break; conn->connection_mode = hci_event_mode_change_get_mode(packet); log_info("HCI_EVENT_MODE_CHANGE, handle 0x%04x, mode %u", handle, conn->connection_mode); break; #endif case HCI_EVENT_ENCRYPTION_CHANGE: case HCI_EVENT_ENCRYPTION_CHANGE_V2: handle = hci_event_encryption_change_get_connection_handle(packet); conn = hci_connection_for_handle(handle); if (!conn) break; if (hci_event_encryption_change_get_status(packet) == ERROR_CODE_SUCCESS) { uint8_t encryption_enabled = hci_event_encryption_change_get_encryption_enabled(packet); if (encryption_enabled){ if (hci_is_le_connection(conn)){ // For LE, we accept connection as encrypted conn->authentication_flags |= AUTH_FLAG_CONNECTION_ENCRYPTED; } #ifdef ENABLE_CLASSIC else { // Detect Secure Connection -> Legacy Connection Downgrade Attack (BIAS) bool sc_used_during_pairing = gap_secure_connection_for_link_key_type(conn->link_key_type); bool connected_uses_aes_ccm = encryption_enabled == 2; if (hci_stack->secure_connections_active && sc_used_during_pairing && !connected_uses_aes_ccm){ #ifdef ENABLE_TESTING_SUPPORT // The following tests require to reject L2CAP connection as SC has been disabled on the remote // - GAP/SEC/SEM/BI-31-C // - GAP/SEC/SEM/BI-32-C // - GAP/SEC/SEM/BI-33-C // Our release code (aggressively) disconnects the HCI connection, without a chance to respond to PTS // To pass the tests, we only downgrade the link key type instead of the more secure disconnect link_key_type_t new_link_key_type = UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192; if (conn->link_key_type == AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256){ new_link_key_type = AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192; } log_info("SC during pairing, but only E0 now -> downgrade link key type from %u to %u", conn->link_key_type, new_link_key_type); conn->link_key_type = new_link_key_type; #else log_info("SC during pairing, but only E0 now -> abort"); conn->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; break; #endif } #ifdef ENABLE_MUTUAL_AUTHENTICATION_FOR_LEGACY_SECURE_CONNECTIONS // if AES-CCM is used, authentication used SC -> authentication was mutual and we can skip explicit authentication if (connected_uses_aes_ccm){ conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED; } #else // We consider even Legacy Secure Connections as authenticated as BTstack mandates encryption // with encryption key size > hci_stack->gap_required_encyrption_key_size // for all operations that require any security. See BIAS attacks. conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED; #endif // validate encryption key size if (hci_event_packet_get_type(packet) == HCI_EVENT_ENCRYPTION_CHANGE_V2) { uint8_t encryption_key_size = hci_event_encryption_change_v2_get_encryption_key_size(packet); // already got encryption key size hci_handle_read_encryption_key_size_complete(conn, encryption_key_size); } else { if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_ENCRYPTION_KEY_SIZE)) { // For Classic, we need to validate encryption key size first, if possible (== supported by Controller) conn->bonding_flags |= BONDING_SEND_READ_ENCRYPTION_KEY_SIZE; } else { // if not, pretend everything is perfect hci_handle_read_encryption_key_size_complete(conn, 16); } } } #endif } else { conn->authentication_flags &= ~AUTH_FLAG_CONNECTION_ENCRYPTED; } } else { #ifdef ENABLE_CLASSIC if (!hci_is_le_connection(conn)){ uint8_t status = hci_event_encryption_change_get_status(packet); if ((conn->bonding_flags & BONDING_DEDICATED) != 0){ conn->bonding_flags &= ~BONDING_DEDICATED; conn->bonding_flags |= BONDING_DISCONNECT_DEDICATED_DONE; conn->bonding_status = status; } // trigger security update -> level 0 hci_handle_mutual_authentication_completed(conn); } #endif } break; #ifdef ENABLE_CLASSIC case HCI_EVENT_AUTHENTICATION_COMPLETE_EVENT: handle = hci_event_authentication_complete_get_connection_handle(packet); conn = hci_connection_for_handle(handle); if (!conn) break; // clear authentication active flag conn->bonding_flags &= ~BONDING_SENT_AUTHENTICATE_REQUEST; hci_pairing_complete(conn, hci_event_authentication_complete_get_status(packet)); // authenticated only if auth status == 0 if (hci_event_authentication_complete_get_status(packet) == 0){ // authenticated conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED; // If not already encrypted, start encryption if ((conn->authentication_flags & AUTH_FLAG_CONNECTION_ENCRYPTED) == 0){ conn->bonding_flags |= BONDING_SEND_ENCRYPTION_REQUEST; break; } } // emit updated security level (will be 0 if not authenticated) hci_handle_mutual_authentication_completed(conn); break; case HCI_EVENT_SIMPLE_PAIRING_COMPLETE: hci_event_simple_pairing_complete_get_bd_addr(packet, addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) break; // treat successfully paired connection as authenticated if (hci_event_simple_pairing_complete_get_status(packet) == ERROR_CODE_SUCCESS){ conn->authentication_flags |= AUTH_FLAG_CONNECTION_AUTHENTICATED; } hci_pairing_complete(conn, hci_event_simple_pairing_complete_get_status(packet)); break; #endif // HCI_EVENT_DISCONNECTION_COMPLETE // has been split, to first notify stack before shutting connection down // see end of function, too. case HCI_EVENT_DISCONNECTION_COMPLETE: if (packet[2]) break; // status != 0 handle = little_endian_read_16(packet, 3); // drop outgoing ACL fragments if it is for closed connection and release buffer if tx not active if (hci_stack->acl_fragmentation_total_size > 0u) { if (handle == READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer)){ int release_buffer = hci_stack->acl_fragmentation_tx_active == 0u; log_info("drop fragmented ACL data for closed connection, release buffer %u", release_buffer); hci_stack->acl_fragmentation_total_size = 0; hci_stack->acl_fragmentation_pos = 0; if (release_buffer){ hci_release_packet_buffer(); } } } #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS // drop outgoing ISO fragments if it is for closed connection and release buffer if tx not active if (hci_stack->iso_fragmentation_total_size > 0u) { if (handle == READ_ISO_CONNECTION_HANDLE(hci_stack->hci_packet_buffer)){ int release_buffer = hci_stack->iso_fragmentation_tx_active == 0u; log_info("drop fragmented ISO data for closed connection, release buffer %u", release_buffer); hci_stack->iso_fragmentation_total_size = 0; hci_stack->iso_fragmentation_pos = 0; if (release_buffer){ hci_release_packet_buffer(); } } } // finalize iso stream for CIS handle iso_stream = hci_iso_stream_for_con_handle(handle); if (iso_stream != NULL){ hci_iso_stream_finalize(iso_stream); break; } // finalize iso stream(s) for ACL handle btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if (iso_stream->acl_handle == handle ) { hci_iso_stream_finalize(iso_stream); } } #endif #if defined(ENABLE_BLE) && defined (ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND) if ((handle != HCI_CON_HANDLE_INVALID) && (handle == hci_stack->hci_command_con_handle)){ // we did not receive a HCI Command Complete or HCI Command Status event for the disconnected connection // if needed, we could also track the hci command opcode and simulate a hci command complete with status // but the connection has failed anyway, so for now, we only set the num hci commands back to 1 log_info("Disconnect for conn handle 0x%04x in pending HCI command, assume command failed", handle); hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID; hci_stack->num_cmd_packets = 1; } #endif conn = hci_connection_for_handle(handle); if (!conn) break; #ifdef ENABLE_CLASSIC // pairing failed if it was ongoing hci_pairing_complete(conn, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION); #endif // emit dedicatd bonding event if (conn->bonding_flags & BONDING_EMIT_COMPLETE_ON_DISCONNECT){ hci_emit_dedicated_bonding_result(conn->address, conn->bonding_status); } // mark connection for shutdown, stop timers, reset state conn->state = RECEIVED_DISCONNECTION_COMPLETE; hci_connection_stop_timer(conn); hci_connection_init(conn); #ifdef ENABLE_BLE #ifdef ENABLE_LE_PERIPHERAL // re-enable advertisements for le connections if active if (hci_is_le_connection(conn)){ hci_update_advertisements_enabled_for_current_roles(); } #endif #endif break; case HCI_EVENT_HARDWARE_ERROR: log_error("Hardware Error: 0x%02x", packet[2]); if (hci_stack->hardware_error_callback){ (*hci_stack->hardware_error_callback)(packet[2]); } else { // if no special requests, just reboot stack hci_power_control_off(); hci_power_control_on(); } break; #ifdef ENABLE_CLASSIC case HCI_EVENT_ROLE_CHANGE: if (packet[2]) break; // status != 0 reverse_bd_addr(&packet[3], addr); addr_type = BD_ADDR_TYPE_ACL; conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (!conn) break; conn->role = (hci_role_t) packet[9]; break; #endif case HCI_EVENT_TRANSPORT_PACKET_SENT: // release packet buffer only for asynchronous transport and if there are not further fragments if (hci_transport_synchronous()) { log_error("Synchronous HCI Transport shouldn't send HCI_EVENT_TRANSPORT_PACKET_SENT"); return; // instead of break: to avoid re-entering hci_run() } hci_stack->acl_fragmentation_tx_active = 0; #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS hci_stack->iso_fragmentation_tx_active = 0; if (hci_stack->iso_fragmentation_total_size) break; #endif if (hci_stack->acl_fragmentation_total_size) break; // release packet buffer without HCI_EVENT_TRANSPORT_PACKET_SENT (as it will be later) btstack_assert(hci_stack->hci_packet_buffer_reserved); hci_stack->hci_packet_buffer_reserved = false; #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS hci_iso_notify_can_send_now(); #endif // L2CAP receives this event via the hci_emit_event below #ifdef ENABLE_CLASSIC // For SCO, we do the can_send_now_check here hci_notify_if_sco_can_send_now(); #endif break; #ifdef ENABLE_CLASSIC case HCI_EVENT_SCO_CAN_SEND_NOW: // For SCO, we do the can_send_now_check here hci_stack->sco_can_send_now = true; hci_notify_if_sco_can_send_now(); return; // explode inquriy results for easier consumption case HCI_EVENT_INQUIRY_RESULT: case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI: case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE: gap_inquiry_explode(packet, size); break; #endif #ifdef ENABLE_BLE case HCI_EVENT_LE_META: switch (packet[2]){ #ifdef ENABLE_LE_CENTRAL case HCI_SUBEVENT_LE_ADVERTISING_REPORT: if (!hci_stack->le_scanning_enabled) break; le_handle_advertisement_report(packet, size); break; #ifdef ENABLE_LE_EXTENDED_ADVERTISING case HCI_SUBEVENT_LE_EXTENDED_ADVERTISING_REPORT: if (!hci_stack->le_scanning_enabled) break; le_handle_extended_advertisement_report(packet, size); break; case HCI_SUBEVENT_LE_PERIODIC_ADVERTISING_SYNC_ESTABLISHMENT: hci_stack->le_periodic_sync_request = LE_CONNECTING_IDLE; hci_stack->le_periodic_sync_state = LE_CONNECTING_IDLE; break; case HCI_SUBEVENT_LE_ADVERTISING_SET_TERMINATED: advertising_handle = hci_subevent_le_advertising_set_terminated_get_advertising_handle(packet); btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets); while (btstack_linked_list_iterator_has_next(&it)) { le_advertising_set_t *advertising_set = (le_advertising_set_t *) btstack_linked_list_iterator_next(&it); if (advertising_set->advertising_handle == advertising_handle){ advertising_set->state &= ~(LE_ADVERTISEMENT_STATE_ACTIVE | LE_ADVERTISEMENT_STATE_ENABLED); } } break; #endif #endif case HCI_SUBEVENT_LE_CONNECTION_COMPLETE: case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V1: case HCI_SUBEVENT_LE_ENHANCED_CONNECTION_COMPLETE_V2: hci_handle_le_connection_complete_event(packet); break; // log_info("LE buffer size: %u, count %u", little_endian_read_16(packet,6), packet[8]); case HCI_SUBEVENT_LE_CONNECTION_UPDATE_COMPLETE: handle = hci_subevent_le_connection_update_complete_get_connection_handle(packet); conn = hci_connection_for_handle(handle); if (!conn) break; conn->le_connection_interval = hci_subevent_le_connection_update_complete_get_conn_interval(packet); break; case HCI_SUBEVENT_LE_REMOTE_CONNECTION_PARAMETER_REQUEST: // connection handle = hci_subevent_le_remote_connection_parameter_request_get_connection_handle(packet); conn = hci_connection_for_handle(handle); if (conn) { // read arguments uint16_t le_conn_interval_min = hci_subevent_le_remote_connection_parameter_request_get_interval_min(packet); uint16_t le_conn_interval_max = hci_subevent_le_remote_connection_parameter_request_get_interval_max(packet); uint16_t le_conn_latency = hci_subevent_le_remote_connection_parameter_request_get_latency(packet); uint16_t le_supervision_timeout = hci_subevent_le_remote_connection_parameter_request_get_timeout(packet); // validate against current connection parameter range le_connection_parameter_range_t existing_range; gap_get_connection_parameter_range(&existing_range); int update_parameter = gap_connection_parameter_range_included(&existing_range, le_conn_interval_min, le_conn_interval_max, le_conn_latency, le_supervision_timeout); if (update_parameter){ conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_REPLY; conn->le_conn_interval_min = le_conn_interval_min; conn->le_conn_interval_max = le_conn_interval_max; conn->le_conn_latency = le_conn_latency; conn->le_supervision_timeout = le_supervision_timeout; } else { conn->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NEGATIVE_REPLY; } } break; #ifdef ENABLE_LE_LIMIT_ACL_FRAGMENT_BY_MAX_OCTETS case HCI_SUBEVENT_LE_DATA_LENGTH_CHANGE: handle = hci_subevent_le_data_length_change_get_connection_handle(packet); conn = hci_connection_for_handle(handle); if (conn) { conn->le_max_tx_octets = hci_subevent_le_data_length_change_get_max_tx_octets(packet); } break; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS case HCI_SUBEVENT_LE_CIS_REQUEST: // incoming CIS request, allocate iso stream object and cache metadata iso_stream = hci_iso_stream_create(HCI_ISO_TYPE_CIS, HCI_ISO_STREAM_W4_USER, hci_subevent_le_cis_request_get_cig_id(packet), hci_subevent_le_cis_request_get_cis_id(packet)); // if there's no memory, gap_cis_accept/gap_cis_reject will fail if (iso_stream != NULL){ iso_stream->cis_handle = hci_subevent_le_cis_request_get_cis_connection_handle(packet); iso_stream->acl_handle = hci_subevent_le_cis_request_get_acl_connection_handle(packet); } break; case HCI_SUBEVENT_LE_CIS_ESTABLISHED: if (hci_stack->iso_active_operation_type == HCI_ISO_TYPE_CIS){ handle = hci_subevent_le_cis_established_get_connection_handle(packet); uint8_t status = hci_subevent_le_cis_established_get_status(packet); iso_stream = hci_iso_stream_for_con_handle(handle); btstack_assert(iso_stream != NULL); // track connection info iso_stream->number_of_subevents = hci_subevent_le_cis_established_get_nse(packet); iso_stream->burst_number_c_to_p = hci_subevent_le_cis_established_get_bn_c_to_p(packet); iso_stream->burst_number_p_to_c = hci_subevent_le_cis_established_get_bn_p_to_c(packet); iso_stream->flush_timeout_c_to_p = hci_subevent_le_cis_established_get_ft_c_to_p(packet); iso_stream->flush_timeout_p_to_c = hci_subevent_le_cis_established_get_ft_p_to_c(packet); iso_stream->max_sdu_c_to_p = hci_subevent_le_cis_established_get_max_pdu_c_to_p(packet); iso_stream->max_sdu_p_to_c = hci_subevent_le_cis_established_get_max_pdu_p_to_c(packet); iso_stream->iso_interval_1250us = hci_subevent_le_cis_established_get_iso_interval(packet); if (hci_stack->iso_active_operation_group_id == HCI_ISO_GROUP_ID_SINGLE_CIS){ // CIS Accept by Peripheral if (status == ERROR_CODE_SUCCESS){ if (iso_stream->max_sdu_p_to_c > 0){ // we're peripheral and we will send data iso_stream->state = HCI_ISO_STREAM_STATE_W2_SETUP_ISO_INPUT; } else { // we're peripheral and we will only receive data iso_stream->state = HCI_ISO_STREAM_STATE_W2_SETUP_ISO_OUTPUT; } } else { hci_cis_handle_created(iso_stream, status); } hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; } else { // CIG Setup by Central le_audio_cig_t * cig = hci_cig_for_id(hci_stack->iso_active_operation_group_id); btstack_assert(cig != NULL); // update iso stream state if (status == ERROR_CODE_SUCCESS){ iso_stream->state = HCI_ISO_STREAM_STATE_ESTABLISHED; } else { iso_stream->state = HCI_ISO_STREAM_STATE_IDLE; } // update cig state uint8_t i; for (i=0;inum_cis;i++){ if (cig->cis_con_handles[i] == handle){ cig->cis_setup_active[i] = false; if (status == ERROR_CODE_SUCCESS){ cig->cis_established[i] = true; } else { hci_cis_handle_created(iso_stream, status); } } } // trigger iso path setup if complete bool cis_setup_active = false; for (i=0;inum_cis;i++){ cis_setup_active |= cig->cis_setup_active[i]; } if (cis_setup_active == false){ cig->state_vars.next_cis = 0; cig->state = LE_AUDIO_CIG_STATE_SETUP_ISO_PATH; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; } } } break; case HCI_SUBEVENT_LE_CREATE_BIG_COMPLETE: hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; big = hci_big_for_handle(packet[4]); if (big != NULL){ uint8_t status = packet[3]; if (status == ERROR_CODE_SUCCESS){ // store bis_con_handles and trigger iso path setup uint8_t num_bis = btstack_min(big->num_bis, packet[20]); uint8_t i; for (i=0;ibis_con_handles[i] = bis_handle; // assign bis handle btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) && (iso_stream->group_id == big->big_handle)){ iso_stream->cis_handle = bis_handle; iso_stream->state = HCI_ISO_STREAM_STATE_ESTABLISHED; break; } } } if (big->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED) { big->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH; big->state_vars.next_bis = 0; } } else { // create BIG failed or has been stopped by us hci_iso_stream_finalize_by_type_and_group_id(HCI_ISO_TYPE_BIS, big->big_handle); btstack_linked_list_remove(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big); if (big->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED){ hci_emit_big_created(big, status); } else { hci_emit_big_terminated(big); } } } break; case HCI_SUBEVENT_LE_TERMINATE_BIG_COMPLETE: hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; big = hci_big_for_handle(hci_subevent_le_terminate_big_complete_get_big_handle(packet)); if (big != NULL){ // finalize associated ISO streams btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if (iso_stream->group_id == big->big_handle){ log_info("BIG Terminated, big_handle 0x%02x, con handle 0x%04x", iso_stream->group_id, iso_stream->cis_handle); btstack_linked_list_iterator_remove(&it); btstack_memory_hci_iso_stream_free(iso_stream); } } btstack_linked_list_remove(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big); switch (big->state){ case LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED: hci_emit_big_created(big, big->state_vars.status); break; default: hci_emit_big_terminated(big); break; } } break; case HCI_SUBEVENT_LE_BIG_SYNC_ESTABLISHED: hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; big_sync = hci_big_sync_for_handle(packet[4]); if (big_sync != NULL){ uint8_t status = packet[3]; uint8_t big_handle = packet[4]; if (status == ERROR_CODE_SUCCESS){ // store bis_con_handles and trigger iso path setup uint8_t num_bis = btstack_min(big_sync->num_bis, packet[16]); uint8_t i; for (i=0;ibis_con_handles[i] = bis_handle; // setup iso_stream_t btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) && (iso_stream->group_id == big_sync->big_handle)){ iso_stream->cis_handle = bis_handle; iso_stream->state = HCI_ISO_STREAM_STATE_ESTABLISHED; break; } } } if (big_sync->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED) { // trigger iso path setup big_sync->state = LE_AUDIO_BIG_STATE_SETUP_ISO_PATH; big_sync->state_vars.next_bis = 0; } } else { // create BIG Sync failed or has been stopped by us btstack_linked_list_remove(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync); if (big_sync->state == LE_AUDIO_BIG_STATE_W4_ESTABLISHED) { hci_emit_big_sync_created(big_sync, status); } else { hci_emit_big_sync_stopped(big_handle); } } } break; case HCI_SUBEVENT_LE_BIG_SYNC_LOST: hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; big_sync = hci_big_sync_for_handle(packet[4]); if (big_sync != NULL){ uint8_t big_handle = packet[4]; btstack_linked_list_remove(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync); hci_emit_big_sync_stopped(big_handle); } break; #endif default: break; } break; #endif case HCI_EVENT_VENDOR_SPECIFIC: // Vendor specific commands often create vendor specific event instead of num completed packets // To avoid getting stuck as num_cmds_packets is zero, reset it to 1 for controllers with this behaviour switch (hci_stack->manufacturer){ case BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO: hci_stack->num_cmd_packets = 1; break; default: break; } break; default: break; } handle_event_for_current_stack_state(packet, size); // notify upper stack hci_emit_event(packet, size, 0); // don't dump, already happened in packet handler // moved here to give upper stack a chance to close down everything with hci_connection_t intact if ((hci_event_packet_get_type(packet) == HCI_EVENT_DISCONNECTION_COMPLETE) && (packet[2] == 0)){ handle = little_endian_read_16(packet, 3); hci_connection_t * aConn = hci_connection_for_handle(handle); // discard connection if app did not trigger a reconnect in the event handler if (aConn && aConn->state == RECEIVED_DISCONNECTION_COMPLETE){ hci_shutdown_connection(aConn); } #ifdef ENABLE_CONTROLLER_DUMP_PACKETS hci_controller_dump_packets(); #endif } // execute main loop hci_run(); } #ifdef ENABLE_CLASSIC static void sco_handler(uint8_t * packet, uint16_t size){ // lookup connection struct hci_con_handle_t con_handle = READ_SCO_CONNECTION_HANDLE(packet); hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return; #ifdef ENABLE_SCO_OVER_HCI // CSR 8811 prefixes 60 byte SCO packet in transparent mode with 20 zero bytes -> skip first 20 payload bytes if (hci_stack->manufacturer == BLUETOOTH_COMPANY_ID_CAMBRIDGE_SILICON_RADIO){ if ((size == 83) && ((hci_stack->sco_voice_setting_active & 0x03) == 0x03)){ packet[2] = 0x3c; memmove(&packet[3], &packet[23], 63); size = 63; } } if (hci_have_usb_transport()){ // Nothing to do } else { // log_debug("sco flow %u, handle 0x%04x, packets sent %u, bytes send %u", hci_stack->synchronous_flow_control_enabled, (int) con_handle, conn->num_packets_sent, conn->num_sco_bytes_sent); if (hci_stack->synchronous_flow_control_enabled == 0){ // ignore received SCO packets for the first 10 ms, then allow for max two HCI_SCO_2EV3_SIZE packets uint16_t max_sco_packets = btstack_min(2 * HCI_SCO_2EV3_SIZE / conn->sco_payload_length, hci_stack->sco_packets_total_num); if (conn->sco_tx_active == 0){ if (btstack_time_delta(btstack_run_loop_get_time_ms(), conn->sco_established_ms) > 10){ conn->sco_tx_active = 1; conn->sco_tx_ready = max_sco_packets; log_info("Start SCO sending, %u packets", conn->sco_tx_ready); hci_notify_if_sco_can_send_now(); } } else { if (conn->sco_tx_ready < max_sco_packets){ conn->sco_tx_ready++; } hci_notify_if_sco_can_send_now(); } } } #endif // deliver to app if (hci_stack->sco_packet_handler) { hci_stack->sco_packet_handler(HCI_SCO_DATA_PACKET, 0, packet, size); } #ifdef HAVE_SCO_TRANSPORT // We can send one packet for each received packet conn->sco_tx_ready++; hci_notify_if_sco_can_send_now(); #endif #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL conn->num_packets_completed++; hci_stack->host_completed_packets = 1; hci_run(); #endif } #endif static void packet_handler(uint8_t packet_type, uint8_t *packet, uint16_t size){ #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS // propagate ISO packets received as ACL hci_iso_stream_t * iso_stream = NULL; if ((packet_type == HCI_ACL_DATA_PACKET) && (size >= HCI_ACL_HEADER_SIZE)){ hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(packet); iso_stream = hci_iso_stream_for_con_handle(con_handle); if (iso_stream != NULL){ packet_type = HCI_ISO_DATA_PACKET; } } #endif hci_dump_packet(packet_type, 1, packet, size); switch (packet_type) { case HCI_EVENT_PACKET: event_handler(packet, size); break; case HCI_ACL_DATA_PACKET: acl_handler(packet, size); break; #ifdef ENABLE_CLASSIC case HCI_SCO_DATA_PACKET: sco_handler(packet, size); break; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS case HCI_ISO_DATA_PACKET: if ((iso_stream == NULL) && (size >= HCI_ISO_HEADER_SIZE)){ hci_con_handle_t con_handle = READ_ISO_CONNECTION_HANDLE(packet); iso_stream = hci_iso_stream_for_con_handle(con_handle); } hci_iso_packet_handler(iso_stream, packet, size); break; #endif default: break; } } /** * @brief Add event packet handler. */ void hci_add_event_handler(btstack_packet_callback_registration_t * callback_handler){ btstack_linked_list_add_tail(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler); } /** * @brief Remove event packet handler. */ void hci_remove_event_handler(btstack_packet_callback_registration_t * callback_handler){ btstack_linked_list_remove(&hci_stack->event_handlers, (btstack_linked_item_t*) callback_handler); } /** Register HCI packet handlers */ void hci_register_acl_packet_handler(btstack_packet_handler_t handler){ hci_stack->acl_packet_handler = handler; } #ifdef ENABLE_CLASSIC /** * @brief Registers a packet handler for SCO data. Used for HSP and HFP profiles. */ void hci_register_sco_packet_handler(btstack_packet_handler_t handler){ hci_stack->sco_packet_handler = handler; } #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS void hci_register_iso_packet_handler(btstack_packet_handler_t handler){ hci_stack->iso_packet_handler = handler; } #endif static void hci_state_reset(void){ // no connections yet hci_stack->connections = NULL; // keep discoverable/connectable as this has been requested by the client(s) // hci_stack->discoverable = 0; // hci_stack->connectable = 0; // hci_stack->bondable = 1; // hci_stack->own_addr_type = 0; // buffer is free hci_stack->hci_packet_buffer_reserved = false; // no pending cmds hci_stack->decline_reason = 0; hci_stack->secure_connections_active = false; #ifdef ENABLE_CLASSIC hci_stack->inquiry_lap = GAP_IAC_GENERAL_INQUIRY; hci_stack->page_timeout = 0x6000; // ca. 15 sec hci_stack->gap_tasks_classic = GAP_TASK_SET_DEFAULT_LINK_POLICY | GAP_TASK_SET_CLASS_OF_DEVICE | GAP_TASK_SET_LOCAL_NAME | GAP_TASK_SET_EIR_DATA | GAP_TASK_WRITE_SCAN_ENABLE | GAP_TASK_WRITE_PAGE_TIMEOUT; #endif #ifdef ENABLE_CLASSIC_PAIRING_OOB hci_stack->classic_read_local_oob_data = false; hci_stack->classic_oob_con_handle = HCI_CON_HANDLE_INVALID; #endif // LE #ifdef ENABLE_BLE memset(hci_stack->le_random_address, 0, 6); hci_stack->le_random_address_set = 0; #endif #ifdef ENABLE_LE_CENTRAL hci_stack->le_scanning_active = false; hci_stack->le_scanning_param_update = true; hci_stack->le_connecting_state = LE_CONNECTING_IDLE; hci_stack->le_connecting_request = LE_CONNECTING_IDLE; hci_stack->le_whitelist_capacity = 0; #ifdef ENABLE_LE_EXTENDED_ADVERTISING hci_stack->le_periodic_terminate_sync_handle = HCI_CON_HANDLE_INVALID; #endif #endif #ifdef ENABLE_LE_PERIPHERAL hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_PARAMS_SET) != 0){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; } if (hci_stack->le_advertisements_data != NULL){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; } #endif #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION; #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS hci_stack->iso_active_operation_type = HCI_ISO_TYPE_INVALID; hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_INVALID; #endif #ifdef ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND hci_stack->hci_command_con_handle = HCI_CON_HANDLE_INVALID; #endif } #ifdef ENABLE_CLASSIC /** * @brief Configure Bluetooth hardware control. Has to be called before power on. */ void hci_set_link_key_db(btstack_link_key_db_t const * link_key_db){ // store and open remote device db hci_stack->link_key_db = link_key_db; if (hci_stack->link_key_db) { hci_stack->link_key_db->open(); } } #endif void hci_init(const hci_transport_t *transport, const void *config){ #ifdef HAVE_MALLOC if (!hci_stack) { hci_stack = (hci_stack_t*) malloc(sizeof(hci_stack_t)); } #else hci_stack = &hci_stack_static; #endif memset(hci_stack, 0, sizeof(hci_stack_t)); // reference to use transport layer implementation hci_stack->hci_transport = transport; // reference to used config hci_stack->config = config; // setup pointer for outgoing packet buffer hci_stack->hci_packet_buffer = &hci_stack->hci_packet_buffer_data[HCI_OUTGOING_PRE_BUFFER_SIZE]; // max acl payload size defined in config.h hci_stack->acl_data_packet_length = HCI_ACL_PAYLOAD_SIZE; // register packet handlers with transport transport->register_packet_handler(&packet_handler); hci_stack->state = HCI_STATE_OFF; // class of device hci_stack->class_of_device = 0x007a020c; // Smartphone // bondable by default hci_stack->bondable = 1; #ifdef ENABLE_CLASSIC // classic name hci_stack->local_name = default_classic_name; // Master slave policy hci_stack->master_slave_policy = 1; // Allow Role Switch hci_stack->allow_role_switch = 1; // Default / minimum security level = 2 hci_stack->gap_security_level = LEVEL_2; // Default Security Mode 4 hci_stack->gap_security_mode = GAP_SECURITY_MODE_4; // Errata-11838 mandates 7 bytes for GAP Security Level 1-3 hci_stack->gap_required_encyrption_key_size = 7; // Link Supervision Timeout hci_stack->link_supervision_timeout = HCI_LINK_SUPERVISION_TIMEOUT_DEFAULT; // All ACL packet types are enabledh hci_stack->enabled_packet_types_acl = ACL_PACKET_TYPES_ALL; #endif // Secure Simple Pairing default: enable, no I/O capabilities, general bonding, mitm not required, auto accept hci_stack->ssp_enable = 1; hci_stack->ssp_io_capability = SSP_IO_CAPABILITY_NO_INPUT_NO_OUTPUT; hci_stack->ssp_authentication_requirement = SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; hci_stack->ssp_auto_accept = 1; // Secure Connections: enable (requires support from Controller) hci_stack->secure_connections_enable = true; // voice setting - signed 16 bit pcm data with CVSD over the air hci_stack->sco_voice_setting = 0x60; #ifdef ENABLE_BLE hci_stack->le_connection_scan_interval = 0x0060; // 60 ms hci_stack->le_connection_scan_window = 0x0030; // 30 ms hci_stack->le_connection_interval_min = 0x0008; // 10 ms hci_stack->le_connection_interval_max = 0x0018; // 30 ms hci_stack->le_connection_latency = 4; // 4 hci_stack->le_supervision_timeout = 0x0048; // 720 ms hci_stack->le_minimum_ce_length = 0; // 0 ms hci_stack->le_maximum_ce_length = 0; // 0 ms #endif #ifdef ENABLE_LE_CENTRAL hci_stack->le_connection_phys = 0x01; // LE 1M PHY // default LE Scanning hci_stack->le_scan_type = 0x01; // active hci_stack->le_scan_interval = 0x1e0; // 300 ms hci_stack->le_scan_window = 0x30; // 30 ms hci_stack->le_scan_phys = 0x01; // LE 1M PHY #endif #ifdef ENABLE_LE_PERIPHERAL hci_stack->le_max_number_peripheral_connections = 1; // only single connection as peripheral // default advertising parameters from Core v5.4 -- needed to use random address without prior adv setup hci_stack->le_advertisements_interval_min = 0x0800; hci_stack->le_advertisements_interval_max = 0x0800; hci_stack->le_advertisements_type = 0; hci_stack->le_own_addr_type = BD_ADDR_TYPE_LE_PUBLIC; hci_stack->le_advertisements_direct_address_type = BD_ADDR_TYPE_LE_PUBLIC; hci_stack->le_advertisements_channel_map = 0x07; hci_stack->le_advertisements_filter_policy = 0; #endif // connection parameter range used to answer connection parameter update requests in l2cap hci_stack->le_connection_parameter_range.le_conn_interval_min = 6; hci_stack->le_connection_parameter_range.le_conn_interval_max = 3200; hci_stack->le_connection_parameter_range.le_conn_latency_min = 0; hci_stack->le_connection_parameter_range.le_conn_latency_max = 500; hci_stack->le_connection_parameter_range.le_supervision_timeout_min = 10; hci_stack->le_connection_parameter_range.le_supervision_timeout_max = 3200; #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS hci_stack->iso_packets_to_queue = 1; #endif #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION hci_stack->le_privacy_mode = LE_PRIVACY_MODE_DEVICE; #endif hci_state_reset(); } void hci_deinit(void){ btstack_run_loop_remove_timer(&hci_stack->timeout); #ifdef HAVE_MALLOC if (hci_stack) { free(hci_stack); } #endif hci_stack = NULL; #ifdef ENABLE_CLASSIC disable_l2cap_timeouts = 0; #endif } /** * @brief Configure Bluetooth chipset driver. Has to be called before power on, or right after receiving the local version information */ void hci_set_chipset(const btstack_chipset_t *chipset_driver){ hci_stack->chipset = chipset_driver; // reset chipset driver - init is also called on power_up if (hci_stack->chipset && hci_stack->chipset->init){ hci_stack->chipset->init(hci_stack->config); } } void hci_enable_custom_pre_init(void){ hci_stack->chipset_pre_init = true; } /** * @brief Configure Bluetooth hardware control. Has to be called after hci_init() but before power on. */ void hci_set_control(const btstack_control_t *hardware_control){ // references to used control implementation hci_stack->control = hardware_control; // init with transport config hardware_control->init(hci_stack->config); } static void hci_discard_connections(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ // cancel all l2cap connections by emitting dicsconnection complete before shutdown (free) connection hci_connection_t * connection = (hci_connection_t*) btstack_linked_list_iterator_next(&it); hci_emit_disconnection_complete(connection->con_handle, 0x16); // terminated by local host hci_shutdown_connection(connection); } #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS while (hci_stack->iso_streams != NULL){ hci_iso_stream_finalize((hci_iso_stream_t *) hci_stack->iso_streams); } #endif } void hci_close(void){ #ifdef ENABLE_CLASSIC // close remote device db if (hci_stack->link_key_db) { hci_stack->link_key_db->close(); } #endif hci_discard_connections(); hci_power_control(HCI_POWER_OFF); #ifdef HAVE_MALLOC free(hci_stack); #endif hci_stack = NULL; } #ifdef HAVE_SCO_TRANSPORT void hci_set_sco_transport(const btstack_sco_transport_t *sco_transport){ hci_stack->sco_transport = sco_transport; sco_transport->register_packet_handler(&packet_handler); } #endif #ifdef ENABLE_CLASSIC void gap_set_required_encryption_key_size(uint8_t encryption_key_size){ // validate ranage and set if (encryption_key_size < 7) return; if (encryption_key_size > 16) return; hci_stack->gap_required_encyrption_key_size = encryption_key_size; } uint8_t gap_set_security_mode(gap_security_mode_t security_mode){ if ((security_mode == GAP_SECURITY_MODE_4) || (security_mode == GAP_SECURITY_MODE_2)){ hci_stack->gap_security_mode = security_mode; return ERROR_CODE_SUCCESS; } else { return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE; } } gap_security_mode_t gap_get_security_mode(void){ return hci_stack->gap_security_mode; } void gap_set_security_level(gap_security_level_t security_level){ hci_stack->gap_security_level = security_level; } gap_security_level_t gap_get_security_level(void){ if (hci_stack->gap_secure_connections_only_mode){ return LEVEL_4; } return hci_stack->gap_security_level; } void gap_set_minimal_service_security_level(gap_security_level_t security_level){ hci_stack->gap_minimal_service_security_level = security_level; } void gap_set_secure_connections_only_mode(bool enable){ hci_stack->gap_secure_connections_only_mode = enable; } bool gap_get_secure_connections_only_mode(void){ return hci_stack->gap_secure_connections_only_mode; } #endif #ifdef ENABLE_CLASSIC void gap_set_class_of_device(uint32_t class_of_device){ hci_stack->class_of_device = class_of_device; hci_stack->gap_tasks_classic |= GAP_TASK_SET_CLASS_OF_DEVICE; hci_run(); } void gap_set_default_link_policy_settings(uint16_t default_link_policy_settings){ hci_stack->default_link_policy_settings = default_link_policy_settings; hci_stack->gap_tasks_classic |= GAP_TASK_SET_DEFAULT_LINK_POLICY; hci_run(); } void gap_set_allow_role_switch(bool allow_role_switch){ hci_stack->allow_role_switch = allow_role_switch ? 1 : 0; } uint8_t hci_get_allow_role_switch(void){ return hci_stack->allow_role_switch; } void gap_set_link_supervision_timeout(uint16_t link_supervision_timeout){ hci_stack->link_supervision_timeout = link_supervision_timeout; } void gap_enable_link_watchdog(uint16_t timeout_ms){ hci_stack->automatic_flush_timeout = btstack_min(timeout_ms, 1280) * 8 / 5; // divide by 0.625 } uint16_t hci_automatic_flush_timeout(void){ return hci_stack->automatic_flush_timeout; } void hci_disable_l2cap_timeout_check(void){ disable_l2cap_timeouts = 1; } #endif #ifndef HAVE_HOST_CONTROLLER_API // Set Public BD ADDR - passed on to Bluetooth chipset if supported in bt_control_h void hci_set_bd_addr(bd_addr_t addr){ (void)memcpy(hci_stack->custom_bd_addr, addr, 6); hci_stack->custom_bd_addr_set = 1; } #endif // State-Module-Driver overview // state module low-level // HCI_STATE_OFF off close // HCI_STATE_INITIALIZING, on open // HCI_STATE_WORKING, on open // HCI_STATE_HALTING, on open // HCI_STATE_SLEEPING, off/sleep close // HCI_STATE_FALLING_ASLEEP on open static int hci_power_control_on(void){ // power on int err = 0; if (hci_stack->control && hci_stack->control->on){ err = (*hci_stack->control->on)(); } if (err){ log_error( "POWER_ON failed"); hci_emit_hci_open_failed(); return err; } // int chipset driver if (hci_stack->chipset && hci_stack->chipset->init){ hci_stack->chipset->init(hci_stack->config); } // init transport if (hci_stack->hci_transport->init){ hci_stack->hci_transport->init(hci_stack->config); } // open transport err = hci_stack->hci_transport->open(); if (err){ log_error( "HCI_INIT failed, turning Bluetooth off again"); if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(); } hci_emit_hci_open_failed(); return err; } return 0; } static void hci_power_control_off(void){ log_info("hci_power_control_off"); // close low-level device hci_stack->hci_transport->close(); log_info("hci_power_control_off - hci_transport closed"); // power off if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(); } log_info("hci_power_control_off - control closed"); hci_stack->state = HCI_STATE_OFF; } static void hci_power_control_sleep(void){ log_info("hci_power_control_sleep"); #if 0 // don't close serial port during sleep // close low-level device hci_stack->hci_transport->close(hci_stack->config); #endif // sleep mode if (hci_stack->control && hci_stack->control->sleep){ (*hci_stack->control->sleep)(); } hci_stack->state = HCI_STATE_SLEEPING; } static int hci_power_control_wake(void){ log_info("hci_power_control_wake"); // wake on if (hci_stack->control && hci_stack->control->wake){ (*hci_stack->control->wake)(); } #if 0 // open low-level device int err = hci_stack->hci_transport->open(hci_stack->config); if (err){ log_error( "HCI_INIT failed, turning Bluetooth off again"); if (hci_stack->control && hci_stack->control->off){ (*hci_stack->control->off)(); } hci_emit_hci_open_failed(); return err; } #endif return 0; } static void hci_power_enter_initializing_state(void){ // set up state machine hci_stack->num_cmd_packets = 1; // assume that one cmd can be sent hci_stack->hci_packet_buffer_reserved = false; hci_stack->state = HCI_STATE_INITIALIZING; #ifndef HAVE_HOST_CONTROLLER_API if (hci_stack->chipset_pre_init) { hci_stack->substate = HCI_INIT_CUSTOM_PRE_INIT; } else #endif { hci_stack->substate = HCI_INIT_SEND_RESET; } } static void hci_power_enter_halting_state(void){ #ifdef ENABLE_BLE // drop entries scheduled for removal, mark others for re-adding btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&it)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); if ((entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)) == LE_WHITELIST_REMOVE_FROM_CONTROLLER){ btstack_linked_list_iterator_remove(&it); btstack_memory_whitelist_entry_free(entry); } else { entry->state = LE_WHITELIST_ADD_TO_CONTROLLER; } } #ifdef ENABLE_LE_PERIODIC_ADVERTISING btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list); const uint8_t mask = LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER | LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER; while (btstack_linked_list_iterator_has_next(&it)){ periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&it); if ((entry->state & mask) == LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER) { btstack_linked_list_iterator_remove(&it); btstack_memory_periodic_advertiser_list_entry_free(entry); } else { entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER; continue; } } #endif #endif // see hci_run hci_stack->state = HCI_STATE_HALTING; hci_stack->substate = HCI_HALTING_CLASSIC_STOP; // setup watchdog timer for disconnect - only triggers if Controller does not respond anymore btstack_run_loop_set_timer(&hci_stack->timeout, 1000); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_halting_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); } // returns error static int hci_power_control_state_off(HCI_POWER_MODE power_mode){ int err; switch (power_mode){ case HCI_POWER_ON: err = hci_power_control_on(); if (err != 0) { log_error("hci_power_control_on() error %d", err); return err; } hci_power_enter_initializing_state(); break; case HCI_POWER_OFF: // do nothing break; case HCI_POWER_SLEEP: // do nothing (with SLEEP == OFF) break; default: btstack_assert(false); break; } return ERROR_CODE_SUCCESS; } static int hci_power_control_state_initializing(HCI_POWER_MODE power_mode){ switch (power_mode){ case HCI_POWER_ON: // do nothing break; case HCI_POWER_OFF: // no connections yet, just turn it off hci_power_control_off(); break; case HCI_POWER_SLEEP: // no connections yet, just turn it off hci_power_control_sleep(); break; default: btstack_assert(false); break; } return ERROR_CODE_SUCCESS; } static int hci_power_control_state_working(HCI_POWER_MODE power_mode) { switch (power_mode){ case HCI_POWER_ON: // do nothing break; case HCI_POWER_OFF: hci_power_enter_halting_state(); break; case HCI_POWER_SLEEP: // see hci_run hci_stack->state = HCI_STATE_FALLING_ASLEEP; hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT; break; default: btstack_assert(false); break; } return ERROR_CODE_SUCCESS; } static int hci_power_control_state_halting(HCI_POWER_MODE power_mode) { switch (power_mode){ case HCI_POWER_ON: hci_power_enter_initializing_state(); break; case HCI_POWER_OFF: // do nothing break; case HCI_POWER_SLEEP: // see hci_run hci_stack->state = HCI_STATE_FALLING_ASLEEP; hci_stack->substate = HCI_FALLING_ASLEEP_DISCONNECT; break; default: btstack_assert(false); break; } return ERROR_CODE_SUCCESS; } static int hci_power_control_state_falling_asleep(HCI_POWER_MODE power_mode) { switch (power_mode){ case HCI_POWER_ON: hci_power_enter_initializing_state(); break; case HCI_POWER_OFF: hci_power_enter_halting_state(); break; case HCI_POWER_SLEEP: // do nothing break; default: btstack_assert(false); break; } return ERROR_CODE_SUCCESS; } static int hci_power_control_state_sleeping(HCI_POWER_MODE power_mode) { int err; switch (power_mode){ case HCI_POWER_ON: err = hci_power_control_wake(); if (err) return err; hci_power_enter_initializing_state(); break; case HCI_POWER_OFF: hci_power_enter_halting_state(); break; case HCI_POWER_SLEEP: // do nothing break; default: btstack_assert(false); break; } return ERROR_CODE_SUCCESS; } int hci_power_control(HCI_POWER_MODE power_mode){ log_info("hci_power_control: %d, current mode %u", power_mode, hci_stack->state); btstack_run_loop_remove_timer(&hci_stack->timeout); int err = 0; switch (hci_stack->state){ case HCI_STATE_OFF: err = hci_power_control_state_off(power_mode); break; case HCI_STATE_INITIALIZING: err = hci_power_control_state_initializing(power_mode); break; case HCI_STATE_WORKING: err = hci_power_control_state_working(power_mode); break; case HCI_STATE_HALTING: err = hci_power_control_state_halting(power_mode); break; case HCI_STATE_FALLING_ASLEEP: err = hci_power_control_state_falling_asleep(power_mode); break; case HCI_STATE_SLEEPING: err = hci_power_control_state_sleeping(power_mode); break; default: btstack_assert(false); break; } if (err != 0){ return err; } // create internal event hci_emit_state(); // trigger next/first action hci_run(); return 0; } static void hci_halting_run(void) { log_info("HCI_STATE_HALTING, substate %x\n", hci_stack->substate); hci_connection_t *connection; #ifdef ENABLE_BLE #ifdef ENABLE_LE_PERIPHERAL bool stop_advertismenets; #endif #endif switch (hci_stack->substate) { case HCI_HALTING_CLASSIC_STOP: #ifdef ENABLE_CLASSIC if (!hci_can_send_command_packet_now()) return; if (hci_stack->connectable || hci_stack->discoverable){ hci_stack->substate = HCI_HALTING_LE_ADV_STOP; hci_send_cmd(&hci_write_scan_enable, 0); return; } #endif /* fall through */ case HCI_HALTING_LE_ADV_STOP: hci_stack->substate = HCI_HALTING_LE_ADV_STOP; #ifdef ENABLE_BLE #ifdef ENABLE_LE_PERIPHERAL if (!hci_can_send_command_packet_now()) return; stop_advertismenets = (hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0; #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ #ifdef ENABLE_LE_PERIODIC_ADVERTISING btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets); // stop all periodic advertisements and check if an extended set is active while (btstack_linked_list_iterator_has_next(&it)){ le_advertising_set_t * advertising_set = (le_advertising_set_t*) btstack_linked_list_iterator_next(&it); if ((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE) != 0) { advertising_set->state &= ~LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE; hci_send_cmd(&hci_le_set_periodic_advertising_enable, 0, advertising_set->advertising_handle); return; } if ((advertising_set->state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0) { stop_advertismenets = true; advertising_set->state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; } } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ if (stop_advertismenets){ hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; hci_send_cmd(&hci_le_set_extended_advertising_enable, 0, 0, NULL, NULL, NULL); return; } } else #else /* ENABLE_LE_PERIPHERAL */ { if (stop_advertismenets) { hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; hci_send_cmd(&hci_le_set_advertise_enable, 0); return; } } #endif /* ENABLE_LE_EXTENDED_ADVERTISING*/ #endif /* ENABLE_LE_PERIPHERAL */ #endif /* ENABLE_BLE */ /* fall through */ case HCI_HALTING_LE_SCAN_STOP: hci_stack->substate = HCI_HALTING_LE_SCAN_STOP; if (!hci_can_send_command_packet_now()) return; #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL if (hci_stack->le_scanning_active){ hci_le_scan_stop(); hci_stack->substate = HCI_HALTING_DISCONNECT_ALL; return; } #endif #endif /* fall through */ case HCI_HALTING_DISCONNECT_ALL: hci_stack->substate = HCI_HALTING_DISCONNECT_ALL; if (!hci_can_send_command_packet_now()) return; // close all open connections connection = (hci_connection_t *) hci_stack->connections; if (connection) { hci_con_handle_t con_handle = (uint16_t) connection->con_handle; log_info("HCI_STATE_HALTING, connection %p, handle %u, state %u", connection, con_handle, connection->state); // check state switch(connection->state) { case SENT_DISCONNECT: case RECEIVED_DISCONNECTION_COMPLETE: // wait until connection is gone return; default: break; } // finally, send the disconnect command connection->state = SENT_DISCONNECT; hci_send_cmd(&hci_disconnect, con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION); return; } #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS // stop BIGs and BIG Syncs if (hci_stack->le_audio_bigs != NULL){ le_audio_big_t * big = (le_audio_big_t*) hci_stack->le_audio_bigs; if (big->state == LE_AUDIO_BIG_STATE_W4_TERMINATED) return; big->state = LE_AUDIO_BIG_STATE_W4_TERMINATED; hci_send_cmd(&hci_le_terminate_big, big->big_handle); return; } if (hci_stack->le_audio_big_syncs != NULL){ le_audio_big_sync_t * big_sync = (le_audio_big_sync_t*) hci_stack->le_audio_big_syncs; if (big_sync->state == LE_AUDIO_BIG_STATE_W4_TERMINATED) return; big_sync->state = LE_AUDIO_BIG_STATE_W4_TERMINATED; hci_send_cmd(&hci_le_big_terminate_sync, big_sync->big_handle); return; } #endif btstack_run_loop_remove_timer(&hci_stack->timeout); // no connections left, wait a bit to assert that btstack_cyrpto isn't waiting for an HCI event log_info("HCI_STATE_HALTING: wait 50 ms"); hci_stack->substate = HCI_HALTING_W4_CLOSE_TIMER; btstack_run_loop_set_timer(&hci_stack->timeout, 50); btstack_run_loop_set_timer_handler(&hci_stack->timeout, hci_halting_timeout_handler); btstack_run_loop_add_timer(&hci_stack->timeout); break; case HCI_HALTING_W4_CLOSE_TIMER: // keep waiting break; case HCI_HALTING_CLOSE: // close left over connections (that had not been properly closed before) hci_stack->substate = HCI_HALTING_CLOSE_DISCARDING_CONNECTIONS; hci_discard_connections(); log_info("HCI_STATE_HALTING, calling off"); // switch mode hci_power_control_off(); log_info("HCI_STATE_HALTING, emitting state"); hci_emit_state(); log_info("HCI_STATE_HALTING, done"); break; default: break; } }; static void hci_falling_asleep_run(void){ hci_connection_t * connection; switch(hci_stack->substate) { case HCI_FALLING_ASLEEP_DISCONNECT: log_info("HCI_STATE_FALLING_ASLEEP"); // close all open connections connection = (hci_connection_t *) hci_stack->connections; if (connection){ // send disconnect if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_FALLING_ASLEEP, connection %p, handle %u", connection, (uint16_t)connection->con_handle); hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION); // send disconnected event right away - causes higher layer connections to get closed, too. hci_shutdown_connection(connection); return; } if (hci_classic_supported()){ // disable page and inquiry scan if (!hci_can_send_command_packet_now()) return; log_info("HCI_STATE_HALTING, disabling inq scans"); hci_send_cmd(&hci_write_scan_enable, hci_stack->connectable << 1); // drop inquiry scan but keep page scan // continue in next sub state hci_stack->substate = HCI_FALLING_ASLEEP_W4_WRITE_SCAN_ENABLE; break; } /* fall through */ case HCI_FALLING_ASLEEP_COMPLETE: log_info("HCI_STATE_HALTING, calling sleep"); // switch mode hci_power_control_sleep(); // changes hci_stack->state to SLEEP hci_emit_state(); break; default: break; } } #ifdef ENABLE_CLASSIC static void hci_update_scan_enable(void){ // 2 = page scan, 1 = inq scan hci_stack->new_scan_enable_value = (hci_stack->connectable << 1) | hci_stack->discoverable; hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_SCAN_ENABLE; hci_run(); } void gap_discoverable_control(uint8_t enable){ if (enable) enable = 1; // normalize argument if (hci_stack->discoverable == enable){ hci_emit_scan_mode_changed(hci_stack->discoverable, hci_stack->connectable); return; } hci_stack->discoverable = enable; hci_update_scan_enable(); } void gap_connectable_control(uint8_t enable){ if (enable) enable = 1; // normalize argument // don't emit event if (hci_stack->connectable == enable) return; hci_stack->connectable = enable; hci_update_scan_enable(); } #endif void gap_local_bd_addr(bd_addr_t address_buffer){ (void)memcpy(address_buffer, hci_stack->local_bd_addr, 6); } #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL static void hci_host_num_completed_packets(void){ // create packet manually as arrays are not supported and num_commands should not get reduced hci_reserve_packet_buffer(); uint8_t * packet = hci_get_outgoing_packet_buffer(); uint16_t size = 0; uint16_t num_handles = 0; packet[size++] = 0x35; packet[size++] = 0x0c; size++; // skip param len size++; // skip num handles // add { handle, packets } entries btstack_linked_item_t * it; for (it = (btstack_linked_item_t *) hci_stack->connections; it ; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; if (connection->num_packets_completed){ little_endian_store_16(packet, size, connection->con_handle); size += 2; little_endian_store_16(packet, size, connection->num_packets_completed); size += 2; // num_handles++; connection->num_packets_completed = 0; } } packet[2] = size - 3; packet[3] = num_handles; hci_stack->host_completed_packets = 0; hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); // release packet buffer for synchronous transport implementations if (hci_transport_synchronous()){ hci_release_packet_buffer(); hci_emit_transport_packet_sent(); } } #endif static void hci_halting_timeout_handler(btstack_timer_source_t * ds){ UNUSED(ds); hci_stack->substate = HCI_HALTING_CLOSE; hci_halting_run(); } static bool hci_run_acl_fragments(void){ if (hci_stack->acl_fragmentation_total_size > 0u) { hci_con_handle_t con_handle = READ_ACL_CONNECTION_HANDLE(hci_stack->hci_packet_buffer); hci_connection_t *connection = hci_connection_for_handle(con_handle); if (connection) { if (hci_can_send_prepared_acl_packet_now(con_handle)){ hci_send_acl_packet_fragments(connection); return true; } } else { // connection gone -> discard further fragments log_info("hci_run: fragmented ACL packet no connection -> discard fragment"); hci_stack->acl_fragmentation_total_size = 0; hci_stack->acl_fragmentation_pos = 0; } } return false; } #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS static bool hci_run_iso_fragments(void){ if (hci_stack->iso_fragmentation_total_size > 0u) { // TODO: flow control if (hci_transport_can_send_prepared_packet_now(HCI_ISO_DATA_PACKET)){ hci_send_iso_packet_fragments(); return true; } } return false; } #endif #ifdef ENABLE_CLASSIC #ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS static bool hci_classic_operation_active(void) { if (hci_stack->inquiry_state >= GAP_INQUIRY_STATE_W4_ACTIVE){ return true; } if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W4_COMPLETE){ return true; } btstack_linked_item_t * it; for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next) { hci_connection_t *connection = (hci_connection_t *) it; switch (connection->state) { case SENT_CREATE_CONNECTION: case SENT_CANCEL_CONNECTION: case SENT_DISCONNECT: return true; default: break; } } return false; } #endif static bool hci_run_general_gap_classic(void){ // assert stack is working and classic is active if (hci_classic_supported() == false) return false; if (hci_stack->state != HCI_STATE_WORKING) return false; // decline incoming connections if (hci_stack->decline_reason){ uint8_t reason = hci_stack->decline_reason; hci_stack->decline_reason = 0; hci_send_cmd(&hci_reject_connection_request, hci_stack->decline_addr, reason); return true; } if (hci_stack->gap_tasks_classic != 0){ hci_run_gap_tasks_classic(); return true; } // start/stop inquiry if ((hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN) && (hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX)){ #ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS if (hci_classic_operation_active() == false) #endif { uint8_t duration = hci_stack->inquiry_state; hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_ACTIVE; if (hci_stack->inquiry_max_period_length != 0){ hci_send_cmd(&hci_periodic_inquiry_mode, hci_stack->inquiry_max_period_length, hci_stack->inquiry_min_period_length, hci_stack->inquiry_lap, duration, 0); } else { hci_send_cmd(&hci_inquiry, hci_stack->inquiry_lap, duration, 0); } return true; } } if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W2_CANCEL){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_CANCELLED; hci_send_cmd(&hci_inquiry_cancel); return true; } if (hci_stack->inquiry_state == GAP_INQUIRY_STATE_W2_EXIT_PERIODIC){ hci_stack->inquiry_state = GAP_INQUIRY_STATE_W4_CANCELLED; hci_send_cmd(&hci_exit_periodic_inquiry_mode); return true; } // remote name request if (hci_stack->remote_name_state == GAP_REMOTE_NAME_STATE_W2_SEND){ #ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS if (hci_classic_operation_active() == false) #endif { hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W4_COMPLETE; hci_send_cmd(&hci_remote_name_request, hci_stack->remote_name_addr, hci_stack->remote_name_page_scan_repetition_mode, 0, hci_stack->remote_name_clock_offset); return true; } } #ifdef ENABLE_CLASSIC_PAIRING_OOB // Local OOB data if (hci_stack->classic_read_local_oob_data){ hci_stack->classic_read_local_oob_data = false; if (hci_command_supported(SUPPORTED_HCI_COMMAND_READ_LOCAL_OOB_EXTENDED_DATA_COMMAND)){ hci_send_cmd(&hci_read_local_extended_oob_data); } else { hci_send_cmd(&hci_read_local_oob_data); } } #endif // pairing if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE){ uint8_t state = hci_stack->gap_pairing_state; uint8_t pin_code[PIN_CODE_LEN]; switch (state){ case GAP_PAIRING_STATE_SEND_PIN: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE; memset(pin_code, 0, 16); memcpy(pin_code, hci_stack->gap_pairing_input.gap_pairing_pin, hci_stack->gap_pairing_pin_len); hci_send_cmd(&hci_pin_code_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_pin_len, pin_code); break; case GAP_PAIRING_STATE_SEND_PIN_NEGATIVE: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE; hci_send_cmd(&hci_pin_code_request_negative_reply, hci_stack->gap_pairing_addr); break; case GAP_PAIRING_STATE_SEND_PASSKEY: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE; hci_send_cmd(&hci_user_passkey_request_reply, hci_stack->gap_pairing_addr, hci_stack->gap_pairing_input.gap_pairing_passkey); break; case GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE; hci_send_cmd(&hci_user_passkey_request_negative_reply, hci_stack->gap_pairing_addr); break; case GAP_PAIRING_STATE_SEND_CONFIRMATION: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_IDLE; hci_send_cmd(&hci_user_confirmation_request_reply, hci_stack->gap_pairing_addr); break; case GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE: hci_stack->gap_pairing_state = GAP_PAIRING_STATE_WAIT_FOR_COMMAND_COMPLETE; hci_send_cmd(&hci_user_confirmation_request_negative_reply, hci_stack->gap_pairing_addr); break; default: break; } return true; } return false; } #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_EXTENDED_ADVERTISING static uint8_t hci_le_num_phys(uint8_t phys){ const uint8_t num_bits_set[] = { 0, 1, 1, 2, 1, 2, 2, 3 }; btstack_assert(phys); return num_bits_set[phys]; } #endif #ifdef ENABLE_LE_CENTRAL static void hci_le_scan_stop(void){ #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()) { hci_send_cmd(&hci_le_set_extended_scan_enable, 0, 0, 0, 0); } else #endif { hci_send_cmd(&hci_le_set_scan_enable, 0, 0); } } static void hci_send_le_create_connection(uint8_t initiator_filter_policy, bd_addr_type_t address_type, uint8_t *address) { #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()) { // prepare arrays for all phys (LE Coded, LE 1M, LE 2M PHY) uint16_t le_connection_scan_interval[3]; uint16_t le_connection_scan_window[3]; uint16_t le_connection_interval_min[3]; uint16_t le_connection_interval_max[3]; uint16_t le_connection_latency[3]; uint16_t le_supervision_timeout[3]; uint16_t le_minimum_ce_length[3]; uint16_t le_maximum_ce_length[3]; uint8_t i; uint8_t num_phys = hci_le_num_phys(hci_stack->le_connection_phys); for (i=0;ile_connection_scan_interval; le_connection_scan_window[i] = hci_stack->le_connection_scan_window; le_connection_interval_min[i] = hci_stack->le_connection_interval_min; le_connection_interval_max[i] = hci_stack->le_connection_interval_max; le_connection_latency[i] = hci_stack->le_connection_latency; le_supervision_timeout[i] = hci_stack->le_supervision_timeout; le_minimum_ce_length[i] = hci_stack->le_minimum_ce_length; le_maximum_ce_length[i] = hci_stack->le_maximum_ce_length; } hci_send_cmd(&hci_le_extended_create_connection, initiator_filter_policy, hci_stack->le_connection_own_addr_type, // our addr type: address_type, // peer address type address, // peer bd addr hci_stack->le_connection_phys, // initiating PHY le_connection_scan_interval, // conn scan interval le_connection_scan_window, // conn scan windows le_connection_interval_min, // conn interval min le_connection_interval_max, // conn interval max le_connection_latency, // conn latency le_supervision_timeout, // conn latency le_minimum_ce_length, // min ce length le_maximum_ce_length // max ce length ); } else #endif { hci_send_cmd(&hci_le_create_connection, hci_stack->le_connection_scan_interval, // conn scan interval hci_stack->le_connection_scan_window, // conn scan windows initiator_filter_policy, // don't use whitelist address_type, // peer address type address, // peer bd addr hci_stack->le_connection_own_addr_type, // our addr type: hci_stack->le_connection_interval_min, // conn interval min hci_stack->le_connection_interval_max, // conn interval max hci_stack->le_connection_latency, // conn latency hci_stack->le_supervision_timeout, // conn latency hci_stack->le_minimum_ce_length, // min ce length hci_stack->le_maximum_ce_length // max ce length ); } } #endif #ifdef ENABLE_LE_PERIPHERAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING uint8_t hci_le_extended_advertising_operation_for_chunk(uint16_t pos, uint16_t len){ uint8_t operation = 0; if (pos == 0){ // first fragment or complete data operation |= 1; } if (pos + LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN >= len){ // last fragment or complete data operation |= 2; } return operation; } #endif #endif static bool hci_run_general_gap_le(void){ btstack_linked_list_iterator_t lit; #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_stack->le_resolvable_private_address_update_s > 0){ uint16_t update_s = hci_stack->le_resolvable_private_address_update_s; hci_stack->le_resolvable_private_address_update_s = 0; hci_send_cmd(&hci_le_set_resolvable_private_address_timeout, update_s); return true; } #endif // Phase 1: collect what to stop #ifdef ENABLE_LE_CENTRAL bool scanning_stop = false; bool connecting_stop = false; #ifdef ENABLE_LE_EXTENDED_ADVERTISING #ifdef ENABLE_LE_PERIODIC_ADVERTISING bool periodic_sync_stop = false; #endif #endif #endif #ifdef ENABLE_LE_PERIPHERAL bool advertising_stop = false; #ifdef ENABLE_LE_EXTENDED_ADVERTISING le_advertising_set_t * advertising_stop_set = NULL; #ifdef ENABLE_LE_PERIODIC_ADVERTISING bool periodic_advertising_stop = false; #endif #endif #endif // check if own address changes uint8_t address_change_mask = LE_ADVERTISEMENT_TASKS_SET_ADDRESS | LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0; bool random_address_change = (hci_stack->le_advertisements_todo & address_change_mask) != 0; // check if whitelist needs modification bool whitelist_modification_pending = false; btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&lit)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); if (entry->state & (LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER)){ whitelist_modification_pending = true; break; } } // check if resolving list needs modification bool resolving_list_modification_pending = false; #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION bool resolving_list_supported = hci_command_supported(SUPPORTED_HCI_COMMAND_LE_SET_ADDRESS_RESOLUTION_ENABLE); if (resolving_list_supported && hci_stack->le_resolving_list_state != LE_RESOLVING_LIST_DONE){ resolving_list_modification_pending = true; } #endif #ifdef ENABLE_LE_CENTRAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING // check if periodic advertiser list needs modification bool periodic_list_modification_pending = false; btstack_linked_list_iterator_init(&lit, &hci_stack->le_periodic_advertiser_list); while (btstack_linked_list_iterator_has_next(&lit)){ periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&lit); if (entry->state & (LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER | LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER)){ periodic_list_modification_pending = true; break; } } #endif // scanning control if (hci_stack->le_scanning_active) { // stop if: // - parameter change required // - it's disabled // - whitelist change required but used for scanning // - resolving list modified // - own address changes bool scanning_uses_whitelist = (hci_stack->le_scan_filter_policy & 1) == 1; if ((hci_stack->le_scanning_param_update) || !hci_stack->le_scanning_enabled || (scanning_uses_whitelist && whitelist_modification_pending) || resolving_list_modification_pending || random_address_change){ scanning_stop = true; } } // connecting control bool connecting_with_whitelist; switch (hci_stack->le_connecting_state){ case LE_CONNECTING_DIRECT: case LE_CONNECTING_WHITELIST: // stop connecting if: // - connecting uses white and whitelist modification pending // - if it got disabled // - resolving list modified // - own address changes connecting_with_whitelist = hci_stack->le_connecting_state == LE_CONNECTING_WHITELIST; if ((connecting_with_whitelist && whitelist_modification_pending) || (hci_stack->le_connecting_request == LE_CONNECTING_IDLE) || resolving_list_modification_pending || random_address_change) { connecting_stop = true; } break; default: break; } #ifdef ENABLE_LE_EXTENDED_ADVERTISING #ifdef ENABLE_LE_PERIODIC_ADVERTISING // periodic sync control bool sync_with_advertiser_list; switch(hci_stack->le_periodic_sync_state){ case LE_CONNECTING_DIRECT: case LE_CONNECTING_WHITELIST: // stop sync if: // - sync with advertiser list and advertiser list modification pending // - if it got disabled sync_with_advertiser_list = hci_stack->le_periodic_sync_state == LE_CONNECTING_WHITELIST; if ((sync_with_advertiser_list && periodic_list_modification_pending) || (hci_stack->le_periodic_sync_request == LE_CONNECTING_IDLE)){ periodic_sync_stop = true; } break; default: break; } #endif #endif #endif /* ENABLE_LE_CENTRAL */ #ifdef ENABLE_LE_PERIPHERAL // le advertisement control if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0){ // stop if: // - parameter change required // - random address used in advertising and changes // - it's disabled // - whitelist change required but used for advertisement filter policy // - resolving list modified // - own address changes bool advertising_uses_whitelist = hci_stack->le_advertisements_filter_policy != 0; bool advertising_uses_random_address = hci_stack->le_own_addr_type != BD_ADDR_TYPE_LE_PUBLIC; bool advertising_change = (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS) != 0; if (advertising_change || (advertising_uses_random_address && random_address_change) || (hci_stack->le_advertisements_enabled_for_current_roles == 0) || (advertising_uses_whitelist && whitelist_modification_pending) || resolving_list_modification_pending || random_address_change) { advertising_stop = true; } } #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported() && (advertising_stop == false)){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets); while (btstack_linked_list_iterator_has_next(&it)){ le_advertising_set_t * advertising_set = (le_advertising_set_t*) btstack_linked_list_iterator_next(&it); if ((advertising_set->state & LE_ADVERTISEMENT_STATE_ACTIVE) != 0) { // stop if: // - parameter change required // - random address used in connectable advertising and changes // - it's disabled // - whitelist change required but used for advertisement filter policy // - resolving list modified // - own address changes // - advertisement set will be removed bool advertising_uses_whitelist = advertising_set->extended_params.advertising_filter_policy != 0; bool advertising_connectable = (advertising_set->extended_params.advertising_event_properties & 1) != 0; bool advertising_uses_random_address = (advertising_set->extended_params.own_address_type != BD_ADDR_TYPE_LE_PUBLIC) && advertising_connectable; bool advertising_parameter_change = (advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PARAMS) != 0; bool advertising_enabled = (advertising_set->state & LE_ADVERTISEMENT_STATE_ENABLED) != 0; bool advertising_set_random_address_change = (advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_ADDRESS) != 0; bool advertising_set_will_be_removed = (advertising_set->state & LE_ADVERTISEMENT_TASKS_REMOVE_SET) != 0; if (advertising_parameter_change || (advertising_uses_random_address && advertising_set_random_address_change) || (advertising_enabled == false) || (advertising_uses_whitelist && whitelist_modification_pending) || resolving_list_modification_pending || advertising_set_will_be_removed) { advertising_stop = true; advertising_stop_set = advertising_set; break; } } #ifdef ENABLE_LE_PERIODIC_ADVERTISING if ((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE) != 0) { // stop if: // - it's disabled // - parameter change required bool periodic_enabled = (advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED) != 0; bool periodic_parameter_change = (advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS) != 0; if ((periodic_enabled == false) || periodic_parameter_change){ periodic_advertising_stop = true; advertising_stop_set = advertising_set; } } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ } } #endif #endif // Phase 2: stop everything that should be off during modifications // 2.1 Outgoing connection #ifdef ENABLE_LE_CENTRAL if (connecting_stop){ hci_send_cmd(&hci_le_create_connection_cancel); return true; } #endif // 2.2 Scanning #ifdef ENABLE_LE_CENTRAL if (scanning_stop){ hci_stack->le_scanning_active = false; hci_le_scan_stop(); return true; } // 2.3 Periodic Sync #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_stack->le_periodic_terminate_sync_handle != HCI_CON_HANDLE_INVALID){ uint16_t sync_handle = hci_stack->le_periodic_terminate_sync_handle; hci_stack->le_periodic_terminate_sync_handle = HCI_CON_HANDLE_INVALID; hci_send_cmd(&hci_le_periodic_advertising_terminate_sync, sync_handle); return true; } #ifdef ENABLE_LE_PERIODIC_ADVERTISING if (periodic_sync_stop){ hci_stack->le_periodic_sync_state = LE_CONNECTING_CANCEL; hci_send_cmd(&hci_le_periodic_advertising_create_sync_cancel); return true; } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ #endif /* ENABLE_LE_EXTENDED_ADVERTISING */ #endif /* ENABLE_LE_CENTRAL */ // 2.4 Advertising: legacy, extended, periodic #ifdef ENABLE_LE_PERIPHERAL if (advertising_stop){ #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()) { uint8_t advertising_stop_handle; if (advertising_stop_set != NULL){ advertising_stop_handle = advertising_stop_set->advertising_handle; advertising_stop_set->state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; } else { advertising_stop_handle = 0; hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; } const uint8_t advertising_handles[] = { advertising_stop_handle }; const uint16_t durations[] = { 0 }; const uint16_t max_events[] = { 0 }; hci_send_cmd(&hci_le_set_extended_advertising_enable, 0, 1, advertising_handles, durations, max_events); } else #endif { hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ACTIVE; hci_send_cmd(&hci_le_set_advertise_enable, 0); } return true; } #ifdef ENABLE_LE_EXTENDED_ADVERTISING #ifdef ENABLE_LE_PERIODIC_ADVERTISING if (periodic_advertising_stop){ advertising_stop_set->state &= ~LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE; hci_send_cmd(&hci_le_set_periodic_advertising_enable, 0, advertising_stop_set->advertising_handle); return true; } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ #endif /* ENABLE_LE_EXTENDED_ADVERTISING */ #endif /* ENABLE_LE_PERIPHERAL */ // Phase 3: modify if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_PRIVACY_NOTIFY) { hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_PRIVACY_NOTIFY; // GAP Privacy, notify clients upon upcoming random address change hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_PRIVACY_PENDING; gap_privacy_clients_notify(hci_stack->le_random_address); } // - wait until privacy update completed if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_PRIVACY_PENDING) != 0){ return false; } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADDRESS){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADDRESS; hci_send_cmd(&hci_le_set_random_address, hci_stack->le_random_address); #ifdef ENABLE_LE_SET_ADV_PARAMS_ON_RANDOM_ADDRESS_CHANGE // workaround: on some Controllers, address in advertisements is updated only after next dv params set hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; #endif return true; } #ifdef ENABLE_LE_CENTRAL if (hci_stack->le_scanning_param_update){ hci_stack->le_scanning_param_update = false; #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ // prepare arrays for all phys (LE Coded and LE 1M PHY) uint8_t scan_types[2]; uint16_t scan_intervals[2]; uint16_t scan_windows[2]; uint8_t i; uint8_t num_phys = hci_le_num_phys(hci_stack->le_scan_phys); for (i=0;ile_scan_type; scan_intervals[i] = hci_stack->le_scan_interval; scan_windows[i] = hci_stack->le_scan_window; } hci_send_cmd(&hci_le_set_extended_scan_parameters, hci_stack->le_own_addr_type, hci_stack->le_scan_filter_policy, hci_stack->le_scan_phys, scan_types, scan_intervals, scan_windows); } else #endif { hci_send_cmd(&hci_le_set_scan_parameters, hci_stack->le_scan_type, hci_stack->le_scan_interval, hci_stack->le_scan_window, hci_stack->le_own_addr_type, hci_stack->le_scan_filter_policy); } return true; } #endif #ifdef ENABLE_LE_PERIPHERAL if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_PARAMS){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_stack->le_advertisements_own_addr_type = hci_stack->le_own_addr_type; #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ // map advertisment type to advertising event properties uint16_t adv_event_properties = 0; const uint16_t mapping[] = { 0b00010011, 0b00010101, 0b00011101, 0b00010010, 0b00010000}; if (hci_stack->le_advertisements_type < (sizeof(mapping)/sizeof(uint16_t))){ adv_event_properties = mapping[hci_stack->le_advertisements_type]; } hci_stack->le_advertising_set_in_current_command = 0; hci_send_cmd(&hci_le_set_extended_advertising_parameters, 0, adv_event_properties, hci_stack->le_advertisements_interval_min, hci_stack->le_advertisements_interval_max, hci_stack->le_advertisements_channel_map, hci_stack->le_advertisements_own_addr_type, hci_stack->le_advertisements_direct_address_type, hci_stack->le_advertisements_direct_address, hci_stack->le_advertisements_filter_policy, 0x7f, // tx power: no preference 0x01, // primary adv phy: LE 1M 0, // secondary adv max skip 0x01, // secondary adv phy 0, // adv sid 0 // scan request notification ); } else #endif { hci_send_cmd(&hci_le_set_advertising_parameters, hci_stack->le_advertisements_interval_min, hci_stack->le_advertisements_interval_max, hci_stack->le_advertisements_type, hci_stack->le_advertisements_own_addr_type, hci_stack->le_advertisements_direct_address_type, hci_stack->le_advertisements_direct_address, hci_stack->le_advertisements_channel_map, hci_stack->le_advertisements_filter_policy); } return true; } #ifdef ENABLE_LE_EXTENDED_ADVERTISING // assumption: only set if extended advertising is supported if ((hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0) != 0){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0; hci_send_cmd(&hci_le_set_advertising_set_random_address, 0, hci_stack->le_random_address); return true; } #endif if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_ADV_DATA){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; uint8_t adv_data_clean[31]; memset(adv_data_clean, 0, sizeof(adv_data_clean)); (void)memcpy(adv_data_clean, hci_stack->le_advertisements_data, hci_stack->le_advertisements_data_len); btstack_replace_bd_addr_placeholder(adv_data_clean, hci_stack->le_advertisements_data_len, hci_stack->local_bd_addr); #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ hci_stack->le_advertising_set_in_current_command = 0; hci_send_cmd(&hci_le_set_extended_advertising_data, 0, 0x03, 0x01, hci_stack->le_advertisements_data_len, adv_data_clean); } else #endif { hci_send_cmd(&hci_le_set_advertising_data, hci_stack->le_advertisements_data_len, adv_data_clean); } return true; } if (hci_stack->le_advertisements_todo & LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA){ hci_stack->le_advertisements_todo &= ~LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA; uint8_t scan_data_clean[31]; memset(scan_data_clean, 0, sizeof(scan_data_clean)); (void)memcpy(scan_data_clean, hci_stack->le_scan_response_data, hci_stack->le_scan_response_data_len); btstack_replace_bd_addr_placeholder(scan_data_clean, hci_stack->le_scan_response_data_len, hci_stack->local_bd_addr); #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ hci_stack->le_advertising_set_in_current_command = 0; hci_send_cmd(&hci_le_set_extended_scan_response_data, 0, 0x03, 0x01, hci_stack->le_scan_response_data_len, scan_data_clean); } else #endif { hci_send_cmd(&hci_le_set_scan_response_data, hci_stack->le_scan_response_data_len, scan_data_clean); } return true; } #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()) { btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets); while (btstack_linked_list_iterator_has_next(&it)){ le_advertising_set_t * advertising_set = (le_advertising_set_t*) btstack_linked_list_iterator_next(&it); if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_REMOVE_SET) != 0) { advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_REMOVE_SET; hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle; hci_send_cmd(&hci_le_remove_advertising_set, advertising_set->advertising_handle); return true; } if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PARAMS) != 0){ advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle; hci_send_cmd(&hci_le_set_extended_advertising_parameters, advertising_set->advertising_handle, advertising_set->extended_params.advertising_event_properties, advertising_set->extended_params.primary_advertising_interval_min, advertising_set->extended_params.primary_advertising_interval_max, advertising_set->extended_params.primary_advertising_channel_map, advertising_set->extended_params.own_address_type, advertising_set->extended_params.peer_address_type, advertising_set->extended_params.peer_address, advertising_set->extended_params.advertising_filter_policy, advertising_set->extended_params.advertising_tx_power, advertising_set->extended_params.primary_advertising_phy, advertising_set->extended_params.secondary_advertising_max_skip, advertising_set->extended_params.secondary_advertising_phy, advertising_set->extended_params.advertising_sid, advertising_set->extended_params.scan_request_notification_enable ); return true; } if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_ADDRESS) != 0){ advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_ADDRESS; hci_send_cmd(&hci_le_set_advertising_set_random_address, advertising_set->advertising_handle, advertising_set->random_address); return true; } if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_ADV_DATA) != 0) { uint16_t pos = advertising_set->adv_data_pos; uint8_t operation = hci_le_extended_advertising_operation_for_chunk(pos, advertising_set->adv_data_len); uint16_t data_to_upload = btstack_min(advertising_set->adv_data_len - pos, LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN); if ((operation & 0x02) != 0){ // last fragment or complete data operation |= 2; advertising_set->adv_data_pos = 0; advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; } else { advertising_set->adv_data_pos += data_to_upload; } hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle; hci_send_cmd(&hci_le_set_extended_advertising_data, advertising_set->advertising_handle, operation, 0x01, data_to_upload, &advertising_set->adv_data[pos]); return true; } if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA) != 0) { uint16_t pos = advertising_set->scan_data_pos; uint8_t operation = hci_le_extended_advertising_operation_for_chunk(pos, advertising_set->scan_data_len); uint16_t data_to_upload = btstack_min(advertising_set->scan_data_len - pos, LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN); if ((operation & 0x02) != 0){ advertising_set->scan_data_pos = 0; advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA; } else { advertising_set->scan_data_pos += data_to_upload; } hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle; hci_send_cmd(&hci_le_set_extended_scan_response_data, advertising_set->advertising_handle, operation, 0x01, data_to_upload, &advertising_set->scan_data[pos]); return true; } #ifdef ENABLE_LE_PERIODIC_ADVERTISING if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS) != 0){ advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS; hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle; hci_send_cmd(&hci_le_set_periodic_advertising_parameters, advertising_set->advertising_handle, advertising_set->periodic_params.periodic_advertising_interval_min, advertising_set->periodic_params.periodic_advertising_interval_max, advertising_set->periodic_params.periodic_advertising_properties); return true; } if ((advertising_set->tasks & LE_ADVERTISEMENT_TASKS_SET_PERIODIC_DATA) != 0) { uint16_t pos = advertising_set->periodic_data_pos; uint8_t operation = hci_le_extended_advertising_operation_for_chunk(pos, advertising_set->periodic_data_len); uint16_t data_to_upload = btstack_min(advertising_set->periodic_data_len - pos, LE_EXTENDED_ADVERTISING_MAX_CHUNK_LEN); if ((operation & 0x02) != 0){ // last fragment or complete data operation |= 2; advertising_set->periodic_data_pos = 0; advertising_set->tasks &= ~LE_ADVERTISEMENT_TASKS_SET_PERIODIC_DATA; } else { advertising_set->periodic_data_pos += data_to_upload; } hci_stack->le_advertising_set_in_current_command = advertising_set->advertising_handle; hci_send_cmd(&hci_le_set_periodic_advertising_data, advertising_set->advertising_handle, operation, data_to_upload, &advertising_set->periodic_data[pos]); return true; } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ } } #endif #endif #ifdef ENABLE_LE_CENTRAL // if connect with whitelist was active and is not cancelled yet, wait until next time if (hci_stack->le_connecting_state == LE_CONNECTING_CANCEL) return false; #ifdef ENABLE_LE_EXTENDED_ADVERTISING // if periodic sync with advertiser list was active and is not cancelled yet, wait until next time if (hci_stack->le_periodic_sync_state == LE_CONNECTING_CANCEL) return false; #endif #endif // LE Whitelist Management if (whitelist_modification_pending){ // add/remove entries btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&lit)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&lit); if (entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER){ entry->state &= ~LE_WHITELIST_REMOVE_FROM_CONTROLLER; entry->state &= ~LE_WHITELIST_ON_CONTROLLER; bd_addr_type_t address_type = entry->address_type; bd_addr_t address; memcpy(address, entry->address, 6); if ((entry->state & LE_WHITELIST_ADD_TO_CONTROLLER) == 0){ // remove from whitelist if not scheduled for re-addition btstack_linked_list_remove(&hci_stack->le_whitelist, (btstack_linked_item_t *) entry); btstack_memory_whitelist_entry_free(entry); } hci_send_cmd(&hci_le_remove_device_from_white_list, address_type, address); return true; } if (entry->state & LE_WHITELIST_ADD_TO_CONTROLLER){ entry->state &= ~LE_WHITELIST_ADD_TO_CONTROLLER; entry->state |= LE_WHITELIST_ON_CONTROLLER; hci_send_cmd(&hci_le_add_device_to_white_list, entry->address_type, entry->address); return true; } } } #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION // LE Resolving List Management if (resolving_list_modification_pending) { uint16_t i; uint8_t null_16[16]; uint8_t local_irk_flipped[16]; const uint8_t *local_irk; switch (hci_stack->le_resolving_list_state) { case LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION: hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_READ_SIZE; hci_send_cmd(&hci_le_set_address_resolution_enabled, 1); return true; case LE_RESOLVING_LIST_READ_SIZE: hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SEND_CLEAR; hci_send_cmd(&hci_le_read_resolving_list_size); return true; case LE_RESOLVING_LIST_SEND_CLEAR: hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_SET_IRK; (void) memset(hci_stack->le_resolving_list_add_entries, 0xff, sizeof(hci_stack->le_resolving_list_add_entries)); (void) memset(hci_stack->le_resolving_list_set_privacy_mode, 0xff, sizeof(hci_stack->le_resolving_list_set_privacy_mode)); (void) memset(hci_stack->le_resolving_list_remove_entries, 0, sizeof(hci_stack->le_resolving_list_remove_entries)); hci_send_cmd(&hci_le_clear_resolving_list); return true; case LE_RESOLVING_LIST_SET_IRK: // set IRK used by RPA for undirected advertising hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_UPDATES_ENTRIES; local_irk = gap_get_persistent_irk(); reverse_128(local_irk, local_irk_flipped); memset(null_16, 0, sizeof(null_16)); hci_send_cmd(&hci_le_add_device_to_resolving_list, BD_ADDR_TYPE_LE_PUBLIC, null_16, null_16, local_irk_flipped); return true; case LE_RESOLVING_LIST_UPDATES_ENTRIES: // first remove old entries for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) { uint8_t offset = i >> 3; uint8_t mask = 1 << (i & 7); if ((hci_stack->le_resolving_list_remove_entries[offset] & mask) == 0) continue; hci_stack->le_resolving_list_remove_entries[offset] &= ~mask; bd_addr_t peer_identity_addreses; int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN; sm_key_t peer_irk; le_device_db_info(i, &peer_identity_addr_type, peer_identity_addreses, peer_irk); if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue; #ifdef ENABLE_LE_WHITELIST_TOUCH_AFTER_RESOLVING_LIST_UPDATE // trigger whitelist entry 'update' (work around for controller bug) btstack_linked_list_iterator_init(&lit, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&lit)) { whitelist_entry_t *entry = (whitelist_entry_t *) btstack_linked_list_iterator_next(&lit); if (entry->address_type != peer_identity_addr_type) continue; if (memcmp(entry->address, peer_identity_addreses, 6) != 0) continue; log_info("trigger whitelist update %s", bd_addr_to_str(peer_identity_addreses)); entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER | LE_WHITELIST_ADD_TO_CONTROLLER; } #endif hci_send_cmd(&hci_le_remove_device_from_resolving_list, peer_identity_addr_type, peer_identity_addreses); return true; } // then add new entries for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) { uint8_t offset = i >> 3; uint8_t mask = 1 << (i & 7); if ((hci_stack->le_resolving_list_add_entries[offset] & mask) == 0) continue; hci_stack->le_resolving_list_add_entries[offset] &= ~mask; bd_addr_t peer_identity_addreses; int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN; sm_key_t peer_irk; le_device_db_info(i, &peer_identity_addr_type, peer_identity_addreses, peer_irk); if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue; if (btstack_is_null(peer_irk, 16)) continue; local_irk = gap_get_persistent_irk(); // command uses format specifier 'P' that stores 16-byte value without flip uint8_t peer_irk_flipped[16]; reverse_128(local_irk, local_irk_flipped); reverse_128(peer_irk, peer_irk_flipped); hci_send_cmd(&hci_le_add_device_to_resolving_list, peer_identity_addr_type, peer_identity_addreses, peer_irk_flipped, local_irk_flipped); return true; } // finally, set privacy mode for (i = 0; i < MAX_NUM_RESOLVING_LIST_ENTRIES && i < le_device_db_max_count(); i++) { uint8_t offset = i >> 3; uint8_t mask = 1 << (i & 7); if ((hci_stack->le_resolving_list_set_privacy_mode[offset] & mask) == 0) continue; hci_stack->le_resolving_list_set_privacy_mode[offset] &= ~mask; if (hci_stack->le_privacy_mode == LE_PRIVACY_MODE_NETWORK) { // Network Privacy Mode is default continue; } bd_addr_t peer_identity_address; int peer_identity_addr_type = (int) BD_ADDR_TYPE_UNKNOWN; sm_key_t peer_irk; le_device_db_info(i, &peer_identity_addr_type, peer_identity_address, peer_irk); if (peer_identity_addr_type == BD_ADDR_TYPE_UNKNOWN) continue; if (btstack_is_null(peer_irk, 16)) continue; // command uses format specifier 'P' that stores 16-byte value without flip uint8_t peer_irk_flipped[16]; reverse_128(peer_irk, peer_irk_flipped); hci_send_cmd(&hci_le_set_privacy_mode, peer_identity_addr_type, peer_identity_address, hci_stack->le_privacy_mode); return true; } break; default: break; } hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_DONE; } #endif #ifdef ENABLE_LE_CENTRAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING // LE Whitelist Management if (periodic_list_modification_pending){ // add/remove entries btstack_linked_list_iterator_init(&lit, &hci_stack->le_periodic_advertiser_list); while (btstack_linked_list_iterator_has_next(&lit)){ periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&lit); if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER){ entry->state &= ~LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER; hci_send_cmd(&hci_le_remove_device_from_periodic_advertiser_list, entry->address_type, entry->address, entry->sid); return true; } if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER){ entry->state &= ~LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER; entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER; hci_send_cmd(&hci_le_add_device_to_periodic_advertiser_list, entry->address_type, entry->address, entry->sid); return true; } if ((entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER) == 0){ btstack_linked_list_remove(&hci_stack->le_periodic_advertiser_list, (btstack_linked_item_t *) entry); btstack_memory_periodic_advertiser_list_entry_free(entry); } } } #endif #endif #ifdef ENABLE_LE_CENTRAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING #ifdef ENABLE_LE_PERIODIC_ADVERTISING if (hci_stack->le_past_set_default_params){ hci_stack->le_past_set_default_params = false; hci_send_cmd(&hci_le_set_default_periodic_advertising_sync_transfer_parameters, hci_stack->le_past_mode, hci_stack->le_past_skip, hci_stack->le_past_sync_timeout, hci_stack->le_past_cte_type); return true; } #endif #endif #endif // post-pone all actions until stack is fully working if (hci_stack->state != HCI_STATE_WORKING) return false; // advertisements, active scanning, and creating connections requires random address to be set if using private address if ( (hci_stack->le_own_addr_type != BD_ADDR_TYPE_LE_PUBLIC) && (hci_stack->le_random_address_set == 0u) ) return false; // Phase 4: restore state #ifdef ENABLE_LE_CENTRAL // re-start scanning if ((hci_stack->le_scanning_enabled && !hci_stack->le_scanning_active)){ hci_stack->le_scanning_active = true; #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ hci_send_cmd(&hci_le_set_extended_scan_enable, 1, hci_stack->le_scan_filter_duplicates, 0, 0); } else #endif { hci_send_cmd(&hci_le_set_scan_enable, 1, hci_stack->le_scan_filter_duplicates); } return true; } #endif #ifdef ENABLE_LE_CENTRAL // re-start connecting if ( (hci_stack->le_connecting_state == LE_CONNECTING_IDLE) && (hci_stack->le_connecting_request == LE_CONNECTING_WHITELIST)){ bd_addr_t null_addr; memset(null_addr, 0, 6); hci_stack->le_connection_own_addr_type = hci_stack->le_own_addr_type; hci_get_own_address_for_addr_type(hci_stack->le_connection_own_addr_type, hci_stack->le_connection_own_address); hci_send_le_create_connection(1, 0, null_addr); return true; } #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_stack->le_periodic_sync_state == LE_CONNECTING_IDLE){ switch(hci_stack->le_periodic_sync_request){ case LE_CONNECTING_DIRECT: case LE_CONNECTING_WHITELIST: hci_stack->le_periodic_sync_state = ((hci_stack->le_periodic_sync_options & 1) != 0) ? LE_CONNECTING_WHITELIST : LE_CONNECTING_DIRECT; hci_send_cmd(&hci_le_periodic_advertising_create_sync, hci_stack->le_periodic_sync_options, hci_stack->le_periodic_sync_advertising_sid, hci_stack->le_periodic_sync_advertiser_address_type, hci_stack->le_periodic_sync_advertiser_address, hci_stack->le_periodic_sync_skip, hci_stack->le_periodic_sync_timeout, hci_stack->le_periodic_sync_cte_type); return true; default: break; } } #endif #endif #ifdef ENABLE_LE_PERIPHERAL // re-start advertising if (hci_stack->le_advertisements_enabled_for_current_roles && ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_ACTIVE) == 0)){ // check if advertisements should be enabled given hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_ACTIVE; hci_get_own_address_for_addr_type(hci_stack->le_advertisements_own_addr_type, hci_stack->le_advertisements_own_address); #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ const uint8_t advertising_handles[] = { 0 }; const uint16_t durations[] = { 0 }; const uint16_t max_events[] = { 0 }; hci_send_cmd(&hci_le_set_extended_advertising_enable, 1, 1, advertising_handles, durations, max_events); } else #endif { hci_send_cmd(&hci_le_set_advertise_enable, 1); } return true; } #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()) { btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets); while (btstack_linked_list_iterator_has_next(&it)) { le_advertising_set_t *advertising_set = (le_advertising_set_t *) btstack_linked_list_iterator_next(&it); if (((advertising_set->state & LE_ADVERTISEMENT_STATE_ENABLED) != 0) && ((advertising_set->state & LE_ADVERTISEMENT_STATE_ACTIVE) == 0)){ advertising_set->state |= LE_ADVERTISEMENT_STATE_ACTIVE; const uint8_t advertising_handles[] = { advertising_set->advertising_handle }; const uint16_t durations[] = { advertising_set->enable_timeout }; const uint16_t max_events[] = { advertising_set->enable_max_scan_events }; hci_send_cmd(&hci_le_set_extended_advertising_enable, 1, 1, advertising_handles, durations, max_events); return true; } #ifdef ENABLE_LE_PERIODIC_ADVERTISING if (((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED) != 0) && ((advertising_set->state & LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE) == 0)){ advertising_set->state |= LE_ADVERTISEMENT_STATE_PERIODIC_ACTIVE; uint8_t enable = 1; if (advertising_set->periodic_include_adi){ enable |= 2; } hci_send_cmd(&hci_le_set_periodic_advertising_enable, enable, advertising_set->advertising_handle); return true; } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ } } #endif #endif return false; } #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS static bool hci_run_iso_tasks(void){ btstack_linked_list_iterator_t it; if (hci_stack->iso_active_operation_type != HCI_ISO_TYPE_INVALID) { return false; } // BIG btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it); switch (big->state){ case LE_AUDIO_BIG_STATE_CREATE: hci_stack->iso_active_operation_group_id = big->params->big_handle; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_BIS; big->state = LE_AUDIO_BIG_STATE_W4_ESTABLISHED; hci_send_cmd(&hci_le_create_big, big->params->big_handle, big->params->advertising_handle, big->params->num_bis, big->params->sdu_interval_us, big->params->max_sdu, big->params->max_transport_latency_ms, big->params->rtn, big->params->phy, big->params->packing, big->params->framing, big->params->encryption, big->params->broadcast_code); return true; case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH: big->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH; hci_send_cmd(&hci_le_setup_iso_data_path, big->bis_con_handles[big->state_vars.next_bis], 0, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL); return true; case LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED: big->state = LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED; hci_send_cmd(&hci_le_terminate_big, big->big_handle, big->state_vars.status); return true; case LE_AUDIO_BIG_STATE_TERMINATE: big->state = LE_AUDIO_BIG_STATE_W4_TERMINATED; hci_send_cmd(&hci_le_terminate_big, big->big_handle, ERROR_CODE_SUCCESS); return true; default: break; } } // BIG Sync btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_big_sync_t * big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it); switch (big_sync->state){ case LE_AUDIO_BIG_STATE_CREATE: hci_stack->iso_active_operation_group_id = big_sync->params->big_handle; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_BIS; big_sync->state = LE_AUDIO_BIG_STATE_W4_ESTABLISHED; hci_send_cmd(&hci_le_big_create_sync, big_sync->params->big_handle, big_sync->params->sync_handle, big_sync->params->encryption, big_sync->params->broadcast_code, big_sync->params->mse, big_sync->params->big_sync_timeout_10ms, big_sync->params->num_bis, big_sync->params->bis_indices); return true; case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH: big_sync->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH; hci_send_cmd(&hci_le_setup_iso_data_path, big_sync->bis_con_handles[big_sync->state_vars.next_bis], 1, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL); return true; case LE_AUDIO_BIG_STATE_SETUP_ISO_PATHS_FAILED: big_sync->state = LE_AUDIO_BIG_STATE_W4_TERMINATED_AFTER_SETUP_FAILED; hci_send_cmd(&hci_le_big_terminate_sync, big_sync->big_handle); return true; case LE_AUDIO_BIG_STATE_TERMINATE: big_sync->state = LE_AUDIO_BIG_STATE_W4_TERMINATED; hci_send_cmd(&hci_le_big_terminate_sync, big_sync->big_handle); return true; default: break; } } // CIG bool cig_active; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_cigs); while (btstack_linked_list_iterator_has_next(&it)) { le_audio_cig_t *cig = (le_audio_cig_t *) btstack_linked_list_iterator_next(&it); uint8_t i; // Set CIG Parameters uint8_t cis_id[MAX_NR_CIS]; uint16_t max_sdu_c_to_p[MAX_NR_CIS]; uint16_t max_sdu_p_to_c[MAX_NR_CIS]; uint8_t phy_c_to_p[MAX_NR_CIS]; uint8_t phy_p_to_c[MAX_NR_CIS]; uint8_t rtn_c_to_p[MAX_NR_CIS]; uint8_t rtn_p_to_c[MAX_NR_CIS]; switch (cig->state) { case LE_AUDIO_CIG_STATE_CREATE: hci_stack->iso_active_operation_group_id = cig->params->cig_id; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; cig->state = LE_AUDIO_CIG_STATE_W4_ESTABLISHED; le_audio_cig_params_t * params = cig->params; for (i = 0; i < params->num_cis; i++) { le_audio_cis_params_t * cis_params = &cig->params->cis_params[i]; cis_id[i] = cis_params->cis_id; max_sdu_c_to_p[i] = cis_params->max_sdu_c_to_p; max_sdu_p_to_c[i] = cis_params->max_sdu_p_to_c; phy_c_to_p[i] = cis_params->phy_c_to_p; phy_p_to_c[i] = cis_params->phy_p_to_c; rtn_c_to_p[i] = cis_params->rtn_c_to_p; rtn_p_to_c[i] = cis_params->rtn_p_to_c; } hci_send_cmd(&hci_le_set_cig_parameters, cig->cig_id, params->sdu_interval_c_to_p, params->sdu_interval_p_to_c, params->worst_case_sca, params->packing, params->framing, params->max_transport_latency_c_to_p, params->max_transport_latency_p_to_c, params->num_cis, cis_id, max_sdu_c_to_p, max_sdu_p_to_c, phy_c_to_p, phy_p_to_c, rtn_c_to_p, rtn_p_to_c ); return true; case LE_AUDIO_CIG_STATE_CREATE_CIS: hci_stack->iso_active_operation_group_id = cig->params->cig_id; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; cig->state = LE_AUDIO_CIG_STATE_W4_CREATE_CIS; for (i=0;inum_cis;i++){ cig->cis_setup_active[i] = true; } hci_send_cmd(&hci_le_create_cis, cig->num_cis, cig->cis_con_handles, cig->acl_con_handles); return true; case LE_AUDIO_CIG_STATE_SETUP_ISO_PATH: while (cig->state_vars.next_cis < (cig->num_cis * 2)){ // find next path to setup uint8_t cis_index = cig->state_vars.next_cis >> 1; if (cig->cis_established[cis_index] == false) { continue; } uint8_t cis_direction = cig->state_vars.next_cis & 1; bool setup = true; if (cis_direction == 0){ // 0 - input - host to controller // we are central => central to peripheral setup &= cig->params->cis_params[cis_index].max_sdu_c_to_p > 0; } else { // 1 - output - controller to host // we are central => peripheral to central setup &= cig->params->cis_params[cis_index].max_sdu_p_to_c > 0; } if (setup){ hci_stack->iso_active_operation_group_id = cig->params->cig_id; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; cig->state = LE_AUDIO_CIG_STATE_W4_SETUP_ISO_PATH; hci_send_cmd(&hci_le_setup_iso_data_path, cig->cis_con_handles[cis_index], cis_direction, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL); return true; } cig->state_vars.next_cis++; } // emit done cig->state = LE_AUDIO_CIG_STATE_ACTIVE; break; case LE_AUDIO_CIG_STATE_REMOVE: // check if CIG Active cig_active = false; for (i = 0; i < cig->num_cis; i++) { if (cig->cis_con_handles[i] != HCI_CON_HANDLE_INVALID){ hci_iso_stream_t * stream = hci_iso_stream_for_con_handle(cig->cis_con_handles[i]); if (stream != NULL){ cig_active = true; break; } } } if (cig_active == false){ btstack_linked_list_iterator_remove(&it); hci_send_cmd(&hci_le_remove_cig, cig->cig_id); return true; } default: break; } } // CIS Accept/Reject/Setup ISO Path/Close btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)) { hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); hci_con_handle_t con_handle; switch (iso_stream->state){ case HCI_ISO_STREAM_W2_ACCEPT: iso_stream->state = HCI_ISO_STREAM_STATE_W4_ESTABLISHED; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS; hci_send_cmd(&hci_le_accept_cis_request, iso_stream->cis_handle); return true; case HCI_ISO_STREAM_W2_REJECT: con_handle = iso_stream->cis_handle; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS; hci_iso_stream_finalize(iso_stream); hci_send_cmd(&hci_le_reject_cis_request, con_handle, ERROR_CODE_REMOTE_DEVICE_TERMINATED_CONNECTION_DUE_TO_LOW_RESOURCES); return true; case HCI_ISO_STREAM_STATE_W2_SETUP_ISO_INPUT: hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; iso_stream->state = HCI_ISO_STREAM_STATE_W4_ISO_SETUP_INPUT; hci_send_cmd(&hci_le_setup_iso_data_path, iso_stream->cis_handle, 0, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL); break; case HCI_ISO_STREAM_STATE_W2_SETUP_ISO_OUTPUT: hci_stack->iso_active_operation_group_id = HCI_ISO_GROUP_ID_SINGLE_CIS; hci_stack->iso_active_operation_type = HCI_ISO_TYPE_CIS; iso_stream->state = HCI_ISO_STREAM_STATE_W4_ISO_SETUP_OUTPUT; hci_send_cmd(&hci_le_setup_iso_data_path, iso_stream->cis_handle, 1, 0, HCI_AUDIO_CODING_FORMAT_TRANSPARENT, 0, 0, 0, 0, NULL); break; case HCI_ISO_STREAM_STATE_W2_CLOSE: iso_stream->state = HCI_ISO_STREAM_STATE_W4_DISCONNECTED; hci_send_cmd(&hci_disconnect, iso_stream->cis_handle); break; default: break; } } return false; } #endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */ #endif static bool hci_run_general_pending_commands(void){ btstack_linked_item_t * it; for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){ hci_connection_t * connection = (hci_connection_t *) it; switch(connection->state){ case SEND_CREATE_CONNECTION: switch(connection->address_type){ #ifdef ENABLE_CLASSIC case BD_ADDR_TYPE_ACL: log_info("sending hci_create_connection"); hci_send_cmd(&hci_create_connection, connection->address, hci_usable_acl_packet_types(), 0, 0, 0, hci_stack->allow_role_switch); break; #endif default: #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL log_info("sending hci_le_create_connection"); hci_stack->le_connection_own_addr_type = hci_stack->le_own_addr_type; hci_get_own_address_for_addr_type(hci_stack->le_connection_own_addr_type, hci_stack->le_connection_own_address); hci_send_le_create_connection(0, connection->address_type, connection->address); connection->state = SENT_CREATE_CONNECTION; #endif #endif break; } return true; #ifdef ENABLE_CLASSIC case RECEIVED_CONNECTION_REQUEST: if (connection->address_type == BD_ADDR_TYPE_ACL){ log_info("sending hci_accept_connection_request"); connection->state = ACCEPTED_CONNECTION_REQUEST; hci_send_cmd(&hci_accept_connection_request, connection->address, hci_stack->master_slave_policy); return true; } break; #endif case SEND_DISCONNECT: connection->state = SENT_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION); return true; default: break; } // no further commands if connection is about to get shut down if (connection->state == SENT_DISCONNECT) continue; #ifdef ENABLE_CLASSIC // Handling link key request requires remote supported features if (((connection->authentication_flags & AUTH_FLAG_HANDLE_LINK_KEY_REQUEST) != 0)){ log_info("responding to link key request, have link key db: %u", hci_stack->link_key_db != NULL); connectionClearAuthenticationFlags(connection, AUTH_FLAG_HANDLE_LINK_KEY_REQUEST); bool have_link_key = connection->link_key_type != INVALID_LINK_KEY; bool security_level_sufficient = have_link_key && (gap_security_level_for_link_key_type(connection->link_key_type) >= connection->requested_security_level); if (have_link_key && security_level_sufficient){ hci_send_cmd(&hci_link_key_request_reply, connection->address, &connection->link_key); } else { hci_send_cmd(&hci_link_key_request_negative_reply, connection->address); } return true; } if (connection->authentication_flags & AUTH_FLAG_DENY_PIN_CODE_REQUEST){ log_info("denying to pin request"); connectionClearAuthenticationFlags(connection, AUTH_FLAG_DENY_PIN_CODE_REQUEST); hci_send_cmd(&hci_pin_code_request_negative_reply, connection->address); return true; } // security assessment requires remote features if ((connection->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_REQUEST) != 0){ connectionClearAuthenticationFlags(connection, AUTH_FLAG_RECV_IO_CAPABILITIES_REQUEST); hci_ssp_assess_security_on_io_cap_request(connection); // no return here as hci_ssp_assess_security_on_io_cap_request only sets AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY or AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY } if (connection->authentication_flags & AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY){ connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY); // set authentication requirements: // - MITM = ssp_authentication_requirement (USER) | requested_security_level (dynamic) // - BONDING MODE: dedicated if requested, bondable otherwise. Drop bondable if not set for remote uint8_t authreq = hci_stack->ssp_authentication_requirement & 1; if (gap_mitm_protection_required_for_security_level(connection->requested_security_level)){ authreq |= 1; } bool bonding = hci_stack->bondable; if (connection->authentication_flags & AUTH_FLAG_RECV_IO_CAPABILITIES_RESPONSE){ // if we have received IO Cap Response, we're in responder role bool remote_bonding = connection->io_cap_response_auth_req >= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; if (bonding && !remote_bonding){ log_info("Remote not bonding, dropping local flag"); bonding = false; } } if (bonding){ if (connection->bonding_flags & BONDING_DEDICATED){ authreq |= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_DEDICATED_BONDING; } else { authreq |= SSP_IO_AUTHREQ_MITM_PROTECTION_NOT_REQUIRED_GENERAL_BONDING; } } uint8_t have_oob_data = 0; #ifdef ENABLE_CLASSIC_PAIRING_OOB if (connection->classic_oob_c_192 != NULL){ have_oob_data |= 1; } if (connection->classic_oob_c_256 != NULL){ have_oob_data |= 2; } #endif hci_send_cmd(&hci_io_capability_request_reply, &connection->address, hci_stack->ssp_io_capability, have_oob_data, authreq); return true; } if (connection->authentication_flags & AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY) { connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); hci_send_cmd(&hci_io_capability_request_negative_reply, &connection->address, ERROR_CODE_PAIRING_NOT_ALLOWED); return true; } #ifdef ENABLE_CLASSIC_PAIRING_OOB if (connection->authentication_flags & AUTH_FLAG_SEND_REMOTE_OOB_DATA_REPLY){ connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_REMOTE_OOB_DATA_REPLY); const uint8_t zero[16] = { 0 }; const uint8_t * r_192 = zero; const uint8_t * c_192 = zero; const uint8_t * r_256 = zero; const uint8_t * c_256 = zero; // verify P-256 OOB if ((connection->classic_oob_c_256 != NULL) && hci_command_supported(SUPPORTED_HCI_COMMAND_REMOTE_OOB_EXTENDED_DATA_REQUEST_REPLY)) { c_256 = connection->classic_oob_c_256; if (connection->classic_oob_r_256 != NULL) { r_256 = connection->classic_oob_r_256; } } // verify P-192 OOB if ((connection->classic_oob_c_192 != NULL)) { c_192 = connection->classic_oob_c_192; if (connection->classic_oob_r_192 != NULL) { r_192 = connection->classic_oob_r_192; } } // assess security bool need_level_4 = hci_stack->gap_secure_connections_only_mode || (connection->requested_security_level == LEVEL_4); bool can_reach_level_4 = hci_remote_sc_enabled(connection) && (c_256 != NULL); if (need_level_4 && !can_reach_level_4){ log_info("Level 4 required, but not possible -> abort"); hci_pairing_complete(connection, ERROR_CODE_INSUFFICIENT_SECURITY); // send oob negative reply c_256 = NULL; c_192 = NULL; } // Reply if (c_256 != zero) { hci_send_cmd(&hci_remote_oob_extended_data_request_reply, &connection->address, c_192, r_192, c_256, r_256); } else if (c_192 != zero){ hci_send_cmd(&hci_remote_oob_data_request_reply, &connection->address, c_192, r_192); } else { hci_stack->classic_oob_con_handle = connection->con_handle; hci_send_cmd(&hci_remote_oob_data_request_negative_reply, &connection->address); } return true; } #endif if (connection->authentication_flags & AUTH_FLAG_SEND_USER_CONFIRM_REPLY){ connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_USER_CONFIRM_REPLY); hci_send_cmd(&hci_user_confirmation_request_reply, &connection->address); return true; } if (connection->authentication_flags & AUTH_FLAG_SEND_USER_CONFIRM_NEGATIVE_REPLY){ connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_USER_CONFIRM_NEGATIVE_REPLY); hci_send_cmd(&hci_user_confirmation_request_negative_reply, &connection->address); return true; } if (connection->authentication_flags & AUTH_FLAG_SEND_USER_PASSKEY_REPLY){ connectionClearAuthenticationFlags(connection, AUTH_FLAG_SEND_USER_PASSKEY_REPLY); hci_send_cmd(&hci_user_passkey_request_reply, &connection->address, 000000); return true; } if ((connection->bonding_flags & (BONDING_DISCONNECT_DEDICATED_DONE | BONDING_DEDICATED_DEFER_DISCONNECT)) == BONDING_DISCONNECT_DEDICATED_DONE){ connection->bonding_flags &= ~BONDING_DISCONNECT_DEDICATED_DONE; connection->bonding_flags |= BONDING_EMIT_COMPLETE_ON_DISCONNECT; connection->state = SENT_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_REMOTE_USER_TERMINATED_CONNECTION); return true; } if ((connection->bonding_flags & BONDING_SEND_AUTHENTICATE_REQUEST) && ((connection->bonding_flags & BONDING_RECEIVED_REMOTE_FEATURES) != 0)){ connection->bonding_flags &= ~BONDING_SEND_AUTHENTICATE_REQUEST; connection->bonding_flags |= BONDING_SENT_AUTHENTICATE_REQUEST; hci_send_cmd(&hci_authentication_requested, connection->con_handle); return true; } if (connection->bonding_flags & BONDING_SEND_ENCRYPTION_REQUEST){ connection->bonding_flags &= ~BONDING_SEND_ENCRYPTION_REQUEST; hci_send_cmd(&hci_set_connection_encryption, connection->con_handle, 1); return true; } if (connection->bonding_flags & BONDING_SEND_READ_ENCRYPTION_KEY_SIZE){ connection->bonding_flags &= ~BONDING_SEND_READ_ENCRYPTION_KEY_SIZE; hci_send_cmd(&hci_read_encryption_key_size, connection->con_handle, 1); return true; } if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_0){ connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_0; hci_send_cmd(&hci_read_remote_supported_features_command, connection->con_handle); return true; } if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_1){ connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_1; hci_send_cmd(&hci_read_remote_extended_features_command, connection->con_handle, 1); return true; } if (connection->bonding_flags & BONDING_REQUEST_REMOTE_FEATURES_PAGE_2){ connection->bonding_flags &= ~BONDING_REQUEST_REMOTE_FEATURES_PAGE_2; hci_send_cmd(&hci_read_remote_extended_features_command, connection->con_handle, 2); return true; } #endif if (connection->bonding_flags & BONDING_DISCONNECT_SECURITY_BLOCK){ connection->bonding_flags &= ~BONDING_DISCONNECT_SECURITY_BLOCK; #ifdef ENABLE_CLASSIC hci_pairing_complete(connection, ERROR_CODE_CONNECTION_REJECTED_DUE_TO_SECURITY_REASONS); #endif if (connection->state != SENT_DISCONNECT){ connection->state = SENT_DISCONNECT; hci_send_cmd(&hci_disconnect, connection->con_handle, ERROR_CODE_AUTHENTICATION_FAILURE); return true; } } #ifdef ENABLE_CLASSIC uint16_t sniff_min_interval; switch (connection->sniff_min_interval){ case 0: break; case 0xffff: connection->sniff_min_interval = 0; hci_send_cmd(&hci_exit_sniff_mode, connection->con_handle); return true; default: sniff_min_interval = connection->sniff_min_interval; connection->sniff_min_interval = 0; hci_send_cmd(&hci_sniff_mode, connection->con_handle, connection->sniff_max_interval, sniff_min_interval, connection->sniff_attempt, connection->sniff_timeout); return true; } if (connection->sniff_subrating_max_latency != 0xffff){ uint16_t max_latency = connection->sniff_subrating_max_latency; connection->sniff_subrating_max_latency = 0; hci_send_cmd(&hci_sniff_subrating, connection->con_handle, max_latency, connection->sniff_subrating_min_remote_timeout, connection->sniff_subrating_min_local_timeout); return true; } if (connection->qos_service_type != HCI_SERVICE_TYPE_INVALID){ uint8_t service_type = (uint8_t) connection->qos_service_type; connection->qos_service_type = HCI_SERVICE_TYPE_INVALID; hci_send_cmd(&hci_qos_setup, connection->con_handle, 0, service_type, connection->qos_token_rate, connection->qos_peak_bandwidth, connection->qos_latency, connection->qos_delay_variation); return true; } if (connection->request_role != HCI_ROLE_INVALID){ hci_role_t role = connection->request_role; connection->request_role = HCI_ROLE_INVALID; hci_send_cmd(&hci_switch_role_command, connection->address, role); return true; } #endif if (connection->gap_connection_tasks != 0){ #ifdef ENABLE_CLASSIC if ((connection->gap_connection_tasks & GAP_CONNECTION_TASK_WRITE_AUTOMATIC_FLUSH_TIMEOUT) != 0){ connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_WRITE_AUTOMATIC_FLUSH_TIMEOUT; hci_send_cmd(&hci_write_automatic_flush_timeout, connection->con_handle, hci_stack->automatic_flush_timeout); return true; } if (connection->gap_connection_tasks & GAP_CONNECTION_TASK_WRITE_SUPERVISION_TIMEOUT){ connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_WRITE_SUPERVISION_TIMEOUT; hci_send_cmd(&hci_write_link_supervision_timeout, connection->con_handle, hci_stack->link_supervision_timeout); return true; } #endif if (connection->gap_connection_tasks & GAP_CONNECTION_TASK_READ_RSSI){ connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_READ_RSSI; hci_send_cmd(&hci_read_rssi, connection->con_handle); return true; } #ifdef ENABLE_BLE if (connection->gap_connection_tasks & GAP_CONNECTION_TASK_LE_READ_REMOTE_FEATURES){ connection->gap_connection_tasks &= ~GAP_CONNECTION_TASK_LE_READ_REMOTE_FEATURES; hci_send_cmd(&hci_le_read_remote_used_features, connection->con_handle); return true; } #endif } #ifdef ENABLE_BLE switch (connection->le_con_parameter_update_state){ // response to L2CAP CON PARAMETER UPDATE REQUEST case CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS: connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; hci_send_cmd(&hci_le_connection_update, connection->con_handle, connection->le_conn_interval_min, connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, hci_stack->le_minimum_ce_length, hci_stack->le_maximum_ce_length); return true; case CON_PARAMETER_UPDATE_REPLY: connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; hci_send_cmd(&hci_le_remote_connection_parameter_request_reply, connection->con_handle, connection->le_conn_interval_min, connection->le_conn_interval_max, connection->le_conn_latency, connection->le_supervision_timeout, hci_stack->le_minimum_ce_length, hci_stack->le_maximum_ce_length); return true; case CON_PARAMETER_UPDATE_NEGATIVE_REPLY: connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_NONE; hci_send_cmd(&hci_le_remote_connection_parameter_request_negative_reply, connection->con_handle, ERROR_CODE_UNACCEPTABLE_CONNECTION_PARAMETERS); return true; default: break; } if (connection->le_phy_update_all_phys != 0xffu){ uint8_t all_phys = connection->le_phy_update_all_phys; connection->le_phy_update_all_phys = 0xff; hci_send_cmd(&hci_le_set_phy, connection->con_handle, all_phys, connection->le_phy_update_tx_phys, connection->le_phy_update_rx_phys, connection->le_phy_update_phy_options); return true; } #ifdef ENABLE_LE_PERIODIC_ADVERTISING if (connection->le_past_sync_handle != HCI_CON_HANDLE_INVALID){ hci_con_handle_t sync_handle = connection->le_past_sync_handle; connection->le_past_sync_handle = HCI_CON_HANDLE_INVALID; hci_send_cmd(&hci_le_periodic_advertising_sync_transfer, connection->con_handle, connection->le_past_service_data, sync_handle); return true; } if (connection->le_past_advertising_handle != 0xff){ uint8_t advertising_handle = connection->le_past_advertising_handle; connection->le_past_advertising_handle = 0xff; hci_send_cmd(&hci_le_periodic_advertising_set_info_transfer, connection->con_handle, connection->le_past_service_data, advertising_handle); return true; } #endif #endif } return false; } static void hci_run(void){ // stack state sub statemachines switch (hci_stack->state) { case HCI_STATE_INITIALIZING: hci_initializing_run(); break; case HCI_STATE_HALTING: hci_halting_run(); break; case HCI_STATE_FALLING_ASLEEP: hci_falling_asleep_run(); break; default: break; } // allow to run after initialization to working transition if (hci_stack->state != HCI_STATE_WORKING){ return; } bool done; // send continuation fragments first, as they block the prepared packet buffer done = hci_run_acl_fragments(); if (done) return; #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS done = hci_run_iso_fragments(); if (done) return; #endif #ifdef ENABLE_HCI_CONTROLLER_TO_HOST_FLOW_CONTROL // send host num completed packets next as they don't require num_cmd_packets > 0 if (!hci_can_send_comand_packet_transport()) return; if (hci_stack->host_completed_packets){ hci_host_num_completed_packets(); return; } #endif if (!hci_can_send_command_packet_now()) return; // global/non-connection oriented commands #ifdef ENABLE_CLASSIC // general gap classic done = hci_run_general_gap_classic(); if (done) return; #endif #ifdef ENABLE_BLE // general gap le done = hci_run_general_gap_le(); if (done) return; #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS // ISO related tasks, e.g. BIG create/terminate/sync done = hci_run_iso_tasks(); if (done) return; #endif #endif // send pending HCI commands hci_run_general_pending_commands(); } #ifdef ENABLE_CLASSIC static void hci_set_sco_payload_length_for_flipped_packet_types(hci_connection_t * hci_connection, uint16_t flipped_packet_types){ // bits 6-9 are 'don't use' uint16_t packet_types = flipped_packet_types ^ 0x03c0; // restrict packet types to local and remote supported packet_types &= hci_connection->remote_supported_sco_packets & hci_stack->usable_packet_types_sco; hci_connection->sco_payload_length = hci_sco_payload_length_for_packet_types(packet_types); log_info("Possible SCO packet types 0x%04x => payload length %u", packet_types, hci_connection->sco_payload_length); } #endif // funnel for sending cmd packet using single outgoing buffer static uint8_t hci_send_prepared_cmd_packet() { btstack_assert(hci_stack->hci_packet_buffer_reserved); uint16_t size = 3u + hci_stack->hci_packet_buffer[2u]; uint8_t status = hci_send_cmd_packet(hci_stack->hci_packet_buffer, size); // release packet buffer on error or for synchronous transport implementations if ((status != ERROR_CODE_SUCCESS) || hci_transport_synchronous()){ hci_release_packet_buffer(); } return status; } uint8_t hci_send_cmd_packet(uint8_t *packet, int size){ // house-keeping #ifdef ENABLE_CLASSIC bd_addr_t addr; hci_connection_t * conn; #endif #ifdef ENABLE_LE_CENTRAL uint8_t initiator_filter_policy; #endif uint16_t opcode = little_endian_read_16(packet, 0); switch (opcode) { case HCI_OPCODE_HCI_WRITE_LOOPBACK_MODE: hci_stack->loopback_mode = packet[3]; break; #ifdef ENABLE_CLASSIC case HCI_OPCODE_HCI_CREATE_CONNECTION: reverse_bd_addr(&packet[3], addr); log_info("Create_connection to %s", bd_addr_to_str(addr)); // CVE-2020-26555: reject outgoing connection to device with same BD ADDR if (memcmp(hci_stack->local_bd_addr, addr, 6) == 0) { hci_emit_connection_complete(addr, 0, ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR); return ERROR_CODE_CONNECTION_REJECTED_DUE_TO_UNACCEPTABLE_BD_ADDR; } conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) { conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL, HCI_ROLE_MASTER); if (!conn) { // notify client that alloc failed hci_emit_connection_complete(addr, 0, BTSTACK_MEMORY_ALLOC_FAILED); return BTSTACK_MEMORY_ALLOC_FAILED; // packet not sent to controller } conn->state = SEND_CREATE_CONNECTION; } log_info("conn state %u", conn->state); // TODO: L2CAP should not send create connection command, instead a (new) gap function should be used switch (conn->state) { // if connection active exists case OPEN: // and OPEN, emit connection complete command hci_emit_connection_complete(addr, conn->con_handle, ERROR_CODE_SUCCESS); // packet not sent to controller return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS; case RECEIVED_DISCONNECTION_COMPLETE: // create connection triggered in disconnect complete event, let's do it now break; case SEND_CREATE_CONNECTION: #ifdef ENABLE_HCI_SERIALIZED_CONTROLLER_OPERATIONS if (hci_classic_operation_active()){ return ERROR_CODE_SUCCESS; } #endif // connection created by hci, e.g. dedicated bonding, but not executed yet, let's do it now break; default: // otherwise, just ignore as it is already in the open process // packet not sent to controller return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS; } conn->state = SENT_CREATE_CONNECTION; // track outgoing connection hci_stack->outgoing_addr_type = BD_ADDR_TYPE_ACL; (void) memcpy(hci_stack->outgoing_addr, addr, 6); break; case HCI_OPCODE_HCI_SETUP_SYNCHRONOUS_CONNECTION: conn = hci_connection_for_handle(little_endian_read_16(packet, 3)); if (conn == NULL) { // neither SCO nor ACL connection for con handle return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } else { uint16_t remote_supported_sco_packets; switch (conn->address_type){ case BD_ADDR_TYPE_ACL: // assert SCO connection does not exit if (hci_connection_for_bd_addr_and_type(conn->address, BD_ADDR_TYPE_SCO) != NULL){ return ERROR_CODE_COMMAND_DISALLOWED; } // cache remote sco packet types remote_supported_sco_packets = conn->remote_supported_sco_packets; // allocate connection struct conn = create_connection_for_bd_addr_and_type(conn->address, BD_ADDR_TYPE_SCO, HCI_ROLE_MASTER); if (!conn) { return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED; } conn->remote_supported_sco_packets = remote_supported_sco_packets; break; case BD_ADDR_TYPE_SCO: // update of existing SCO connection break; default: return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } } // conn refers to hci connection of type sco now conn->state = SENT_CREATE_CONNECTION; // track outgoing connection to handle command status with error hci_stack->outgoing_addr_type = BD_ADDR_TYPE_SCO; (void) memcpy(hci_stack->outgoing_addr, addr, 6); // setup_synchronous_connection? Voice setting at offset 22 // TODO: compare to current setting if sco connection already active hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 15); // derive sco payload length from packet types hci_set_sco_payload_length_for_flipped_packet_types(conn, little_endian_read_16(packet, 18)); break; case HCI_OPCODE_HCI_ACCEPT_SYNCHRONOUS_CONNECTION: // get SCO connection reverse_bd_addr(&packet[3], addr); conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO); if (conn == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } conn->state = ACCEPTED_CONNECTION_REQUEST; // track outgoing connection to handle command status with error hci_stack->outgoing_addr_type = BD_ADDR_TYPE_SCO; (void) memcpy(hci_stack->outgoing_addr, addr, 6); // accept_synchronous_connection? Voice setting at offset 18 // TODO: compare to current setting if sco connection already active hci_stack->sco_voice_setting_active = little_endian_read_16(packet, 19); // derive sco payload length from packet types hci_set_sco_payload_length_for_flipped_packet_types(conn, little_endian_read_16(packet, 22)); break; #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL case HCI_OPCODE_HCI_LE_CREATE_CONNECTION: // white list used? initiator_filter_policy = packet[7]; switch (initiator_filter_policy) { case 0: // whitelist not used hci_stack->le_connecting_state = LE_CONNECTING_DIRECT; break; case 1: hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST; break; default: log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy); break; } // track outgoing connection hci_stack->outgoing_addr_type = (bd_addr_type_t) packet[8]; // peer address type reverse_bd_addr( &packet[9], hci_stack->outgoing_addr); // peer address break; #ifdef ENABLE_LE_EXTENDED_ADVERTISING case HCI_OPCODE_HCI_LE_EXTENDED_CREATE_CONNECTION: // white list used? initiator_filter_policy = packet[3]; switch (initiator_filter_policy) { case 0: // whitelist not used hci_stack->le_connecting_state = LE_CONNECTING_DIRECT; break; case 1: hci_stack->le_connecting_state = LE_CONNECTING_WHITELIST; break; default: log_error("Invalid initiator_filter_policy in LE Create Connection %u", initiator_filter_policy); break; } // track outgoing connection hci_stack->outgoing_addr_type = (bd_addr_type_t) packet[5]; // peer address type reverse_bd_addr( &packet[6], hci_stack->outgoing_addr); // peer address break; #endif case HCI_OPCODE_HCI_LE_CREATE_CONNECTION_CANCEL: hci_stack->le_connecting_state = LE_CONNECTING_CANCEL; break; #endif #ifdef ENABLE_HCI_COMMAND_STATUS_DISCARDED_FOR_FAILED_CONNECTIONS_WORKAROUND case HCI_OPCODE_HCI_LE_CONNECTION_UPDATE: case HCI_OPCODE_HCI_LE_READ_REMOTE_USED_FEATURES: case HCI_OPCODE_HCI_LE_START_ENCRYPTION: case HCI_OPCODE_HCI_LE_LONG_TERM_KEY_REQUEST_REPLY: case HCI_OPCODE_HCI_LE_LONG_TERM_KEY_NEGATIVE_REPLY: case HCI_OPCODE_HCI_LE_REMOTE_CONNECTION_PARAMETER_REQUEST_REPLY: case HCI_OPCODE_HCI_LE_REMOTE_CONNECTION_PARAMETER_REQUEST_NEGATIVE_REPLY: case HCI_OPCODE_HCI_LE_SET_DATA_LENGTH: case HCI_OPCODE_HCI_LE_READ_PHY: case HCI_OPCODE_HCI_LE_SET_PHY: // conection handle is first command parameter hci_stack->hci_command_con_handle = little_endian_read_16(packet, 3); break; #endif #endif /* ENABLE_BLE */ default: break; } hci_stack->num_cmd_packets--; hci_dump_packet(HCI_COMMAND_DATA_PACKET, 0, packet, size); int err = hci_stack->hci_transport->send_packet(HCI_COMMAND_DATA_PACKET, packet, size); if (err != 0){ return ERROR_CODE_HARDWARE_FAILURE; } return ERROR_CODE_SUCCESS; } // disconnect because of security block void hci_disconnect_security_block(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return; connection->bonding_flags |= BONDING_DISCONNECT_SECURITY_BLOCK; } // Configure Secure Simple Pairing #ifdef ENABLE_CLASSIC // enable will enable SSP during init void gap_ssp_set_enable(int enable){ hci_stack->ssp_enable = enable; } static int hci_local_ssp_activated(void){ return gap_ssp_supported() && hci_stack->ssp_enable; } // if set, BTstack will respond to io capability request using authentication requirement void gap_ssp_set_io_capability(int io_capability){ hci_stack->ssp_io_capability = io_capability; } void gap_ssp_set_authentication_requirement(int authentication_requirement){ hci_stack->ssp_authentication_requirement = authentication_requirement; } // if set, BTstack will confirm a numberic comparion and enter '000000' if requested void gap_ssp_set_auto_accept(int auto_accept){ hci_stack->ssp_auto_accept = auto_accept; } void gap_secure_connections_enable(bool enable){ hci_stack->secure_connections_enable = enable; } bool gap_secure_connections_active(void){ return hci_stack->secure_connections_active; } #endif // va_list part of hci_send_cmd uint8_t hci_send_cmd_va_arg(const hci_cmd_t * cmd, va_list argptr){ if (!hci_can_send_command_packet_now()){ log_error("hci_send_cmd called but cannot send packet now"); return ERROR_CODE_COMMAND_DISALLOWED; } // for HCI INITIALIZATION // log_info("hci_send_cmd: opcode %04x", cmd->opcode); hci_stack->last_cmd_opcode = cmd->opcode; hci_reserve_packet_buffer(); uint8_t * packet = hci_stack->hci_packet_buffer; uint16_t size = hci_cmd_create_from_template(packet, cmd, argptr); return hci_send_prepared_cmd_packet(); } /** * pre: numcmds >= 0 - it's allowed to send a command to the controller */ uint8_t hci_send_cmd(const hci_cmd_t * cmd, ...){ va_list argptr; va_start(argptr, cmd); uint8_t status = hci_send_cmd_va_arg(cmd, argptr); va_end(argptr); return status; } // Create various non-HCI events. // TODO: generalize, use table similar to hci_create_command static void hci_emit_event(uint8_t * event, uint16_t size, int dump){ // dump packet if (dump) { hci_dump_packet( HCI_EVENT_PACKET, 1, event, size); } // dispatch to all event handlers btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->event_handlers); while (btstack_linked_list_iterator_has_next(&it)){ btstack_packet_callback_registration_t * entry = (btstack_packet_callback_registration_t*) btstack_linked_list_iterator_next(&it); entry->callback(HCI_EVENT_PACKET, 0, event, size); } } static void hci_emit_acl_packet(uint8_t * packet, uint16_t size){ if (!hci_stack->acl_packet_handler) return; hci_stack->acl_packet_handler(HCI_ACL_DATA_PACKET, 0, packet, size); } #ifdef ENABLE_CLASSIC static void hci_notify_if_sco_can_send_now(void){ // notify SCO sender if waiting if (!hci_stack->sco_waiting_for_can_send_now) return; if (hci_can_send_sco_packet_now()){ hci_stack->sco_waiting_for_can_send_now = 0; uint8_t event[2] = { HCI_EVENT_SCO_CAN_SEND_NOW, 0 }; hci_dump_packet(HCI_EVENT_PACKET, 1, event, sizeof(event)); hci_stack->sco_packet_handler(HCI_EVENT_PACKET, 0, event, sizeof(event)); } } // parsing end emitting has been merged to reduce code size static void gap_inquiry_explode(uint8_t *packet, uint16_t size) { uint8_t event[28+GAP_INQUIRY_MAX_NAME_LEN]; uint8_t * eir_data; ad_context_t context; const uint8_t * name; uint8_t name_len; if (size < 3) return; int event_type = hci_event_packet_get_type(packet); int num_reserved_fields = (event_type == HCI_EVENT_INQUIRY_RESULT) ? 2 : 1; // 2 for old event, 1 otherwise int num_responses = hci_event_inquiry_result_get_num_responses(packet); switch (event_type){ case HCI_EVENT_INQUIRY_RESULT: case HCI_EVENT_INQUIRY_RESULT_WITH_RSSI: if (size != (3 + (num_responses * 14))) return; break; case HCI_EVENT_EXTENDED_INQUIRY_RESPONSE: if (size != 257) return; if (num_responses != 1) return; break; default: return; } // event[1] is set at the end int i; for (i=0; istate); uint8_t event[3]; event[0] = BTSTACK_EVENT_STATE; event[1] = sizeof(event) - 2u; event[2] = hci_stack->state; hci_emit_event(event, sizeof(event), 1); } #ifdef ENABLE_CLASSIC static void hci_emit_connection_complete(bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){ uint8_t event[13]; event[0] = HCI_EVENT_CONNECTION_COMPLETE; event[1] = sizeof(event) - 2; event[2] = status; little_endian_store_16(event, 3, con_handle); reverse_bd_addr(address, &event[5]); event[11] = 1; // ACL connection event[12] = 0; // encryption disabled hci_emit_event(event, sizeof(event), 1); } static void hci_emit_l2cap_check_timeout(hci_connection_t *conn){ if (disable_l2cap_timeouts) return; log_info("L2CAP_EVENT_TIMEOUT_CHECK"); uint8_t event[4]; event[0] = L2CAP_EVENT_TIMEOUT_CHECK; event[1] = sizeof(event) - 2; little_endian_store_16(event, 2, conn->con_handle); hci_emit_event(event, sizeof(event), 1); } #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL static void hci_emit_le_connection_complete(uint8_t address_type, const bd_addr_t address, hci_con_handle_t con_handle, uint8_t status){ uint8_t hci_event[21]; hci_event[0] = HCI_EVENT_LE_META; hci_event[1] = sizeof(hci_event) - 2u; hci_event[2] = HCI_SUBEVENT_LE_CONNECTION_COMPLETE; hci_event[3] = status; little_endian_store_16(hci_event, 4, con_handle); hci_event[6] = 0; // TODO: role hci_event[7] = address_type; reverse_bd_addr(address, &hci_event[8]); little_endian_store_16(hci_event, 14, 0); // interval little_endian_store_16(hci_event, 16, 0); // latency little_endian_store_16(hci_event, 18, 0); // supervision timeout hci_event[20] = 0; // master clock accuracy hci_emit_event(hci_event, sizeof(hci_event), 1); // emit GAP event, too uint8_t gap_event[36]; hci_create_gap_connection_complete_event(hci_event, gap_event); hci_emit_event(gap_event, sizeof(gap_event), 1); } #endif #endif static void hci_emit_transport_packet_sent(void){ // notify upper stack that it might be possible to send again uint8_t event[] = { HCI_EVENT_TRANSPORT_PACKET_SENT, 0}; hci_emit_event(&event[0], sizeof(event), 0); // don't dump } static void hci_emit_disconnection_complete(hci_con_handle_t con_handle, uint8_t reason){ uint8_t event[6]; event[0] = HCI_EVENT_DISCONNECTION_COMPLETE; event[1] = sizeof(event) - 2u; event[2] = 0; // status = OK little_endian_store_16(event, 3, con_handle); event[5] = reason; hci_emit_event(event, sizeof(event), 1); } static void hci_emit_nr_connections_changed(void){ log_info("BTSTACK_EVENT_NR_CONNECTIONS_CHANGED %u", nr_hci_connections()); uint8_t event[3]; event[0] = BTSTACK_EVENT_NR_CONNECTIONS_CHANGED; event[1] = sizeof(event) - 2u; event[2] = nr_hci_connections(); hci_emit_event(event, sizeof(event), 1); } static void hci_emit_hci_open_failed(void){ log_info("BTSTACK_EVENT_POWERON_FAILED"); uint8_t event[2]; event[0] = BTSTACK_EVENT_POWERON_FAILED; event[1] = sizeof(event) - 2u; hci_emit_event(event, sizeof(event), 1); } static void hci_emit_dedicated_bonding_result(bd_addr_t address, uint8_t status){ log_info("hci_emit_dedicated_bonding_result %u ", status); uint8_t event[9]; int pos = 0; event[pos++] = GAP_EVENT_DEDICATED_BONDING_COMPLETED; event[pos++] = sizeof(event) - 2u; event[pos++] = status; reverse_bd_addr(address, &event[pos]); hci_emit_event(event, sizeof(event), 1); } #ifdef ENABLE_CLASSIC static void hci_emit_security_level(hci_con_handle_t con_handle, gap_security_level_t level){ log_info("hci_emit_security_level %u for handle %x", level, con_handle); uint8_t event[5]; int pos = 0; event[pos++] = GAP_EVENT_SECURITY_LEVEL; event[pos++] = sizeof(event) - 2; little_endian_store_16(event, 2, con_handle); pos += 2; event[pos++] = level; hci_emit_event(event, sizeof(event), 1); } static gap_security_level_t gap_security_level_for_connection(hci_connection_t * connection){ if (!connection) return LEVEL_0; if ((connection->authentication_flags & AUTH_FLAG_CONNECTION_ENCRYPTED) == 0) return LEVEL_0; // BIAS: we only consider Authenticated if the connection is already encrypted, which requires that both sides have link key if ((connection->authentication_flags & AUTH_FLAG_CONNECTION_AUTHENTICATED) == 0) return LEVEL_0; if (connection->encryption_key_size < hci_stack->gap_required_encyrption_key_size) return LEVEL_0; gap_security_level_t security_level = gap_security_level_for_link_key_type(connection->link_key_type); // LEVEL 4 always requires 128 bit encrytion key size if ((security_level == LEVEL_4) && (connection->encryption_key_size < 16)){ security_level = LEVEL_3; } return security_level; } static void hci_emit_scan_mode_changed(uint8_t discoverable, uint8_t connectable){ uint8_t event[4]; event[0] = BTSTACK_EVENT_SCAN_MODE_CHANGED; event[1] = sizeof(event) - 2; event[2] = discoverable; event[3] = connectable; hci_emit_event(event, sizeof(event), 1); } // query if remote side supports eSCO bool hci_remote_esco_supported(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return false; return (connection->remote_supported_features[0] & 1) != 0; } uint16_t hci_remote_sco_packet_types(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return 0; return connection->remote_supported_sco_packets; } static bool hci_ssp_supported(hci_connection_t * connection){ const uint8_t mask = BONDING_REMOTE_SUPPORTS_SSP_CONTROLLER | BONDING_REMOTE_SUPPORTS_SSP_HOST; return (connection->bonding_flags & mask) == mask; } // query if remote side supports SSP bool hci_remote_ssp_supported(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return false; return hci_ssp_supported(connection) ? 1 : 0; } bool gap_ssp_supported_on_both_sides(hci_con_handle_t handle){ return hci_local_ssp_activated() && hci_remote_ssp_supported(handle); } /** * Check if remote supported features query has completed */ bool hci_remote_features_available(hci_con_handle_t handle){ hci_connection_t * connection = hci_connection_for_handle(handle); if (!connection) return false; return (connection->bonding_flags & BONDING_RECEIVED_REMOTE_FEATURES) != 0; } /** * Trigger remote supported features query */ static void hci_trigger_remote_features_for_connection(hci_connection_t * connection){ if ((connection->bonding_flags & (BONDING_REMOTE_FEATURES_QUERY_ACTIVE | BONDING_RECEIVED_REMOTE_FEATURES)) == 0){ connection->bonding_flags |= BONDING_REMOTE_FEATURES_QUERY_ACTIVE | BONDING_REQUEST_REMOTE_FEATURES_PAGE_0; } } void hci_remote_features_query(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return; hci_trigger_remote_features_for_connection(connection); hci_run(); } // GAP API /** * @bbrief enable/disable bonding. default is enabled * @praram enabled */ void gap_set_bondable_mode(int enable){ hci_stack->bondable = enable ? 1 : 0; } /** * @brief Get bondable mode. * @return 1 if bondable */ int gap_get_bondable_mode(void){ return hci_stack->bondable; } /** * @brief map link keys to security levels */ gap_security_level_t gap_security_level_for_link_key_type(link_key_type_t link_key_type){ switch (link_key_type){ case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: return LEVEL_4; case COMBINATION_KEY: case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: return LEVEL_3; default: return LEVEL_2; } } /** * @brief map link keys to secure connection yes/no */ bool gap_secure_connection_for_link_key_type(link_key_type_t link_key_type){ switch (link_key_type){ case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: case UNAUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: return true; default: return false; } } /** * @brief map link keys to authenticated */ bool gap_authenticated_for_link_key_type(link_key_type_t link_key_type){ switch (link_key_type){ case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P256: case AUTHENTICATED_COMBINATION_KEY_GENERATED_FROM_P192: return true; default: return false; } } bool gap_mitm_protection_required_for_security_level(gap_security_level_t level){ log_info("gap_mitm_protection_required_for_security_level %u", level); return level > LEVEL_2; } /** * @brief get current security level */ gap_security_level_t gap_security_level(hci_con_handle_t con_handle){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return LEVEL_0; return gap_security_level_for_connection(connection); } /** * @brief request connection to device to * @result GAP_AUTHENTICATION_RESULT */ void gap_request_security_level(hci_con_handle_t con_handle, gap_security_level_t requested_level){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection){ hci_emit_security_level(con_handle, LEVEL_0); return; } btstack_assert(hci_is_le_connection(connection) == false); // Core Spec 5.2, GAP 5.2.2: "When in Secure Connections Only mode, all services (except those allowed to have Security Mode 4, Level 0) // available on the BR/EDR physical transport require Security Mode 4, Level 4 " if (hci_stack->gap_secure_connections_only_mode && (requested_level != LEVEL_0)){ requested_level = LEVEL_4; } gap_security_level_t current_level = gap_security_level(con_handle); log_info("gap_request_security_level requested level %u, planned level %u, current level %u", requested_level, connection->requested_security_level, current_level); // authentication active if authentication request was sent or planned level > 0 bool authentication_active = ((connection->bonding_flags & BONDING_SENT_AUTHENTICATE_REQUEST) != 0) || (connection->requested_security_level > LEVEL_0); if (authentication_active){ // authentication already active if (connection->requested_security_level < requested_level){ // increase requested level as new level is higher // TODO: handle re-authentication when done connection->requested_security_level = requested_level; } } else { // no request active, notify if security sufficient if (requested_level <= current_level){ hci_emit_security_level(con_handle, current_level); return; } // store request connection->requested_security_level = requested_level; // start to authenticate connection connection->bonding_flags |= BONDING_SEND_AUTHENTICATE_REQUEST; // request remote features if not already active, also trigger hci_run hci_remote_features_query(con_handle); } } /** * @brief start dedicated bonding with device. disconnect after bonding * @param device * @param request MITM protection * @result GAP_DEDICATED_BONDING_COMPLETE */ int gap_dedicated_bonding(bd_addr_t device, int mitm_protection_required){ // create connection state machine hci_connection_t * connection = create_connection_for_bd_addr_and_type(device, BD_ADDR_TYPE_ACL, HCI_ROLE_MASTER); if (!connection){ return BTSTACK_MEMORY_ALLOC_FAILED; } // delete link key gap_drop_link_key_for_bd_addr(device); // configure LEVEL_2/3, dedicated bonding connection->state = SEND_CREATE_CONNECTION; connection->requested_security_level = mitm_protection_required ? LEVEL_3 : LEVEL_2; log_info("gap_dedicated_bonding, mitm %d -> level %u", mitm_protection_required, connection->requested_security_level); connection->bonding_flags = BONDING_DEDICATED; hci_run(); return 0; } uint8_t hci_dedicated_bonding_defer_disconnect(hci_con_handle_t con_handle, bool defer){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (connection == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } if (defer){ connection->bonding_flags |= BONDING_DEDICATED_DEFER_DISCONNECT; } else { connection->bonding_flags &= ~BONDING_DEDICATED_DEFER_DISCONNECT; // trigger disconnect hci_run(); } return ERROR_CODE_SUCCESS; } void gap_set_local_name(const char * local_name){ hci_stack->local_name = local_name; hci_stack->gap_tasks_classic |= GAP_TASK_SET_LOCAL_NAME; // also update EIR if not set by user if (hci_stack->eir_data == NULL){ hci_stack->gap_tasks_classic |= GAP_TASK_SET_EIR_DATA; } hci_run(); } #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL void gap_start_scan(void){ hci_stack->le_scanning_enabled = true; hci_run(); } void gap_stop_scan(void){ hci_stack->le_scanning_enabled = false; hci_run(); } void gap_set_scan_params(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window, uint8_t scanning_filter_policy){ hci_stack->le_scan_type = scan_type; hci_stack->le_scan_filter_policy = scanning_filter_policy; hci_stack->le_scan_interval = scan_interval; hci_stack->le_scan_window = scan_window; hci_stack->le_scanning_param_update = true; hci_run(); } void gap_set_scan_parameters(uint8_t scan_type, uint16_t scan_interval, uint16_t scan_window){ gap_set_scan_params(scan_type, scan_interval, scan_window, 0); } void gap_set_scan_duplicate_filter(bool enabled){ hci_stack->le_scan_filter_duplicates = enabled ? 1 : 0; } void gap_set_scan_phys(uint8_t phys){ // LE Coded and LE 1M PHY hci_stack->le_scan_phys = phys & 0x05; } uint8_t gap_connect(const bd_addr_t addr, bd_addr_type_t addr_type) { // disallow le connection if outgoing already active if (hci_is_le_connection_type(addr_type) && hci_stack->le_connecting_request != LE_CONNECTING_IDLE){ log_error("le connect already active"); return ERROR_CODE_COMMAND_DISALLOWED; } hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, addr_type); if (conn == NULL) { conn = create_connection_for_bd_addr_and_type(addr, addr_type, HCI_ROLE_MASTER); if (conn == false){ // alloc failed log_info("gap_connect: failed to alloc hci_connection_t"); return BTSTACK_MEMORY_ALLOC_FAILED; } } else { switch (conn->state) { case RECEIVED_DISCONNECTION_COMPLETE: // connection was just disconnected, reset state and allow re-connect conn->role = HCI_ROLE_MASTER; break; default: return ERROR_CODE_COMMAND_DISALLOWED; } } // set le connecting state if (hci_is_le_connection_type(addr_type)){ hci_stack->le_connecting_request = LE_CONNECTING_DIRECT; } // trigger connect log_info("gap_connect: send create connection next"); conn->state = SEND_CREATE_CONNECTION; hci_run(); return ERROR_CODE_SUCCESS; } // @assumption: only a single outgoing LE Connection exists static hci_connection_t * gap_get_outgoing_le_connection(void){ btstack_linked_item_t *it; for (it = (btstack_linked_item_t *) hci_stack->connections; it != NULL; it = it->next){ hci_connection_t * conn = (hci_connection_t *) it; if (hci_is_le_connection(conn)){ switch (conn->state){ case SEND_CREATE_CONNECTION: case SENT_CREATE_CONNECTION: return conn; default: break; }; } } return NULL; } uint8_t gap_connect_cancel(void){ hci_connection_t * conn; switch (hci_stack->le_connecting_request){ case LE_CONNECTING_IDLE: break; case LE_CONNECTING_WHITELIST: hci_stack->le_connecting_request = LE_CONNECTING_IDLE; hci_run(); break; case LE_CONNECTING_DIRECT: hci_stack->le_connecting_request = LE_CONNECTING_IDLE; conn = gap_get_outgoing_le_connection(); if (conn == NULL){ hci_run(); } else { switch (conn->state){ case SEND_CREATE_CONNECTION: // skip sending create connection and emit event instead hci_emit_le_connection_complete(conn->address_type, conn->address, 0, ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER); btstack_linked_list_remove(&hci_stack->connections, (btstack_linked_item_t *) conn); btstack_memory_hci_connection_free( conn ); break; case SENT_CREATE_CONNECTION: // let hci_run_general_gap_le cancel outgoing connection hci_run(); break; default: break; } } break; default: btstack_unreachable(); break; } return ERROR_CODE_SUCCESS; } /** * @brief Set connection parameters for outgoing connections * @param conn_scan_interval (unit: 0.625 msec), default: 60 ms * @param conn_scan_window (unit: 0.625 msec), default: 30 ms * @param conn_interval_min (unit: 1.25ms), default: 10 ms * @param conn_interval_max (unit: 1.25ms), default: 30 ms * @param conn_latency, default: 4 * @param supervision_timeout (unit: 10ms), default: 720 ms * @param min_ce_length (unit: 0.625ms), default: 10 ms * @param max_ce_length (unit: 0.625ms), default: 30 ms */ void gap_set_connection_phys(uint8_t phys){ // LE Coded, LE 1M, LE 2M PHY hci_stack->le_connection_phys = phys & 7; } #endif void gap_set_connection_parameters(uint16_t conn_scan_interval, uint16_t conn_scan_window, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length){ hci_stack->le_connection_scan_interval = conn_scan_interval; hci_stack->le_connection_scan_window = conn_scan_window; hci_stack->le_connection_interval_min = conn_interval_min; hci_stack->le_connection_interval_max = conn_interval_max; hci_stack->le_connection_latency = conn_latency; hci_stack->le_supervision_timeout = supervision_timeout; hci_stack->le_minimum_ce_length = min_ce_length; hci_stack->le_maximum_ce_length = max_ce_length; } /** * @brief Updates the connection parameters for a given LE connection * @param handle * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @return 0 if ok */ int gap_update_connection_parameters(hci_con_handle_t con_handle, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; connection->le_conn_interval_min = conn_interval_min; connection->le_conn_interval_max = conn_interval_max; connection->le_conn_latency = conn_latency; connection->le_supervision_timeout = supervision_timeout; connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_CHANGE_HCI_CON_PARAMETERS; hci_run(); return 0; } /** * @brief Request an update of the connection parameter for a given LE connection * @param handle * @param conn_interval_min (unit: 1.25ms) * @param conn_interval_max (unit: 1.25ms) * @param conn_latency * @param supervision_timeout (unit: 10ms) * @return 0 if ok */ int gap_request_connection_parameter_update(hci_con_handle_t con_handle, uint16_t conn_interval_min, uint16_t conn_interval_max, uint16_t conn_latency, uint16_t supervision_timeout){ hci_connection_t * connection = hci_connection_for_handle(con_handle); if (!connection) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; connection->le_conn_interval_min = conn_interval_min; connection->le_conn_interval_max = conn_interval_max; connection->le_conn_latency = conn_latency; connection->le_supervision_timeout = supervision_timeout; connection->le_con_parameter_update_state = CON_PARAMETER_UPDATE_SEND_REQUEST; uint8_t l2cap_trigger_run_event[2] = { L2CAP_EVENT_TRIGGER_RUN, 0}; hci_emit_event(l2cap_trigger_run_event, sizeof(l2cap_trigger_run_event), 0); return 0; } #ifdef ENABLE_LE_PERIPHERAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING static void hci_assert_advertisement_set_0_ready(void){ // force advertising set creation for legacy LE Advertising if ((hci_stack->le_advertisements_state & LE_ADVERTISEMENT_STATE_PARAMS_SET) == 0){ hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; } } #endif /** * @brief Set Advertisement Data * @param advertising_data_length * @param advertising_data (max 31 octets) * @note data is not copied, pointer has to stay valid */ void gap_advertisements_set_data(uint8_t advertising_data_length, uint8_t * advertising_data){ hci_stack->le_advertisements_data_len = advertising_data_length; hci_stack->le_advertisements_data = advertising_data; hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; #ifdef ENABLE_LE_EXTENDED_ADVERTISING hci_assert_advertisement_set_0_ready(); #endif hci_run(); } /** * @brief Set Scan Response Data * @param advertising_data_length * @param advertising_data (max 31 octets) * @note data is not copied, pointer has to stay valid */ void gap_scan_response_set_data(uint8_t scan_response_data_length, uint8_t * scan_response_data){ hci_stack->le_scan_response_data_len = scan_response_data_length; hci_stack->le_scan_response_data = scan_response_data; hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA; #ifdef ENABLE_LE_EXTENDED_ADVERTISING hci_assert_advertisement_set_0_ready(); #endif hci_run(); } /** * @brief Set Advertisement Parameters * @param adv_int_min * @param adv_int_max * @param adv_type * @param direct_address_type * @param direct_address * @param channel_map * @param filter_policy * * @note internal use. use gap_advertisements_set_params from gap_le.h instead. */ void hci_le_advertisements_set_params(uint16_t adv_int_min, uint16_t adv_int_max, uint8_t adv_type, uint8_t direct_address_typ, bd_addr_t direct_address, uint8_t channel_map, uint8_t filter_policy) { hci_stack->le_advertisements_interval_min = adv_int_min; hci_stack->le_advertisements_interval_max = adv_int_max; hci_stack->le_advertisements_type = adv_type; hci_stack->le_advertisements_direct_address_type = direct_address_typ; hci_stack->le_advertisements_channel_map = channel_map; hci_stack->le_advertisements_filter_policy = filter_policy; (void)memcpy(hci_stack->le_advertisements_direct_address, direct_address, 6); hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_PARAMS_SET; hci_run(); } /** * @brief Enable/Disable Advertisements * @param enabled */ void gap_advertisements_enable(int enabled){ if (enabled == 0){ hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_ENABLED; } else { hci_stack->le_advertisements_state |= LE_ADVERTISEMENT_STATE_ENABLED; } hci_update_advertisements_enabled_for_current_roles(); hci_run(); } #ifdef ENABLE_LE_EXTENDED_ADVERTISING static le_advertising_set_t * hci_advertising_set_for_handle(uint8_t advertising_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_advertising_sets); while (btstack_linked_list_iterator_has_next(&it)){ le_advertising_set_t * item = (le_advertising_set_t *) btstack_linked_list_iterator_next(&it); if ( item->advertising_handle == advertising_handle ) { return item; } } return NULL; } uint8_t gap_extended_advertising_set_resolvable_private_address_update(uint16_t update_s){ hci_stack->le_resolvable_private_address_update_s = update_s; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_setup(le_advertising_set_t * storage, const le_extended_advertising_parameters_t * advertising_parameters, uint8_t * out_advertising_handle){ // find free advertisement handle uint8_t advertisement_handle; for (advertisement_handle = 1; advertisement_handle <= LE_EXTENDED_ADVERTISING_MAX_HANDLE; advertisement_handle++){ if (hci_advertising_set_for_handle(advertisement_handle) == NULL) break; } if (advertisement_handle > LE_EXTENDED_ADVERTISING_MAX_HANDLE) return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED; // clear memset(storage, 0, sizeof(le_advertising_set_t)); // copy params storage->advertising_handle = advertisement_handle; memcpy(&storage->extended_params, advertising_parameters, sizeof(le_extended_advertising_parameters_t)); // add to list bool add_ok = btstack_linked_list_add(&hci_stack->le_advertising_sets, (btstack_linked_item_t *) storage); if (!add_ok) return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS; *out_advertising_handle = advertisement_handle; // set tasks and start storage->tasks = LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_set_params(uint8_t advertising_handle, const le_extended_advertising_parameters_t * advertising_parameters){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; memcpy(&advertising_set->extended_params, advertising_parameters, sizeof(le_extended_advertising_parameters_t)); // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_get_params(uint8_t advertising_handle, le_extended_advertising_parameters_t * advertising_parameters){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; memcpy(advertising_parameters, &advertising_set->extended_params, sizeof(le_extended_advertising_parameters_t)); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_set_random_address(uint8_t advertising_handle, bd_addr_t random_address){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; memcpy(advertising_set->random_address, random_address, 6); // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_ADDRESS; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_set_adv_data(uint8_t advertising_handle, uint16_t advertising_data_length, const uint8_t * advertising_data){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; advertising_set->adv_data = advertising_data; advertising_set->adv_data_len = advertising_data_length; // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_ADV_DATA; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_set_scan_response_data(uint8_t advertising_handle, uint16_t scan_response_data_length, const uint8_t * scan_response_data){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; advertising_set->scan_data = scan_response_data; advertising_set->scan_data_len = scan_response_data_length; // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_SCAN_DATA; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_start(uint8_t advertising_handle, uint16_t timeout, uint8_t num_extended_advertising_events){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; advertising_set->enable_timeout = timeout; advertising_set->enable_max_scan_events = num_extended_advertising_events; // set tasks and start advertising_set->state |= LE_ADVERTISEMENT_STATE_ENABLED; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_stop(uint8_t advertising_handle){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; // set tasks and start advertising_set->state &= ~LE_ADVERTISEMENT_STATE_ENABLED; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_extended_advertising_remove(uint8_t advertising_handle){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_REMOVE_SET; hci_run(); return ERROR_CODE_SUCCESS; } #ifdef ENABLE_LE_PERIODIC_ADVERTISING uint8_t gap_periodic_advertising_set_params(uint8_t advertising_handle, const le_periodic_advertising_parameters_t * advertising_parameters){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; // periodic advertising requires neither connectable, scannable, legacy or anonymous if ((advertising_set->extended_params.advertising_event_properties & 0x1f) != 0) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; memcpy(&advertising_set->periodic_params, advertising_parameters, sizeof(le_periodic_advertising_parameters_t)); // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_PERIODIC_PARAMS; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_get_params(uint8_t advertising_handle, le_periodic_advertising_parameters_t * advertising_parameters){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; memcpy(advertising_parameters, &advertising_set->extended_params, sizeof(le_periodic_advertising_parameters_t)); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_set_data(uint8_t advertising_handle, uint16_t periodic_data_length, const uint8_t * periodic_data){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; advertising_set->periodic_data = periodic_data; advertising_set->periodic_data_len = periodic_data_length; // set tasks and start advertising_set->tasks |= LE_ADVERTISEMENT_TASKS_SET_PERIODIC_DATA; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_start(uint8_t advertising_handle, bool include_adi){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; // set tasks and start advertising_set->periodic_include_adi = include_adi; advertising_set->state |= LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_stop(uint8_t advertising_handle){ le_advertising_set_t * advertising_set = hci_advertising_set_for_handle(advertising_handle); if (advertising_set == NULL) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; // set tasks and start advertising_set->state &= ~LE_ADVERTISEMENT_STATE_PERIODIC_ENABLED; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_sync_transfer_set_default_parameters(uint8_t mode, uint16_t skip, uint16_t sync_timeout, uint8_t cte_type){ hci_stack->le_past_mode = mode; hci_stack->le_past_skip = skip; hci_stack->le_past_sync_timeout = sync_timeout; hci_stack->le_past_cte_type = cte_type; hci_stack->le_past_set_default_params = true; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_sync_transfer_send(hci_con_handle_t con_handle, uint16_t service_data, hci_con_handle_t sync_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } hci_connection->le_past_sync_handle = sync_handle; hci_connection->le_past_service_data = service_data; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_set_info_transfer_send(hci_con_handle_t con_handle, uint16_t service_data, uint8_t advertising_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } hci_connection->le_past_advertising_handle = advertising_handle; hci_connection->le_past_service_data = service_data; hci_run(); return ERROR_CODE_SUCCESS; } #endif /* ENABLE_LE_PERIODIC_ADVERTISING */ #endif #endif void hci_le_set_own_address_type(uint8_t own_address_type){ log_info("hci_le_set_own_address_type: old %u, new %u", hci_stack->le_own_addr_type, own_address_type); if (own_address_type == hci_stack->le_own_addr_type) return; hci_stack->le_own_addr_type = own_address_type; #ifdef ENABLE_LE_PERIPHERAL // update advertisement parameters, too hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_PARAMS; hci_run(); #endif #ifdef ENABLE_LE_CENTRAL // note: we don't update scan parameters or modify ongoing connection attempts #endif } void hci_le_random_address_set(const bd_addr_t random_address){ log_info("gap_privacy: hci_le_random_address_set %s", bd_addr_to_str(random_address)); memcpy(hci_stack->le_random_address, random_address, 6); hci_stack->le_random_address_set = true; hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADDRESS | LE_ADVERTISEMENT_TASKS_PRIVACY_NOTIFY; #ifdef ENABLE_LE_EXTENDED_ADVERTISING if (hci_le_extended_advertising_supported()){ hci_assert_advertisement_set_0_ready(); hci_stack->le_advertisements_todo |= LE_ADVERTISEMENT_TASKS_SET_ADDRESS_SET_0; } #endif hci_run(); } #endif uint8_t gap_disconnect(hci_con_handle_t handle){ hci_connection_t * conn = hci_connection_for_handle(handle); if (!conn){ hci_emit_disconnection_complete(handle, 0); return 0; } // ignore if already disconnected if (conn->state == RECEIVED_DISCONNECTION_COMPLETE){ return 0; } conn->state = SEND_DISCONNECT; hci_run(); return 0; } int gap_read_rssi(hci_con_handle_t con_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL) return 0; hci_connection->gap_connection_tasks |= GAP_CONNECTION_TASK_READ_RSSI; hci_run(); return 1; } /** * @brief Get connection type * @param con_handle * @result connection_type */ gap_connection_type_t gap_get_connection_type(hci_con_handle_t connection_handle){ hci_connection_t * conn = hci_connection_for_handle(connection_handle); if (!conn) return GAP_CONNECTION_INVALID; switch (conn->address_type){ case BD_ADDR_TYPE_LE_PUBLIC: case BD_ADDR_TYPE_LE_RANDOM: case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: return GAP_CONNECTION_LE; case BD_ADDR_TYPE_SCO: return GAP_CONNECTION_SCO; case BD_ADDR_TYPE_ACL: return GAP_CONNECTION_ACL; default: return GAP_CONNECTION_INVALID; } } hci_role_t gap_get_role(hci_con_handle_t connection_handle){ hci_connection_t * conn = hci_connection_for_handle(connection_handle); if (!conn) return HCI_ROLE_INVALID; return (hci_role_t) conn->role; } #ifdef ENABLE_CLASSIC uint8_t gap_request_role(const bd_addr_t addr, hci_role_t role){ hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; conn->request_role = role; hci_run(); return ERROR_CODE_SUCCESS; } #endif #ifdef ENABLE_BLE uint8_t gap_le_set_phy(hci_con_handle_t con_handle, uint8_t all_phys, uint8_t tx_phys, uint8_t rx_phys, uint16_t phy_options){ hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; conn->le_phy_update_all_phys = all_phys; conn->le_phy_update_tx_phys = tx_phys; conn->le_phy_update_rx_phys = rx_phys; conn->le_phy_update_phy_options = (uint8_t) phy_options; hci_run(); return 0; } static uint8_t hci_whitelist_add(bd_addr_type_t address_type, const bd_addr_t address){ #if !defined(HAVE_MALLOC) && (!defined(MAX_NR_WHITELIST_ENTRIES) || (MAX_NR_WHITELIST_ENTRIES == 0)) // incorrect configuration: // - as MAX_NR_WHITELIST_ENTRIES is not defined or zero this function always fails // - please set MAX_NR_WHITELIST_ENTRIES in btstack_config.h btstack_assert(false); #endif // check if already in list btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&it)) { whitelist_entry_t *entry = (whitelist_entry_t *) btstack_linked_list_iterator_next(&it); if (entry->address_type != address_type) { continue; } if (memcmp(entry->address, address, 6) != 0) { continue; } // if already on controller: if ((entry->state & LE_WHITELIST_ON_CONTROLLER) != 0){ if ((entry->state & LE_WHITELIST_REMOVE_FROM_CONTROLLER) != 0){ // drop remove request entry->state = LE_WHITELIST_ON_CONTROLLER; return ERROR_CODE_SUCCESS; } else { // disallow as already on controller return ERROR_CODE_COMMAND_DISALLOWED; } } // assume scheduled to add return ERROR_CODE_COMMAND_DISALLOWED; } // alloc and add to list whitelist_entry_t * entry = btstack_memory_whitelist_entry_get(); if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; entry->address_type = address_type; (void)memcpy(entry->address, address, 6); entry->state = LE_WHITELIST_ADD_TO_CONTROLLER; btstack_linked_list_add(&hci_stack->le_whitelist, (btstack_linked_item_t*) entry); return ERROR_CODE_SUCCESS; } static uint8_t hci_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&it)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); if (entry->address_type != address_type) { continue; } if (memcmp(entry->address, address, 6) != 0) { continue; } if (entry->state & LE_WHITELIST_ON_CONTROLLER){ // remove from controller if already present entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER; } else { // directly remove entry from whitelist btstack_linked_list_iterator_remove(&it); btstack_memory_whitelist_entry_free(entry); } return ERROR_CODE_SUCCESS; } return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } static void hci_whitelist_clear(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_whitelist); while (btstack_linked_list_iterator_has_next(&it)){ whitelist_entry_t * entry = (whitelist_entry_t*) btstack_linked_list_iterator_next(&it); if (entry->state & LE_WHITELIST_ON_CONTROLLER){ // remove from controller if already present entry->state |= LE_WHITELIST_REMOVE_FROM_CONTROLLER; continue; } // directly remove entry from whitelist btstack_linked_list_iterator_remove(&it); btstack_memory_whitelist_entry_free(entry); } } /** * @brief Clear Whitelist * @return 0 if ok */ uint8_t gap_whitelist_clear(void){ hci_whitelist_clear(); hci_run(); return ERROR_CODE_SUCCESS; } /** * @brief Add Device to Whitelist * @param address_typ * @param address * @return 0 if ok */ uint8_t gap_whitelist_add(bd_addr_type_t address_type, const bd_addr_t address){ uint8_t status = hci_whitelist_add(address_type, address); if (status){ return status; } hci_run(); return ERROR_CODE_SUCCESS; } /** * @brief Remove Device from Whitelist * @param address_typ * @param address * @return 0 if ok */ uint8_t gap_whitelist_remove(bd_addr_type_t address_type, const bd_addr_t address){ uint8_t status = hci_whitelist_remove(address_type, address); if (status){ return status; } hci_run(); return ERROR_CODE_SUCCESS; } #ifdef ENABLE_LE_CENTRAL /** * @brief Connect with Whitelist * @note Explicit whitelist management and this connect with whitelist replace deprecated gap_auto_connection_* functions * @return - if ok */ uint8_t gap_connect_with_whitelist(void){ if (hci_stack->le_connecting_request != LE_CONNECTING_IDLE){ return ERROR_CODE_COMMAND_DISALLOWED; } hci_stack->le_connecting_request = LE_CONNECTING_WHITELIST; hci_run(); return ERROR_CODE_SUCCESS; } /** * @brief Auto Connection Establishment - Start Connecting to device * @param address_typ * @param address * @return 0 if ok */ uint8_t gap_auto_connection_start(bd_addr_type_t address_type, const bd_addr_t address){ if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){ return ERROR_CODE_COMMAND_DISALLOWED; } uint8_t status = hci_whitelist_add(address_type, address); if (status == BTSTACK_MEMORY_ALLOC_FAILED) { return status; } hci_stack->le_connecting_request = LE_CONNECTING_WHITELIST; hci_run(); return ERROR_CODE_SUCCESS; } /** * @brief Auto Connection Establishment - Stop Connecting to device * @param address_typ * @param address * @return 0 if ok */ uint8_t gap_auto_connection_stop(bd_addr_type_t address_type, const bd_addr_t address){ if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT){ return ERROR_CODE_COMMAND_DISALLOWED; } hci_whitelist_remove(address_type, address); if (btstack_linked_list_empty(&hci_stack->le_whitelist)){ hci_stack->le_connecting_request = LE_CONNECTING_IDLE; } hci_run(); return 0; } /** * @brief Auto Connection Establishment - Stop everything * @note Convenience function to stop all active auto connection attempts */ uint8_t gap_auto_connection_stop_all(void){ if (hci_stack->le_connecting_request == LE_CONNECTING_DIRECT) { return ERROR_CODE_COMMAND_DISALLOWED; } hci_whitelist_clear(); hci_stack->le_connecting_request = LE_CONNECTING_IDLE; hci_run(); return ERROR_CODE_SUCCESS; } uint16_t gap_le_connection_interval(hci_con_handle_t con_handle){ hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return 0; return conn->le_connection_interval; } #endif #endif #ifdef ENABLE_CLASSIC /** * @brief Set Extended Inquiry Response data * @param eir_data size HCI_EXTENDED_INQUIRY_RESPONSE_DATA_LEN (240) bytes, is not copied make sure memory is accessible during stack startup * @note has to be done before stack starts up */ void gap_set_extended_inquiry_response(const uint8_t * data){ hci_stack->eir_data = data; hci_stack->gap_tasks_classic |= GAP_TASK_SET_EIR_DATA; hci_run(); } /** * @brief Start GAP Classic Inquiry * @param duration in 1.28s units * @return 0 if ok * @events: GAP_EVENT_INQUIRY_RESULT, GAP_EVENT_INQUIRY_COMPLETE */ int gap_inquiry_start(uint8_t duration_in_1280ms_units){ if (hci_stack->state != HCI_STATE_WORKING) return ERROR_CODE_COMMAND_DISALLOWED; if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; if ((duration_in_1280ms_units < GAP_INQUIRY_DURATION_MIN) || (duration_in_1280ms_units > GAP_INQUIRY_DURATION_MAX)){ return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } hci_stack->inquiry_state = duration_in_1280ms_units; hci_stack->inquiry_max_period_length = 0; hci_stack->inquiry_min_period_length = 0; hci_run(); return 0; } uint8_t gap_inquiry_periodic_start(uint8_t duration, uint16_t max_period_length, uint16_t min_period_length){ if (hci_stack->state != HCI_STATE_WORKING) return ERROR_CODE_COMMAND_DISALLOWED; if (hci_stack->inquiry_state != GAP_INQUIRY_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; if (duration < GAP_INQUIRY_DURATION_MIN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; if (duration > GAP_INQUIRY_DURATION_MAX) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; if (max_period_length < GAP_INQUIRY_MAX_PERIODIC_LEN_MIN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;; if (min_period_length < GAP_INQUIRY_MIN_PERIODIC_LEN_MIN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS;; hci_stack->inquiry_state = duration; hci_stack->inquiry_max_period_length = max_period_length; hci_stack->inquiry_min_period_length = min_period_length; hci_run(); return 0; } /** * @brief Stop GAP Classic Inquiry * @return 0 if ok */ int gap_inquiry_stop(void){ if ((hci_stack->inquiry_state >= GAP_INQUIRY_DURATION_MIN) && (hci_stack->inquiry_state <= GAP_INQUIRY_DURATION_MAX)) { // emit inquiry complete event, before it even started uint8_t event[] = { GAP_EVENT_INQUIRY_COMPLETE, 1, 0}; hci_emit_event(event, sizeof(event), 1); return 0; } switch (hci_stack->inquiry_state){ case GAP_INQUIRY_STATE_ACTIVE: hci_stack->inquiry_state = GAP_INQUIRY_STATE_W2_CANCEL; hci_run(); return ERROR_CODE_SUCCESS; case GAP_INQUIRY_STATE_PERIODIC: hci_stack->inquiry_state = GAP_INQUIRY_STATE_W2_EXIT_PERIODIC; hci_run(); return ERROR_CODE_SUCCESS; default: return ERROR_CODE_COMMAND_DISALLOWED; } } void gap_inquiry_set_lap(uint32_t lap){ hci_stack->inquiry_lap = lap; } void gap_inquiry_set_scan_activity(uint16_t inquiry_scan_interval, uint16_t inquiry_scan_window){ hci_stack->inquiry_scan_interval = inquiry_scan_interval; hci_stack->inquiry_scan_window = inquiry_scan_window; hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_INQUIRY_SCAN_ACTIVITY; hci_run(); } void gap_inquiry_set_transmit_power_level(int8_t tx_power) { hci_stack->inquiry_tx_power_level = tx_power; hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_INQUIRY_TX_POWER_LEVEL; hci_run(); } /** * @brief Remote Name Request * @param addr * @param page_scan_repetition_mode * @param clock_offset only used when bit 15 is set * @events: HCI_EVENT_REMOTE_NAME_REQUEST_COMPLETE */ int gap_remote_name_request(const bd_addr_t addr, uint8_t page_scan_repetition_mode, uint16_t clock_offset){ if (hci_stack->remote_name_state != GAP_REMOTE_NAME_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; (void)memcpy(hci_stack->remote_name_addr, addr, 6); hci_stack->remote_name_page_scan_repetition_mode = page_scan_repetition_mode; hci_stack->remote_name_clock_offset = clock_offset; hci_stack->remote_name_state = GAP_REMOTE_NAME_STATE_W2_SEND; hci_run(); return 0; } static int gap_pairing_set_state_and_run(const bd_addr_t addr, uint8_t state){ hci_stack->gap_pairing_state = state; (void)memcpy(hci_stack->gap_pairing_addr, addr, 6); hci_run(); return 0; } /** * @brief Legacy Pairing Pin Code Response for binary data / non-strings * @param addr * @param pin_data * @param pin_len * @return 0 if ok */ int gap_pin_code_response_binary(const bd_addr_t addr, const uint8_t * pin_data, uint8_t pin_len){ if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; if (pin_len > PIN_CODE_LEN) return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; hci_stack->gap_pairing_input.gap_pairing_pin = pin_data; hci_stack->gap_pairing_pin_len = pin_len; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN); } /** * @brief Legacy Pairing Pin Code Response * @param addr * @param pin * @return 0 if ok */ int gap_pin_code_response(const bd_addr_t addr, const char * pin){ return gap_pin_code_response_binary(addr, (const uint8_t*) pin, (uint8_t) strlen(pin)); } /** * @brief Abort Legacy Pairing * @param addr * @param pin * @return 0 if ok */ int gap_pin_code_negative(bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PIN_NEGATIVE); } /** * @brief SSP Passkey Response * @param addr * @param passkey * @return 0 if ok */ int gap_ssp_passkey_response(const bd_addr_t addr, uint32_t passkey){ if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; hci_stack->gap_pairing_input.gap_pairing_passkey = passkey; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY); } /** * @brief Abort SSP Passkey Entry/Pairing * @param addr * @param pin * @return 0 if ok */ int gap_ssp_passkey_negative(const bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_PASSKEY_NEGATIVE); } /** * @brief Accept SSP Numeric Comparison * @param addr * @param passkey * @return 0 if ok */ int gap_ssp_confirmation_response(const bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION); } /** * @brief Abort SSP Numeric Comparison/Pairing * @param addr * @param pin * @return 0 if ok */ int gap_ssp_confirmation_negative(const bd_addr_t addr){ if (hci_stack->gap_pairing_state != GAP_PAIRING_STATE_IDLE) return ERROR_CODE_COMMAND_DISALLOWED; return gap_pairing_set_state_and_run(addr, GAP_PAIRING_STATE_SEND_CONFIRMATION_NEGATIVE); } #if defined(ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY) || defined(ENABLE_EXPLICIT_LINK_KEY_REPLY) static uint8_t gap_set_auth_flag_and_run(const bd_addr_t addr, hci_authentication_flags_t flag){ hci_connection_t * conn = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; connectionSetAuthenticationFlags(conn, flag); hci_run(); return ERROR_CODE_SUCCESS; } #endif #ifdef ENABLE_EXPLICIT_IO_CAPABILITIES_REPLY uint8_t gap_ssp_io_capabilities_response(const bd_addr_t addr){ return gap_set_auth_flag_and_run(addr, AUTH_FLAG_SEND_IO_CAPABILITIES_REPLY); } uint8_t gap_ssp_io_capabilities_negative(const bd_addr_t addr){ return gap_set_auth_flag_and_run(addr, AUTH_FLAG_SEND_IO_CAPABILITIES_NEGATIVE_REPLY); } #endif #ifdef ENABLE_CLASSIC_PAIRING_OOB /** * @brief Report Remote OOB Data * @param bd_addr * @param c_192 Simple Pairing Hash C derived from P-192 public key * @param r_192 Simple Pairing Randomizer derived from P-192 public key * @param c_256 Simple Pairing Hash C derived from P-256 public key * @param r_256 Simple Pairing Randomizer derived from P-256 public key */ uint8_t gap_ssp_remote_oob_data(const bd_addr_t addr, const uint8_t * c_192, const uint8_t * r_192, const uint8_t * c_256, const uint8_t * r_256){ hci_connection_t * connection = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (connection == NULL) { return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } connection->classic_oob_c_192 = c_192; connection->classic_oob_r_192 = r_192; // ignore P-256 if not supported by us if (hci_stack->secure_connections_active){ connection->classic_oob_c_256 = c_256; connection->classic_oob_r_256 = r_256; } return ERROR_CODE_SUCCESS; } /** * @brief Generate new OOB data * @note OOB data will be provided in GAP_EVENT_LOCAL_OOB_DATA and be used in future pairing procedures */ void gap_ssp_generate_oob_data(void){ hci_stack->classic_read_local_oob_data = true; hci_run(); } #endif #ifdef ENABLE_EXPLICIT_LINK_KEY_REPLY uint8_t gap_send_link_key_response(const bd_addr_t addr, link_key_t link_key, link_key_type_t type){ hci_connection_t * connection = hci_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL); if (connection == NULL) { return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } memcpy(connection->link_key, link_key, sizeof(link_key_t)); connection->link_key_type = type; return gap_set_auth_flag_and_run(addr, AUTH_FLAG_HANDLE_LINK_KEY_REQUEST); } #endif // ENABLE_EXPLICIT_LINK_KEY_REPLY /** * @brief Set inquiry mode: standard, with RSSI, with RSSI + Extended Inquiry Results. Has to be called before power on. * @param inquiry_mode see bluetooth_defines.h */ void hci_set_inquiry_mode(inquiry_mode_t inquiry_mode){ hci_stack->inquiry_mode = inquiry_mode; } /** * @brief Configure Voice Setting for use with SCO data in HSP/HFP */ void hci_set_sco_voice_setting(uint16_t voice_setting){ hci_stack->sco_voice_setting = voice_setting; } /** * @brief Get SCO Voice Setting * @return current voice setting */ uint16_t hci_get_sco_voice_setting(void){ return hci_stack->sco_voice_setting; } static int hci_have_usb_transport(void){ if (!hci_stack->hci_transport) return 0; const char * transport_name = hci_stack->hci_transport->name; if (!transport_name) return 0; return (transport_name[0] == 'H') && (transport_name[1] == '2'); } static uint16_t hci_sco_packet_length_for_payload_length(uint16_t payload_size){ uint16_t sco_packet_length = 0; #if defined(ENABLE_SCO_OVER_HCI) || defined (HAVE_SCO_TRANSPORT) // Transparent = mSBC => 1, CVSD with 16-bit samples requires twice as much bytes int multiplier; if (((hci_stack->sco_voice_setting_active & 0x03) != 0x03) && ((hci_stack->sco_voice_setting_active & 0x20) == 0x20)) { multiplier = 2; } else { multiplier = 1; } #endif #ifdef ENABLE_SCO_OVER_HCI if (hci_have_usb_transport()){ // see Core Spec for H2 USB Transfer. // 3 byte SCO header + 24 bytes per connection // @note multiple sco connections not supported currently sco_packet_length = 3 + 24 * multiplier; } else { // 3 byte SCO header + SCO packet length over the air sco_packet_length = 3 + payload_size * multiplier; // assert that it still fits inside an SCO buffer if (sco_packet_length > (hci_stack->sco_data_packet_length + 3)){ sco_packet_length = 3 + hci_stack->sco_data_packet_length; } } #endif #ifdef HAVE_SCO_TRANSPORT // 3 byte SCO header + SCO packet length over the air sco_packet_length = 3 + payload_size * multiplier; // assert that it still fits inside an SCO buffer if (sco_packet_length > (hci_stack->sco_data_packet_length + 3)){ sco_packet_length = 3 + hci_stack->sco_data_packet_length; } #endif return sco_packet_length; } uint16_t hci_get_sco_packet_length_for_connection(hci_con_handle_t sco_con_handle){ hci_connection_t * connection = hci_connection_for_handle(sco_con_handle); if (connection != NULL){ return hci_sco_packet_length_for_payload_length(connection->sco_payload_length); } return 0; } uint16_t hci_get_sco_packet_length(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * connection = (hci_connection_t *) btstack_linked_list_iterator_next(&it); if ( connection->address_type == BD_ADDR_TYPE_SCO ) { return hci_sco_packet_length_for_payload_length(connection->sco_payload_length);; } } return 0; } /** * @brief Sets the master/slave policy * @param policy (0: attempt to become master, 1: let connecting device decide) */ void hci_set_master_slave_policy(uint8_t policy){ hci_stack->master_slave_policy = policy; } #endif HCI_STATE hci_get_state(void){ return hci_stack->state; } #ifdef ENABLE_CLASSIC void gap_register_classic_connection_filter(int (*accept_callback)(bd_addr_t addr, hci_link_type_t link_type)){ hci_stack->gap_classic_accept_callback = accept_callback; } #endif /** * @brief Set callback for Bluetooth Hardware Error */ void hci_set_hardware_error_callback(void (*fn)(uint8_t error)){ hci_stack->hardware_error_callback = fn; } void hci_disconnect_all(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it); if (con->state == SENT_DISCONNECT) continue; con->state = SEND_DISCONNECT; } hci_run(); } uint16_t hci_get_manufacturer(void){ return hci_stack->manufacturer; } #ifdef ENABLE_BLE static sm_connection_t * sm_get_connection_for_handle(hci_con_handle_t con_handle){ hci_connection_t * hci_con = hci_connection_for_handle(con_handle); if (!hci_con) return NULL; return &hci_con->sm_connection; } // extracted from sm.c to allow enabling of l2cap le data channels without adding sm.c to the build // without sm.c default values from create_connection_for_bd_addr_and_type() resulg in non-encrypted, not-authenticated #endif uint8_t gap_encryption_key_size(hci_con_handle_t con_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL) return 0; if (hci_is_le_connection(hci_connection)){ #ifdef ENABLE_BLE sm_connection_t * sm_conn = &hci_connection->sm_connection; if (sm_conn->sm_connection_encrypted != 0u) { return sm_conn->sm_actual_encryption_key_size; } #endif } else { #ifdef ENABLE_CLASSIC if ((hci_connection->authentication_flags & AUTH_FLAG_CONNECTION_ENCRYPTED)){ return hci_connection->encryption_key_size; } #endif } return 0; } bool gap_authenticated(hci_con_handle_t con_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL) return false; switch (hci_connection->address_type){ #ifdef ENABLE_BLE case BD_ADDR_TYPE_LE_PUBLIC: case BD_ADDR_TYPE_LE_RANDOM: case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: if (hci_connection->sm_connection.sm_connection_encrypted == 0) return 0; // unencrypted connection cannot be authenticated return hci_connection->sm_connection.sm_connection_authenticated != 0; #endif #ifdef ENABLE_CLASSIC case BD_ADDR_TYPE_SCO: case BD_ADDR_TYPE_ACL: return gap_authenticated_for_link_key_type(hci_connection->link_key_type); #endif default: return false; } } bool gap_secure_connection(hci_con_handle_t con_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL) return 0; switch (hci_connection->address_type){ #ifdef ENABLE_BLE case BD_ADDR_TYPE_LE_PUBLIC: case BD_ADDR_TYPE_LE_RANDOM: case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: if (hci_connection->sm_connection.sm_connection_encrypted == 0) return false; // unencrypted connection cannot be authenticated return hci_connection->sm_connection.sm_connection_sc; #endif #ifdef ENABLE_CLASSIC case BD_ADDR_TYPE_SCO: case BD_ADDR_TYPE_ACL: return gap_secure_connection_for_link_key_type(hci_connection->link_key_type); #endif default: return false; } } bool gap_bonded(hci_con_handle_t con_handle){ hci_connection_t * hci_connection = hci_connection_for_handle(con_handle); if (hci_connection == NULL) return 0; #ifdef ENABLE_CLASSIC link_key_t link_key; link_key_type_t link_key_type; #endif switch (hci_connection->address_type){ #ifdef ENABLE_BLE case BD_ADDR_TYPE_LE_PUBLIC: case BD_ADDR_TYPE_LE_RANDOM: case BD_ADDR_TYPE_LE_PUBLIC_IDENTITY: case BD_ADDR_TYPE_LE_RANDOM_IDENTITY: return hci_connection->sm_connection.sm_le_db_index >= 0; #endif #ifdef ENABLE_CLASSIC case BD_ADDR_TYPE_SCO: case BD_ADDR_TYPE_ACL: return hci_stack->link_key_db && hci_stack->link_key_db->get_link_key(hci_connection->address, link_key, &link_key_type); #endif default: return false; } } #ifdef ENABLE_BLE authorization_state_t gap_authorization_state(hci_con_handle_t con_handle){ sm_connection_t * sm_conn = sm_get_connection_for_handle(con_handle); if (sm_conn == NULL) return AUTHORIZATION_UNKNOWN; // wrong connection if (sm_conn->sm_connection_encrypted == 0u) return AUTHORIZATION_UNKNOWN; // unencrypted connection cannot be authorized if (sm_conn->sm_connection_authenticated == 0u) return AUTHORIZATION_UNKNOWN; // unauthenticatd connection cannot be authorized return sm_conn->sm_connection_authorization_state; } #endif #ifdef ENABLE_CLASSIC uint8_t gap_sniff_mode_enter(hci_con_handle_t con_handle, uint16_t sniff_min_interval, uint16_t sniff_max_interval, uint16_t sniff_attempt, uint16_t sniff_timeout){ hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; conn->sniff_min_interval = sniff_min_interval; conn->sniff_max_interval = sniff_max_interval; conn->sniff_attempt = sniff_attempt; conn->sniff_timeout = sniff_timeout; hci_run(); return 0; } /** * @brief Exit Sniff mode * @param con_handle @ @return 0 if ok */ uint8_t gap_sniff_mode_exit(hci_con_handle_t con_handle){ hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; conn->sniff_min_interval = 0xffff; hci_run(); return 0; } uint8_t gap_sniff_subrating_configure(hci_con_handle_t con_handle, uint16_t max_latency, uint16_t min_remote_timeout, uint16_t min_local_timeout){ hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; conn->sniff_subrating_max_latency = max_latency; conn->sniff_subrating_min_remote_timeout = min_remote_timeout; conn->sniff_subrating_min_local_timeout = min_local_timeout; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_qos_set(hci_con_handle_t con_handle, hci_service_type_t service_type, uint32_t token_rate, uint32_t peak_bandwidth, uint32_t latency, uint32_t delay_variation){ hci_connection_t * conn = hci_connection_for_handle(con_handle); if (!conn) return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; conn->qos_service_type = service_type; conn->qos_token_rate = token_rate; conn->qos_peak_bandwidth = peak_bandwidth; conn->qos_latency = latency; conn->qos_delay_variation = delay_variation; hci_run(); return ERROR_CODE_SUCCESS; } void gap_set_page_scan_activity(uint16_t page_scan_interval, uint16_t page_scan_window){ hci_stack->new_page_scan_interval = page_scan_interval; hci_stack->new_page_scan_window = page_scan_window; hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_PAGE_SCAN_ACTIVITY; hci_run(); } void gap_set_page_scan_type(page_scan_type_t page_scan_type){ hci_stack->new_page_scan_type = (uint8_t) page_scan_type; hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_PAGE_SCAN_TYPE; hci_run(); } void gap_set_page_timeout(uint16_t page_timeout){ hci_stack->page_timeout = page_timeout; hci_stack->gap_tasks_classic |= GAP_TASK_WRITE_PAGE_TIMEOUT; hci_run(); } #endif #ifdef ENABLE_LE_PRIVACY_ADDRESS_RESOLUTION void hci_load_le_device_db_entry_into_resolving_list(uint16_t le_device_db_index){ if (le_device_db_index >= MAX_NUM_RESOLVING_LIST_ENTRIES) return; if (le_device_db_index >= le_device_db_max_count()) return; uint8_t offset = le_device_db_index >> 3; uint8_t mask = 1 << (le_device_db_index & 7); hci_stack->le_resolving_list_add_entries[offset] |= mask; hci_stack->le_resolving_list_set_privacy_mode[offset] |= mask; if (hci_stack->le_resolving_list_state == LE_RESOLVING_LIST_DONE){ // note: go back to remove entries, otherwise, a remove + add will skip the add hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_UPDATES_ENTRIES; } } void hci_remove_le_device_db_entry_from_resolving_list(uint16_t le_device_db_index){ if (le_device_db_index >= MAX_NUM_RESOLVING_LIST_ENTRIES) return; if (le_device_db_index >= le_device_db_max_count()) return; uint8_t offset = le_device_db_index >> 3; uint8_t mask = 1 << (le_device_db_index & 7); hci_stack->le_resolving_list_remove_entries[offset] |= mask; if (hci_stack->le_resolving_list_state == LE_RESOLVING_LIST_DONE){ hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_UPDATES_ENTRIES; } } uint8_t gap_load_resolving_list_from_le_device_db(void){ if (hci_command_supported(SUPPORTED_HCI_COMMAND_LE_SET_ADDRESS_RESOLUTION_ENABLE) == false){ return ERROR_CODE_UNSUPPORTED_FEATURE_OR_PARAMETER_VALUE; } if (hci_stack->le_resolving_list_state != LE_RESOLVING_LIST_SEND_ENABLE_ADDRESS_RESOLUTION){ // restart le resolving list update hci_stack->le_resolving_list_state = LE_RESOLVING_LIST_READ_SIZE; } return ERROR_CODE_SUCCESS; } void gap_set_peer_privacy_mode(le_privacy_mode_t privacy_mode ){ hci_stack->le_privacy_mode = privacy_mode; } #endif #ifdef ENABLE_BLE #ifdef ENABLE_LE_CENTRAL #ifdef ENABLE_LE_EXTENDED_ADVERTISING static uint8_t hci_periodic_advertiser_list_add(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){ #if !defined(HAVE_MALLOC) && (!defined(MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES) || (MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES == 0)) // incorrect configuration: // - as MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES is not defined or zero this function always fails // - please set MAX_NR_PERIODIC_ADVERTISER_LIST_ENTRIES in btstack_config.h btstack_assert(false); #endif // check if already in list btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list); while (btstack_linked_list_iterator_has_next(&it)) { periodic_advertiser_list_entry_t *entry = (periodic_advertiser_list_entry_t *) btstack_linked_list_iterator_next(&it); if (entry->sid != advertising_sid) { continue; } if (entry->address_type != address_type) { continue; } if (memcmp(entry->address, address, 6) != 0) { continue; } // disallow if already scheduled to add if ((entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER) != 0){ return ERROR_CODE_COMMAND_DISALLOWED; } // still on controller, but scheduled to remove -> re-add entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER; return ERROR_CODE_SUCCESS; } // alloc and add to list periodic_advertiser_list_entry_t * entry = btstack_memory_periodic_advertiser_list_entry_get(); if (!entry) return BTSTACK_MEMORY_ALLOC_FAILED; entry->sid = advertising_sid; entry->address_type = address_type; (void)memcpy(entry->address, address, 6); entry->state = LE_PERIODIC_ADVERTISER_LIST_ENTRY_ADD_TO_CONTROLLER; btstack_linked_list_add(&hci_stack->le_periodic_advertiser_list, (btstack_linked_item_t*) entry); return ERROR_CODE_SUCCESS; } static uint8_t hci_periodic_advertiser_list_remove(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list); while (btstack_linked_list_iterator_has_next(&it)){ periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&it); if (entry->sid != advertising_sid) { continue; } if (entry->address_type != address_type) { continue; } if (memcmp(entry->address, address, 6) != 0) { continue; } if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER){ // remove from controller if already present entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER; } else { // directly remove entry from whitelist btstack_linked_list_iterator_remove(&it); btstack_memory_periodic_advertiser_list_entry_free(entry); } return ERROR_CODE_SUCCESS; } return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } static void hci_periodic_advertiser_list_clear(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_periodic_advertiser_list); while (btstack_linked_list_iterator_has_next(&it)){ periodic_advertiser_list_entry_t * entry = (periodic_advertiser_list_entry_t*) btstack_linked_list_iterator_next(&it); if (entry->state & LE_PERIODIC_ADVERTISER_LIST_ENTRY_ON_CONTROLLER){ // remove from controller if already present entry->state |= LE_PERIODIC_ADVERTISER_LIST_ENTRY_REMOVE_FROM_CONTROLLER; continue; } // directly remove entry from whitelist btstack_linked_list_iterator_remove(&it); btstack_memory_periodic_advertiser_list_entry_free(entry); } } uint8_t gap_periodic_advertiser_list_clear(void){ hci_periodic_advertiser_list_clear(); hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertiser_list_add(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){ uint8_t status = hci_periodic_advertiser_list_add(address_type, address, advertising_sid); if (status){ return status; } hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertiser_list_remove(bd_addr_type_t address_type, const bd_addr_t address, uint8_t advertising_sid){ uint8_t status = hci_periodic_advertiser_list_remove(address_type, address, advertising_sid); if (status){ return status; } hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_create_sync(uint8_t options, uint8_t advertising_sid, bd_addr_type_t advertiser_address_type, bd_addr_t advertiser_address, uint16_t skip, uint16_t sync_timeout, uint8_t sync_cte_type){ // abort if already active if (hci_stack->le_periodic_sync_request != LE_CONNECTING_IDLE) { return ERROR_CODE_COMMAND_DISALLOWED; } // store request hci_stack->le_periodic_sync_request = ((options & 0) != 0) ? LE_CONNECTING_WHITELIST : LE_CONNECTING_DIRECT; hci_stack->le_periodic_sync_options = options; hci_stack->le_periodic_sync_advertising_sid = advertising_sid; hci_stack->le_periodic_sync_advertiser_address_type = advertiser_address_type; memcpy(hci_stack->le_periodic_sync_advertiser_address, advertiser_address, 6); hci_stack->le_periodic_sync_skip = skip; hci_stack->le_periodic_sync_timeout = sync_timeout; hci_stack->le_periodic_sync_cte_type = sync_cte_type; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_create_sync_cancel(void){ // abort if not requested if (hci_stack->le_periodic_sync_request == LE_CONNECTING_IDLE) { return ERROR_CODE_COMMAND_DISALLOWED; } hci_stack->le_periodic_sync_request = LE_CONNECTING_IDLE; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_periodic_advertising_terminate_sync(uint16_t sync_handle){ if (hci_stack->le_periodic_terminate_sync_handle != HCI_CON_HANDLE_INVALID){ return ERROR_CODE_COMMAND_DISALLOWED; } hci_stack->le_periodic_terminate_sync_handle = sync_handle; hci_run(); return ERROR_CODE_SUCCESS; } #endif #endif #ifdef ENABLE_LE_ISOCHRONOUS_STREAMS static hci_iso_stream_t * hci_iso_stream_create(hci_iso_type_t iso_type, hci_iso_stream_state_t state, uint8_t group_id, uint8_t stream_id) { hci_iso_stream_t * iso_stream = btstack_memory_hci_iso_stream_get(); if (iso_stream != NULL){ iso_stream->iso_type = iso_type; iso_stream->state = state; iso_stream->group_id = group_id; iso_stream->stream_id = stream_id; iso_stream->cis_handle = HCI_CON_HANDLE_INVALID; iso_stream->acl_handle = HCI_CON_HANDLE_INVALID; btstack_linked_list_add(&hci_stack->iso_streams, (btstack_linked_item_t*) iso_stream); } return iso_stream; } static hci_iso_stream_t * hci_iso_stream_for_con_handle(hci_con_handle_t con_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if (iso_stream->cis_handle == con_handle ) { return iso_stream; } } return NULL; } static void hci_iso_stream_finalize(hci_iso_stream_t * iso_stream){ log_info("hci_iso_stream_finalize con_handle 0x%04x, group_id 0x%02x", iso_stream->cis_handle, iso_stream->group_id); btstack_linked_list_remove(&hci_stack->iso_streams, (btstack_linked_item_t*) iso_stream); btstack_memory_hci_iso_stream_free(iso_stream); } static void hci_iso_stream_finalize_by_type_and_group_id(hci_iso_type_t iso_type, uint8_t group_id) { btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->group_id == group_id) && (iso_stream->iso_type == iso_type)){ btstack_linked_list_iterator_remove(&it); btstack_memory_hci_iso_stream_free(iso_stream); } } } static void hci_iso_stream_requested_finalize(uint8_t group_id) { btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) && (iso_stream->group_id == group_id)){ btstack_linked_list_iterator_remove(&it); btstack_memory_hci_iso_stream_free(iso_stream); } } } static void hci_iso_stream_requested_confirm(uint8_t big_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)){ hci_iso_stream_t * iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ( iso_stream->state == HCI_ISO_STREAM_STATE_REQUESTED ) { iso_stream->state = HCI_ISO_STREAM_STATE_W4_ESTABLISHED; } } } static bool hci_iso_sdu_complete(uint8_t * packet, uint16_t size){ uint8_t sdu_ts_flag = (packet[1] >> 6) & 1; uint16_t sdu_len_offset = 6 + (sdu_ts_flag * 4); uint16_t sdu_len = little_endian_read_16(packet, sdu_len_offset) & 0x0fff; return (sdu_len_offset + 2 + sdu_len) == size; } static void hci_iso_packet_handler(hci_iso_stream_t *iso_stream, uint8_t *packet, uint16_t size) { if (iso_stream == NULL){ log_error("acl_handler called with non-registered handle %u!" , READ_ISO_CONNECTION_HANDLE(packet)); return; } if (hci_stack->iso_packet_handler == NULL) { return; } // parse header uint16_t con_handle_and_flags = little_endian_read_16(packet, 0); uint16_t data_total_length = little_endian_read_16(packet, 2); uint8_t pb_flag = (con_handle_and_flags >> 12) & 3; // assert packet is complete if ((data_total_length + 4u) != size){ return; } if ((pb_flag & 0x01) == 0){ if (pb_flag == 0x02){ // The ISO_SDU_Fragment field contains a header and a complete SDU. if (hci_iso_sdu_complete(packet, size)) { (hci_stack->iso_packet_handler)(HCI_ISO_DATA_PACKET, 0, packet, size); } } else { // The ISO_Data_Load field contains a header and the first fragment of a fragmented SDU. if (size > sizeof(iso_stream->reassembly_buffer)){ return; } memcpy(iso_stream->reassembly_buffer, packet, size); // fix pb_flag iso_stream->reassembly_buffer[1] = (iso_stream->reassembly_buffer[1] & 0xcf) | 0x20; iso_stream->reassembly_pos = size; } } else { // ISO_SDU_Fragment contains continuation or last fragment of an SDU uint8_t ts_flag = (con_handle_and_flags >> 14) & 1; if (ts_flag != 0){ return; } // append fragment if (iso_stream->reassembly_pos == 0){ return; } if ((iso_stream->reassembly_pos + data_total_length) > sizeof(iso_stream->reassembly_buffer)){ // reset reassembly buffer iso_stream->reassembly_pos = 0; return; } memcpy(&iso_stream->reassembly_buffer[iso_stream->reassembly_pos], &packet[4], data_total_length); iso_stream->reassembly_pos += data_total_length; // deliver if last fragment and SDU complete if (pb_flag == 0x03){ if (hci_iso_sdu_complete(iso_stream->reassembly_buffer, iso_stream->reassembly_pos)){ // fix data_total_length little_endian_store_16(iso_stream->reassembly_buffer, 2, iso_stream->reassembly_pos - HCI_ISO_HEADER_SIZE); (hci_stack->iso_packet_handler)(HCI_ISO_DATA_PACKET, 0, iso_stream->reassembly_buffer, iso_stream->reassembly_pos); } // reset reassembly buffer iso_stream->reassembly_pos = 0; } } } static void hci_emit_big_created(const le_audio_big_t * big, uint8_t status){ uint8_t event [6 + (MAX_NR_BIS * 2)]; uint16_t pos = 0; event[pos++] = HCI_EVENT_META_GAP; event[pos++] = 4 + (2 * big->num_bis); event[pos++] = GAP_SUBEVENT_BIG_CREATED; event[pos++] = status; event[pos++] = big->big_handle; event[pos++] = big->num_bis; uint8_t i; for (i=0;inum_bis;i++){ little_endian_store_16(event, pos, big->bis_con_handles[i]); pos += 2; } hci_emit_event(event, pos, 0); } static void hci_emit_cig_created(const le_audio_cig_t * cig, uint8_t status){ uint8_t event [6 + (MAX_NR_CIS * 2)]; uint16_t pos = 0; event[pos++] = HCI_EVENT_META_GAP; event[pos++] = 4 + (2 * cig->num_cis); event[pos++] = GAP_SUBEVENT_CIG_CREATED; event[pos++] = status; event[pos++] = cig->cig_id; event[pos++] = cig->num_cis; uint8_t i; for (i=0;inum_cis;i++){ little_endian_store_16(event, pos, cig->cis_con_handles[i]); pos += 2; } hci_emit_event(event, pos, 0); } static uint16_t hci_setup_cis_created(uint8_t * event, hci_iso_stream_t * iso_stream, uint8_t status) { uint16_t pos = 0; event[pos++] = HCI_EVENT_META_GAP; event[pos++] = 8; event[pos++] = GAP_SUBEVENT_CIS_CREATED; event[pos++] = status; event[pos++] = iso_stream->group_id; event[pos++] = iso_stream->stream_id; little_endian_store_16(event, pos, iso_stream->cis_handle); pos += 2; little_endian_store_16(event, pos, iso_stream->acl_handle); pos += 2; little_endian_store_16(event, pos, iso_stream->iso_interval_1250us); pos += 2; event[pos++] = iso_stream->number_of_subevents; event[pos++] = iso_stream->burst_number_c_to_p; event[pos++] = iso_stream->burst_number_p_to_c; event[pos++] = iso_stream->flush_timeout_c_to_p; event[pos++] = iso_stream->flush_timeout_p_to_c; return pos; } // emits GAP_SUBEVENT_CIS_CREATED after calling hci_iso_finalize static void hci_cis_handle_created(hci_iso_stream_t * iso_stream, uint8_t status){ // cache data before finalizing struct uint8_t event [17]; uint16_t pos = hci_setup_cis_created(event, iso_stream, status); btstack_assert(pos <= sizeof(event)); if (status != ERROR_CODE_SUCCESS){ hci_iso_stream_finalize(iso_stream); } hci_emit_event(event, pos, 0); } static void hci_emit_big_terminated(const le_audio_big_t * big){ uint8_t event [4]; uint16_t pos = 0; event[pos++] = HCI_EVENT_META_GAP; event[pos++] = 2; event[pos++] = GAP_SUBEVENT_BIG_TERMINATED; event[pos++] = big->big_handle; hci_emit_event(event, pos, 0); } static void hci_emit_big_sync_created(const le_audio_big_sync_t * big_sync, uint8_t status){ uint8_t event [6 + (MAX_NR_BIS * 2)]; uint16_t pos = 0; event[pos++] = HCI_EVENT_META_GAP; event[pos++] = 4; event[pos++] = GAP_SUBEVENT_BIG_SYNC_CREATED; event[pos++] = status; event[pos++] = big_sync->big_handle; event[pos++] = big_sync->num_bis; uint8_t i; for (i=0;inum_bis;i++){ little_endian_store_16(event, pos, big_sync->bis_con_handles[i]); pos += 2; } hci_emit_event(event, pos, 0); } static void hci_emit_big_sync_stopped(uint8_t big_handle){ uint8_t event [4]; uint16_t pos = 0; event[pos++] = HCI_EVENT_META_GAP; event[pos++] = 2; event[pos++] = GAP_SUBEVENT_BIG_SYNC_STOPPED; event[pos++] = big_handle; hci_emit_event(event, pos, 0); } static void hci_emit_bis_can_send_now(const le_audio_big_t *big, uint8_t bis_index) { uint8_t event[6]; uint16_t pos = 0; event[pos++] = HCI_EVENT_BIS_CAN_SEND_NOW; event[pos++] = sizeof(event) - 2; event[pos++] = big->big_handle; event[pos++] = bis_index; little_endian_store_16(event, pos, big->bis_con_handles[bis_index]); hci_emit_event(&event[0], sizeof(event), 0); // don't dump } static void hci_emit_cis_can_send_now(hci_con_handle_t cis_con_handle) { uint8_t event[4]; uint16_t pos = 0; event[pos++] = HCI_EVENT_CIS_CAN_SEND_NOW; event[pos++] = sizeof(event) - 2; little_endian_store_16(event, pos, cis_con_handle); hci_emit_event(&event[0], sizeof(event), 0); // don't dump } static le_audio_big_t * hci_big_for_handle(uint8_t big_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it); if ( big->big_handle == big_handle ) { return big; } } return NULL; } static le_audio_big_sync_t * hci_big_sync_for_handle(uint8_t big_handle){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_big_syncs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_big_sync_t * big_sync = (le_audio_big_sync_t *) btstack_linked_list_iterator_next(&it); if ( big_sync->big_handle == big_handle ) { return big_sync; } } return NULL; } void hci_set_num_iso_packets_to_queue(uint8_t num_packets){ hci_stack->iso_packets_to_queue = num_packets; } static le_audio_cig_t * hci_cig_for_id(uint8_t cig_id){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_cigs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_cig_t * cig = (le_audio_cig_t *) btstack_linked_list_iterator_next(&it); if ( cig->cig_id == cig_id ) { return cig; } } return NULL; } static void hci_iso_notify_can_send_now(void){ // BIG btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it); // track number completed packet timestamps if (big->num_completed_timestamp_current_valid){ big->num_completed_timestamp_current_valid = false; if (big->num_completed_timestamp_previous_valid){ // detect delayed sending of all BIS: tolerate up to 50% delayed event handling uint32_t iso_interval_missed_threshold_ms = big->params->sdu_interval_us * 3 / 2000; int32_t num_completed_timestamp_delta_ms = btstack_time_delta(big->num_completed_timestamp_current_ms, big->num_completed_timestamp_previous_ms); if (num_completed_timestamp_delta_ms > iso_interval_missed_threshold_ms){ // to catch up, skip packet on all BIS uint8_t i; for (i=0;inum_bis;i++){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]); if (iso_stream){ iso_stream->num_packets_to_skip++; } } } } big->num_completed_timestamp_previous_valid = true; big->num_completed_timestamp_previous_ms = big->num_completed_timestamp_current_ms; } if (big->can_send_now_requested){ // check if no outgoing iso packets pending and no can send now have to be emitted uint8_t i; bool can_send = true; uint8_t num_iso_queued_minimum = 0; for (i=0;inum_bis;i++){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]); if (iso_stream == NULL) continue; // handle case where individual ISO packet was sent too late: // for each additionally queued packet, a new one needs to get skipped if (i==0){ num_iso_queued_minimum = iso_stream->num_packets_sent; } else if (iso_stream->num_packets_sent > num_iso_queued_minimum){ uint8_t num_packets_to_skip = iso_stream->num_packets_sent - num_iso_queued_minimum; iso_stream->num_packets_to_skip += num_packets_to_skip; iso_stream->num_packets_sent -= num_packets_to_skip; } // check if we can send now if ((iso_stream->num_packets_sent >= hci_stack->iso_packets_to_queue) || (iso_stream->emit_ready_to_send)){ can_send = false; break; } } if (can_send){ // propagate can send now to individual streams big->can_send_now_requested = false; for (i=0;inum_bis;i++){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]); iso_stream->emit_ready_to_send = true; } } } } if (hci_stack->hci_packet_buffer_reserved) return; btstack_linked_list_iterator_init(&it, &hci_stack->le_audio_bigs); while (btstack_linked_list_iterator_has_next(&it)){ le_audio_big_t * big = (le_audio_big_t *) btstack_linked_list_iterator_next(&it); // report bis ready uint8_t i; for (i=0;inum_bis;i++){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(big->bis_con_handles[i]); if ((iso_stream != NULL) && iso_stream->emit_ready_to_send){ iso_stream->emit_ready_to_send = false; hci_emit_bis_can_send_now(big, i); break; } } } // CIS btstack_linked_list_iterator_init(&it, &hci_stack->iso_streams); while (btstack_linked_list_iterator_has_next(&it)) { hci_iso_stream_t *iso_stream = (hci_iso_stream_t *) btstack_linked_list_iterator_next(&it); if ((iso_stream->can_send_now_requested) && (iso_stream->num_packets_sent < hci_stack->iso_packets_to_queue)){ iso_stream->can_send_now_requested = false; hci_emit_cis_can_send_now(iso_stream->cis_handle); } } } static uint8_t gap_big_setup_iso_streams(uint8_t num_bis, uint8_t big_handle){ // make big handle unique and usuable for big and big sync if (hci_big_for_handle(big_handle) != NULL){ return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS; } if (hci_big_sync_for_handle(big_handle) != NULL){ return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS; } if (num_bis == 0){ return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } if (num_bis > MAX_NR_BIS){ return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } // reserve ISO Streams uint8_t i; uint8_t status = ERROR_CODE_SUCCESS; for (i=0;inum_bis, big_params->big_handle); if (status != ERROR_CODE_SUCCESS){ return status; } le_audio_big_t * big = storage; big->big_handle = big_params->big_handle; big->params = big_params; big->state = LE_AUDIO_BIG_STATE_CREATE; big->num_bis = big_params->num_bis; btstack_linked_list_add(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big); hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_big_sync_create(le_audio_big_sync_t * storage, le_audio_big_sync_params_t * big_sync_params){ uint8_t status = gap_big_setup_iso_streams(big_sync_params->num_bis, big_sync_params->big_handle); if (status != ERROR_CODE_SUCCESS){ return status; } le_audio_big_sync_t * big_sync = storage; big_sync->big_handle = big_sync_params->big_handle; big_sync->params = big_sync_params; big_sync->state = LE_AUDIO_BIG_STATE_CREATE; big_sync->num_bis = big_sync_params->num_bis; btstack_linked_list_add(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync); hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_big_terminate(uint8_t big_handle){ le_audio_big_t * big = hci_big_for_handle(big_handle); if (big == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } switch (big->state){ case LE_AUDIO_BIG_STATE_CREATE: btstack_linked_list_remove(&hci_stack->le_audio_bigs, (btstack_linked_item_t *) big); hci_emit_big_terminated(big); break; case LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH: big->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH_THEN_TERMINATE; break; case LE_AUDIO_BIG_STATE_W4_ESTABLISHED: case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH: case LE_AUDIO_BIG_STATE_ACTIVE: big->state = LE_AUDIO_BIG_STATE_TERMINATE; hci_run(); break; default: return ERROR_CODE_COMMAND_DISALLOWED; } return ERROR_CODE_SUCCESS; } uint8_t gap_big_sync_terminate(uint8_t big_handle){ le_audio_big_sync_t * big_sync = hci_big_sync_for_handle(big_handle); if (big_sync == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } switch (big_sync->state){ case LE_AUDIO_BIG_STATE_CREATE: btstack_linked_list_remove(&hci_stack->le_audio_big_syncs, (btstack_linked_item_t *) big_sync); hci_emit_big_sync_stopped(big_handle); break; case LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH: big_sync->state = LE_AUDIO_BIG_STATE_W4_SETUP_ISO_PATH_THEN_TERMINATE; break; case LE_AUDIO_BIG_STATE_W4_ESTABLISHED: case LE_AUDIO_BIG_STATE_SETUP_ISO_PATH: case LE_AUDIO_BIG_STATE_ACTIVE: big_sync->state = LE_AUDIO_BIG_STATE_TERMINATE; hci_run(); break; default: return ERROR_CODE_COMMAND_DISALLOWED; } return ERROR_CODE_SUCCESS; } uint8_t hci_request_bis_can_send_now_events(uint8_t big_handle){ le_audio_big_t * big = hci_big_for_handle(big_handle); if (big == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } if (big->state != LE_AUDIO_BIG_STATE_ACTIVE){ return ERROR_CODE_COMMAND_DISALLOWED; } big->can_send_now_requested = true; hci_iso_notify_can_send_now(); return ERROR_CODE_SUCCESS; } uint8_t hci_request_cis_can_send_now_events(hci_con_handle_t cis_con_handle){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(cis_con_handle); if (iso_stream == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } if ((iso_stream->iso_type != HCI_ISO_TYPE_CIS) && (iso_stream->state != HCI_ISO_STREAM_STATE_ESTABLISHED)) { return ERROR_CODE_COMMAND_DISALLOWED; } iso_stream->can_send_now_requested = true; hci_iso_notify_can_send_now(); return ERROR_CODE_SUCCESS; } uint8_t gap_cig_create(le_audio_cig_t * storage, le_audio_cig_params_t * cig_params){ if (hci_cig_for_id(cig_params->cig_id) != NULL){ return ERROR_CODE_ACL_CONNECTION_ALREADY_EXISTS; } if (cig_params->num_cis == 0){ return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } if (cig_params->num_cis > MAX_NR_CIS){ return ERROR_CODE_INVALID_HCI_COMMAND_PARAMETERS; } // reserve ISO Streams uint8_t i; uint8_t status = ERROR_CODE_SUCCESS; for (i=0;inum_cis;i++){ hci_iso_stream_t * iso_stream = hci_iso_stream_create(HCI_ISO_TYPE_CIS,HCI_ISO_STREAM_STATE_REQUESTED, cig_params->cig_id, i); if (iso_stream == NULL) { status = ERROR_CODE_MEMORY_CAPACITY_EXCEEDED; break; } } // free structs on error if (status != ERROR_CODE_SUCCESS){ hci_iso_stream_finalize_by_type_and_group_id(HCI_ISO_TYPE_CIS, cig_params->cig_id); return status; } le_audio_cig_t * cig = storage; cig->cig_id = cig_params->cig_id; cig->num_cis = cig_params->num_cis; cig->params = cig_params; cig->state = LE_AUDIO_CIG_STATE_CREATE; for (i=0;inum_cis;i++){ cig->cis_con_handles[i] = HCI_CON_HANDLE_INVALID; cig->acl_con_handles[i] = HCI_CON_HANDLE_INVALID; cig->cis_setup_active[i] = false; cig->cis_established[i] = false; } btstack_linked_list_add(&hci_stack->le_audio_cigs, (btstack_linked_item_t *) cig); hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_cig_remove(uint8_t cig_id){ le_audio_cig_t * cig = hci_cig_for_id(cig_id); if (cig == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } // close active CIS uint8_t i; for (i=0;inum_cis;i++){ hci_iso_stream_t * stream = hci_iso_stream_for_con_handle(cig->cis_con_handles[i]); if (stream != NULL){ stream->state = HCI_ISO_STREAM_STATE_W2_CLOSE; } } cig->state = LE_AUDIO_CIG_STATE_REMOVE; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_cis_create(uint8_t cig_id, hci_con_handle_t cis_con_handles [], hci_con_handle_t acl_con_handles []){ le_audio_cig_t * cig = hci_cig_for_id(cig_id); if (cig == NULL){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } if (cig->state != LE_AUDIO_CIG_STATE_W4_CIS_REQUEST){ return ERROR_CODE_COMMAND_DISALLOWED; } // store ACL Connection Handles uint8_t i; for (i=0;inum_cis;i++){ // check that all con handles exist and store hci_con_handle_t cis_handle = cis_con_handles[i]; if (cis_handle == HCI_CON_HANDLE_INVALID){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } uint8_t j; bool found = false; for (j=0;jnum_cis;j++){ if (cig->cis_con_handles[j] == cis_handle){ cig->acl_con_handles[j] = acl_con_handles[j]; hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(cis_handle); btstack_assert(iso_stream != NULL); iso_stream->acl_handle = acl_con_handles[j]; found = true; break; } } if (!found){ return ERROR_CODE_UNKNOWN_CONNECTION_IDENTIFIER; } } cig->state = LE_AUDIO_CIG_STATE_CREATE_CIS; hci_run(); return ERROR_CODE_SUCCESS; } static uint8_t hci_cis_accept_or_reject(hci_con_handle_t cis_handle, hci_iso_stream_state_t state){ hci_iso_stream_t * iso_stream = hci_iso_stream_for_con_handle(cis_handle); if (iso_stream == NULL){ // if we got a CIS Request but fail to allocate a hci_iso_stream_t object, we won't find it here return ERROR_CODE_MEMORY_CAPACITY_EXCEEDED; } // set next state and continue iso_stream->state = state; hci_run(); return ERROR_CODE_SUCCESS; } uint8_t gap_cis_accept(hci_con_handle_t cis_con_handle){ return hci_cis_accept_or_reject(cis_con_handle, HCI_ISO_STREAM_W2_ACCEPT); } uint8_t gap_cis_reject(hci_con_handle_t cis_con_handle){ return hci_cis_accept_or_reject(cis_con_handle, HCI_ISO_STREAM_W2_REJECT); } #endif /* ENABLE_LE_ISOCHRONOUS_STREAMS */ // GAP Privacy - notify clients before random address update static bool gap_privacy_client_all_ready(void){ // check if all ready btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->gap_privacy_clients); while (btstack_linked_list_iterator_has_next(&it)) { gap_privacy_client_t *client = (gap_privacy_client_t *) btstack_linked_list_iterator_next(&it); if (client->state != GAP_PRIVACY_CLIENT_STATE_READY){ return false; } } return true; } static void gap_privacy_clients_handle_ready(void){ // clear 'ready' btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->gap_privacy_clients); while (btstack_linked_list_iterator_has_next(&it)) { gap_privacy_client_t *client = (gap_privacy_client_t *) btstack_linked_list_iterator_next(&it); client->state = GAP_PRIVACY_CLIENT_STATE_IDLE; } hci_stack->le_advertisements_state &= ~LE_ADVERTISEMENT_STATE_PRIVACY_PENDING; hci_run(); } static void gap_privacy_clients_notify(bd_addr_t new_random_address){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->gap_privacy_clients); while (btstack_linked_list_iterator_has_next(&it)) { gap_privacy_client_t *client = (gap_privacy_client_t *) btstack_linked_list_iterator_next(&it); if (client->state == GAP_PRIVACY_CLIENT_STATE_IDLE){ client->state = GAP_PRIVACY_CLIENT_STATE_PENDING; (*client->callback)(client, new_random_address); } } if (gap_privacy_client_all_ready()){ gap_privacy_clients_handle_ready(); } } void gap_privacy_client_register(gap_privacy_client_t * client){ client->state = GAP_PRIVACY_CLIENT_STATE_IDLE; btstack_linked_list_add(&hci_stack->gap_privacy_clients, (btstack_linked_item_t *) client); } void gap_privacy_client_ready(gap_privacy_client_t * client){ client->state = GAP_PRIVACY_CLIENT_STATE_READY; if (gap_privacy_client_all_ready()){ gap_privacy_clients_handle_ready(); } } void gap_privacy_client_unregister(gap_privacy_client_t * client){ btstack_linked_list_remove(&hci_stack->gap_privacy_clients, (btstack_linked_item_t *) client); } #endif /* ENABLE_BLE */ #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION void hci_setup_test_connections_fuzz(void){ hci_connection_t * conn; // default address: 66:55:44:33:00:01 bd_addr_t addr = { 0x66, 0x55, 0x44, 0x33, 0x00, 0x00}; // setup Controller info hci_stack->num_cmd_packets = 255; hci_stack->acl_packets_total_num = 255; // setup incoming Classic ACL connection with con handle 0x0001, 66:55:44:33:22:01 addr[5] = 0x01; conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL, HCI_ROLE_SLAVE); conn->con_handle = addr[5]; conn->state = RECEIVED_CONNECTION_REQUEST; conn->sm_connection.sm_role = HCI_ROLE_SLAVE; // setup incoming Classic SCO connection with con handle 0x0002 addr[5] = 0x02; conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO, HCI_ROLE_SLAVE); conn->con_handle = addr[5]; conn->state = RECEIVED_CONNECTION_REQUEST; conn->sm_connection.sm_role = HCI_ROLE_SLAVE; // setup ready Classic ACL connection with con handle 0x0003 addr[5] = 0x03; conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_ACL, HCI_ROLE_SLAVE); conn->con_handle = addr[5]; conn->state = OPEN; conn->sm_connection.sm_role = HCI_ROLE_SLAVE; // setup ready Classic SCO connection with con handle 0x0004 addr[5] = 0x04; conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_SCO, HCI_ROLE_SLAVE); conn->con_handle = addr[5]; conn->state = OPEN; conn->sm_connection.sm_role = HCI_ROLE_SLAVE; // setup ready LE ACL connection with con handle 0x005 and public address addr[5] = 0x05; conn = create_connection_for_bd_addr_and_type(addr, BD_ADDR_TYPE_LE_PUBLIC, HCI_ROLE_SLAVE); conn->con_handle = addr[5]; conn->state = OPEN; conn->sm_connection.sm_role = HCI_ROLE_SLAVE; conn->sm_connection.sm_connection_encrypted = 1; } void hci_free_connections_fuzz(void){ btstack_linked_list_iterator_t it; btstack_linked_list_iterator_init(&it, &hci_stack->connections); while (btstack_linked_list_iterator_has_next(&it)){ hci_connection_t * con = (hci_connection_t*) btstack_linked_list_iterator_next(&it); btstack_linked_list_iterator_remove(&it); btstack_memory_hci_connection_free(con); } } void hci_simulate_working_fuzz(void){ hci_stack->le_scanning_param_update = false; hci_init_done(); hci_stack->num_cmd_packets = 255; } #endif